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Abstract: Corrosion of metallic equipment is a critical issue across various industries, necessitating
the development of advanced protective strategies. This study utilized dispersion-corrected den-
sity functional theory (DFT) with Becke–Johnson D3(BJ) to examine the atomic-level adsorption of
quinoxalinones on Fe(110) surfaces, focusing on optimizing substitution strategies to enhance corro-
sion inhibition. Three quinