Encapsulation Engineering of Sulfur into Magnesium Oxide for High Energy Density Li–S Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Measurements
2.1.1. X-Ray Diffraction (XRD)
2.1.2. Scanning Electron Microscopy (SEM)
2.1.3. Raman Analysis
2.1.4. Fourier Transform Infrared Spectroscopy
2.2. Electrochemistry
3. Materials and Methods
3.1. Materials
3.2. Cathode Preparation, Electrolyte Preparation, and Li–S Coin Cell Assembly
Electrolyte Preparation and Assembly of Coin Cell 2032
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Yang, Y.; Cha, J.J.; Hong, S.S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Chung, S.H.; Zu, C. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef]
- Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F.F. Review on Li-Sulfur Battery Systems: An Integral Perspective. Adv. Energy Mater. 2015, 5, 1500212. [Google Scholar] [CrossRef]
- Wang, J.; Xie, K.; Wei, B. Advanced engineering of nanostructured carbons for lithium-sulfur batteries. Nano Energy 2015, 15, 413–414. [Google Scholar] [CrossRef]
- Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Recent Advances in Electrolytes for Lithium-Sulfur Batteries. Adv. Energy Mater. 2015, 5, 1500117. [Google Scholar] [CrossRef]
- Xu, R.; Lu, J.; Amine, K. Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500408. [Google Scholar] [CrossRef]
- Kang, H.; Shin, J.; Kim, T.H.; Lee, Y.; Lee, D.; Lee, J.; Kim, G.; Cho, E. Metal-Organic Framework-Derived Magnesium Oxide@Carbon Interlayer for Stable Lithium-Sulfur Batteries. ACS Sustain. Chem. Eng. 2023, 11, 1344–1354. [Google Scholar] [CrossRef]
- Liu, Y.T.; Liu, S.; Li, G.R.; Yan, T.Y.; Gao, X.P. High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium-sulfur Battery. Adv. Sci. 2020, 7, 1903693. [Google Scholar] [CrossRef]
- Gu, X.; Tong, C.J.; Lai, C.; Qiu, J.; Huang, X.; Yang, W.; Wen, B.; Liu, L.M.; Hou, Y.; Zhang, S. A porous nitrogen and phosphorous dual-doped graphene blocking layer for high performance Li-S batteries. J. Mater. Chem. A 2015, 3, 16670–16678. [Google Scholar] [CrossRef]
- Zhou, G.; Paek, E.; Hwang, G.S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, W.; Zhao, W.; Li, G.; Hou, Y.; Liu, M.; Zhou, L.; Ye, F.; Li, H.; Wei, Z.; et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827. [Google Scholar] [CrossRef]
- Xie, Y.; Meng, Z.; Cai, T.; Han, W.Q. Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium-sulfur Battery. ACS Appl. Mater. Interfaces 2015, 7, 25202–25210. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666. [Google Scholar] [CrossRef]
- Choi, Y.J.; Jung, B.S.; Lee, D.J.; Jeong, J.H.; Kim, K.W.; Ahn, H.J.; Cho, K.K.; Gu, H.B. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scr. 2007, 62. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Zhang, K.; Chen, W.; Lai, Y.; Li, J. Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium-sulfur batteries. J. Power Sources 2015, 290, 159–167. [Google Scholar] [CrossRef]
- Song, M.S.; Han, S.C.; Kim, H.S.; Kim, J.H.; Kim, K.T.; Kang, Y.M.; Ahn, H.J.; Dou, S.X.; Lee, J.Y. Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries. J. Electrochem. Soc. 2004, 151, A791. [Google Scholar] [CrossRef]
- Tao, Y.; Wei, Y.; Liu, Y.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239. [Google Scholar] [CrossRef]
- Jia, X.; Liu, B.; Liu, J.; Zhang, S.; Sun, Z.; He, X.; Li, H.; Wang, G.; Chang, H. Fabrication of NiO-carbon nanotube/sulfur composites for lithium-sulfur battery application. RSC Adv. 2021, 11, 10753–10759. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, M.; Shen, Z.; Han, T.; Si, T.; Hu, C.; Zhang, H. A Polysulfides-Confined All-in-One Porous Microcapsule Lithium-Sulfur Battery Cathode. Small 2021, 17, 2103051. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, R.; Zhu, G.; Hu, Y.; Wang, Y.; Chen, T.; Liu, J.; Jin, Z. Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. ACS Nano 2017, 11, 7274–7283. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Lee, D.Y.; Park, J.B.; Kim, D.W. Separators Modified Using MoO2@Carbon Nanotube Nanocomposites as Dual-Mode Li-Polysulfide Anchoring Materials for High-Performance Anti-Self-Discharge. ACS Sustain. Chem. Eng. 2020, 8, 15134–15148. [Google Scholar] [CrossRef]
- Liu, R.; Guo, F.; Zhang, X.; Yang, J.; Li, M.; Miaomiao, W.; Liu, H.; Feng, M.; Zhang, L. Novel “bird-Nest” Structured Co3O4/Acidified Multiwall Carbon Nanotube (ACNT) Hosting Materials for Lithium-Sulfur Batteries. ACS Appl. Energy Mater. 2019, 2, 1348–1356. [Google Scholar] [CrossRef]
- Jian, Z.; Zhang, S.; Guan, X.; Li, J.; Li, H.; Wang, W.; Xing, Y.; Xu, H. ZnO quantum dot-modified rGO with enhanced electrochemical performance for lithium-sulfur batteries. RSC Adv. 2020, 10, 32966–32975. [Google Scholar] [CrossRef]
- Su, Z.; Chen, M.; Pan, Y.; Liu, Y.; Xu, H.; Zhang, Y.; Long, D. Expediting polysulfide catalytic conversion for lithium-sulfur batteries via in situ implanted ultrafine Fe3O4 nanocrystals in carbon nanospheres. J. Mater. Chem. A 2020, 8, 24117–24127. [Google Scholar] [CrossRef]
- Pan, H.; Cheng, Z.; Zhang, X.; Wan, K.; Fransaer, J.; Luo, J.; Wübbenhorst, M. Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium-sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 2020, 8, 21824–21832. [Google Scholar] [CrossRef]
- Chen, H.; Tang, H. Interfacial insights for divergent dendrite formation mechanisms in lithium and magnesium anodes. J. Mater. Chem. A 2024, 12, 22584–22596. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, S.; Yao, Y.; Dong, P.; Song, H. Transition Metal Compounds Family for Li-S Batteries: The DFT-Guide for Suppressing Polysulfides Shuttle. Adv. Funct. Mater. 2023, 33, 2300825. [Google Scholar] [CrossRef]
- Rettig, S.; Trotter, J. Refinement of the structure of orthorhombic sulfur, α-S8. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1987, 43, 2260–2262. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Velavan, R.; Batoo, K.M.; Raslan, E.H. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Res. Phys. 2020, 16, 103013. [Google Scholar] [CrossRef]
- McCarthy, G.J.; Martin, K.J.; Holzer, J.M.; Grier, D.G.; Syvinski, W.M.; Nodland, D.W. Calculated Patterns in X-Ray Powder Diffraction Analysis. Adv. X-Ray Anal. 1991, 35, 17–23. [Google Scholar] [CrossRef]
- Guzmán, M.; Reyes, G.; Agulló, N.; Borrós, S. Synthesis of Zn/Mg oxide nanoparticles and its influence on sulfur vulcanization. J. Appl. Polym. Sci. 2011, 119, 2048–2057. [Google Scholar] [CrossRef]
- Ponraj, R.; Kannan, A.G.; Ahn, J.H.; Kim, D.W. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide. ACS Appl. Mater. Interfaces 2016, 8, 4000–4006. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, R.; Ruan, F.; Sonamuthu, J.; Zhang, Q.; Sun, M.; Li, H.; Cai, Y. Rational design of hierarchical C-MgO@ZnO nanofiber as sulfur host for high-performance lithium-sulfur batteries. J. Mater. Sci. 2020, 55, 5534–5544. [Google Scholar] [CrossRef]
- Duong, T.H.Y.; Nguyen, T.N.; Oanh, H.T.; Dang Thi, T.A.; Giang, L.N.T.; Phuong, H.T.; Anh, N.T.; Nguyen, B.M.; Tran Quang, V.; Le, G.T.; et al. Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. J. Chem. 2019, 2019, 4376429. [Google Scholar] [CrossRef]
- Eckert, B.; Steudel, R. Molecular spectra of sulfur molecules and solid sulfur allotropes. In Elemental Sulfur und Sulfur-Rich Compounds II. Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2003; Volume 231, p. 3198. [Google Scholar] [CrossRef]
- Domingo, C.; Montero, S. Raman intensities of sulphur α-S8. J. Chem. Phys. 1981, 74, 862–872. [Google Scholar] [CrossRef]
- Ward, A.T. Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. J. Phys. Chem. 1968, 72, 4133–4139. [Google Scholar] [CrossRef]
- Ward, A.T. Crystal-field splitting of fundamentals in the Raman spectrum of rhombic sulfur. J. Phys. Chem. 1968, 72, 744–746. [Google Scholar] [CrossRef]
- Perrin, A.; Flores Antognini, A.; Zeng, X.; Beckers, H.; Willner, H.; Rauhut, G. Vibrational spectrum and gas-phase structure of disulfur dinitride (S2N2). Chem. Eur. J. 2014, 20, 10323–10331. [Google Scholar] [CrossRef]
- Han, S.; Czernuszewicz, R.S.; Spiro, T.G. Vibrational Spectra and Normal Mode Analysis for [2Fe-2S] Protein Analogues Using 34S, 54Fe, and 2H Substitution: Coupling of Fe-S Stretching and S-C-C Bending Modes. J. Am. Chem. Soc. 1989, 111, 3496–3504. [Google Scholar] [CrossRef]
- Steudel, R. Elemental Sulfur and Sulfur-Rich Compounds II; Springer: Berlin/Heidelberg, Germany, 2003; Volume 248. [Google Scholar]
- Costa, S.; Borowiak-Palen, E.; Kruszynska, M.; Bachmatiuk, A.; Kalenczuk, R.J. Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci. Pol. 2008, 26, 433–441. [Google Scholar]
- Puech, P.; Flahaut, E.; Bassil, A.; Juffmann, T.; Beuneu, F.; Bacsa, W.S. Raman bands of double-wall carbon nanotubes: Comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation. J. Raman Spectrosc. 2007, 38, 714–720. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, P.X.; Liu, C.; Wang, B.W.; Jiang, H.; Chen, M.L.; Sun, D.M.; Li, J.C.; Cong, H.T.; Kauppinen, E.I.; et al. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat. Commun. 2016, 7, 11160. [Google Scholar] [CrossRef] [PubMed]
- Shweta, S.; Bhattarai, M.K.; Kumar, S.; Choudhary, S.; Morell, G.; Katiyar, R.S. Enhanced rate capability in lithium-sulfur batteries using hybrid carbon nanotubes and NZFO-coated separator. J. Electroanal. Chem. 2024, 966, 118396. [Google Scholar] [CrossRef]
- Katiyar, R.K.; Zuluaga Gomez, C.C.; Katiyar, S.; Tripathi, B.; Morell, G.; Weiner, B.R.; Katiyar, R.S. Capacity Retention Through a Separator Coated with Bifunctional Ferroelectric Nanoparticles and Modified Cathodes for Li-S Batteries. Chem. Sel. 2023, 8, e202300614. [Google Scholar] [CrossRef]
- Bhattarai, M.K.; Tripathi, B.; Shweta, S.; Kumar, S.; Zuluaga-Gómez, C.C.; Katiyar, R.K.; Weiner, B.R.; Katiyar, R.S.; Morell, G. Effective polysulfide control in lithium-sulfur batteries utilizing BiFeO3 nanoparticles. Appl. Mater. 2024, 12, 051125. [Google Scholar] [CrossRef]
- Saqib, N.; Silva, C.J.; Maupin, C.M.; Porter, J.M. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes. Appl. Spectrosc. 2017, 71, 1593–1599. [Google Scholar] [CrossRef]
- Ferrari, P.; Berden, G.; Redlich, B.; Waters, L.B.; Bakker, J.M. Laboratory infrared spectra and fragmentation chemistry of sulfur allotropes. Nat. Commun. 2024, 15, 5928. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Puspitasari, I.; Mutmainah, W.; Nobel, M.P.; Hidayat, S. Purification of Natural Sulfur up to the Analyst Grade to qualify for Li-Sulfur Battery Applications. J. Phys. Conf. Ser. 2024, 2780, 012021. [Google Scholar] [CrossRef]
- Rasheed, H.K.; Kareem, A.A. Effect of Multiwalled Carbon Nanotube Reinforcement on the Opto-Electronic Properties of Polyaniline/c-Si Heterojunction. J. Opt. Commun. 2021, 42, 25–29. [Google Scholar] [CrossRef]
- Shuit, S.H.; Tan, S.H. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate. Energy Convers. Manag. 2014, 88, 1283–1289. [Google Scholar] [CrossRef]
- Song, G.; Ma, S.; Tang, G.; Wang, X. Ultrasonic-assisted synthesis of hydrophobic magnesium hydroxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 99–104. [Google Scholar] [CrossRef]
- Salman, K.D.; Abbas, H.H.; Aljawad, H.A. Synthesis and characterization of MgO nanoparticle via microwave and sol-gel methods. J. Phys. Conf. Ser. 2021, 1973, 012104. [Google Scholar] [CrossRef]
- Selvam, N.C.S.; Kumar, R.T.; Kennedy, L.J.; Vijaya, J.J. Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 2011, 509, 9809. [Google Scholar] [CrossRef]
- Sternig, A.; Diwald, O.; Gross, S.; Sushko, P.V. Surface decoration of MgO nanocubes with sulfur oxides: Experiment and theory. J. Phys. Chem. C 2013, 117, 7727–7735. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.J.; Fan, Y.J.; Wang, R.X.; Xiang, S.; Tang, H.G.; Sun, S.G. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. J. Mater. Chem. A 2017, 5, 19467–19475. [Google Scholar] [CrossRef]
- Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L.F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Santos, A.; Fernandes, R.C.; Vicentini, R.; Aguiar, J.P.; Da Silva, L.M.; Zanin, H. On the electrochemical properties of lithium sulfur batteries. J. Energy Storage 2023, 71, 108203. [Google Scholar] [CrossRef]
- Kiai, M.S. Magnesium oxide as an additive with polymeric sulfur cathode and modified glass fiber separator for high performance lithium-sulfur batteries. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Wang, P.; Xi, B.; Zhang, Z.; Song, N.; Chen, W.; Feng, J.; Xiong, S. Dual-Functional MgO Nanocrystals Satisfying Both Polysulfides and Li Regulation toward Advanced Lithium-Sulfur Full Batteries. Small 2021, 17, 2103744. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Manthiram, A. High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 2014, 5, 1978–1983. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70. [Google Scholar] [CrossRef]
- Zhang, S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, Y.; Fan, M.; Liu, H.; Li, X.; Zhang, R.; Li, M.; Qiao, Z.A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683. [Google Scholar] [CrossRef]
- Li, Y.; Guo, S. Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter 2021, 4, 1142–1188. [Google Scholar] [CrossRef]
- Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C.Y.; Curtiss, L.A.; Nazar, L.F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791. [Google Scholar] [CrossRef]
- Xue, W.; Shi, Z.; Suo, L.; Wang, C.; Wang, Z.; Wang, H.; So, K.P.; Maurano, A.; Yu, D.; Chen, Y. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382. [Google Scholar] [CrossRef]
- Sun, W.; Sun, X.; Peng, Q.; Wang, H.; Ge, Y.; Akhtar, N.; Huang, Y.; Wang, K. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium-sulfur battery. Nanoscale Adv. 2019, 1, 1589–1597. [Google Scholar] [CrossRef]
- Dharmaraj, V.R.; Sarkar, A.; Yi, C.-H.; Iputera, K.; Huang, S.-Y.; Chung, R.-J.; Hu, S.-F.; Liu, R.-S. Battery performance amelioration by introducing a conducive mixed electrolyte in rechargeable Mg-O2 batteries. ACS Appl. Mater. Interfaces 2023, 15, 9675–9684. [Google Scholar] [CrossRef] [PubMed]
Oxides as Cathode Additive | Mechanism | Experimental Findings | Reference |
---|---|---|---|
Al2O3/S composite | Adsorbs LiPSs, enhancing cycle performance. | 660 mA h g−1 over 25th cycle | [16] |
TiO2/S composite | Traps LiPSs and improves sulfur retention and cycle life | 850 mA h g−1 (0.5 C, 200 cycles) ~97% | [17] |
Mg0.6Ni0.4O/S composite | Prevents LiPS dissolution, enhancing redox reactions and durability | 1185 mA h g−1 (50 cycles) | [18] |
MCM/Nb2O5 composite | Adsorbs polysulfides, reducing shuttle effect and improving sulfur retention | 650 mA h g−1 (2 C, 500 cycles) ~98% | [19] |
NiO–CNT/S composite | Polysulfide adsorption reduces capacity fade and enhances cycle stability | 609 mA h g−1 (0.1 C, 160 cycles) ~96% | [20] |
SnO2/S composite | Strong polysulfide adsorption, limiting shuttle effect and improving retention | 550 mA h g−1 (0.1 C, 700 cycles) ~95% | [21] |
CeO2/S composite | Traps LiPSs, reducing shuttle effect and improving capacity | 611 mA h g−1 (0.5 C, 200 cycles), 3.5 mg/cm2 high loading ~99% | [22] |
MoO2@CNT/S composite | Polysulfide capture and catalytic conversion, improving sulfur utilization | 540 mA h g−1 (1 C, 700 cycles) ~97% | [23] |
Co3O4/S composite | Adsorbs and catalyzes polysulfide conversion, reducing capacity fade | 694 mA h g−1 (0.2 C, 550 cycles) ~98% | [24] |
rGO@ZnO/S composite | High surface area for polysulfide trapping, enhancing sulfur retention | 674 mA h g−1 (1 C, 400 cycles) ~96% | [25] |
Fe3O4/S composite | Strong polysulfide adsorption, reducing shuttle effect and stabilizing sulfur | 610 mA h g−1 (1 C, 1000 cycles) ~98% | [26] |
MnO2@rGO/S composite | Traps and catalyzes polysulfide conversion, improving cycle stability | 578 mA h g−1 (0.2 C, 100 cycles) ~95% | [27] |
S/MgO–MWCNT–Super P | Traps LiPSs, reducing shuttle effect and improving reversibility | ~600 mA h g−1 over 200 cycles at 0.1 C, ~650 mA h g−1 at 1 C; ~99.5% | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, S.; Oli, N.; Shweta, S.; Kumar, S.; Bhattarai, M.K.; Malca-Reyes, C.A.; Katiyar, R.K.; Tripathi, B.; Díaz-Vázquez, L.M.; Morell, G.; et al. Encapsulation Engineering of Sulfur into Magnesium Oxide for High Energy Density Li–S Batteries. Molecules 2024, 29, 5116. https://doi.org/10.3390/molecules29215116
Choudhary S, Oli N, Shweta S, Kumar S, Bhattarai MK, Malca-Reyes CA, Katiyar RK, Tripathi B, Díaz-Vázquez LM, Morell G, et al. Encapsulation Engineering of Sulfur into Magnesium Oxide for High Energy Density Li–S Batteries. Molecules. 2024; 29(21):5116. https://doi.org/10.3390/molecules29215116
Chicago/Turabian StyleChoudhary, Sunny, Nischal Oli, Shweta Shweta, Satyam Kumar, Mohan K. Bhattarai, Carlos Alberto Malca-Reyes, Rajesh K. Katiyar, Balram Tripathi, Liz M. Díaz-Vázquez, Gerardo Morell, and et al. 2024. "Encapsulation Engineering of Sulfur into Magnesium Oxide for High Energy Density Li–S Batteries" Molecules 29, no. 21: 5116. https://doi.org/10.3390/molecules29215116
APA StyleChoudhary, S., Oli, N., Shweta, S., Kumar, S., Bhattarai, M. K., Malca-Reyes, C. A., Katiyar, R. K., Tripathi, B., Díaz-Vázquez, L. M., Morell, G., & S. Katiyar, R. (2024). Encapsulation Engineering of Sulfur into Magnesium Oxide for High Energy Density Li–S Batteries. Molecules, 29(21), 5116. https://doi.org/10.3390/molecules29215116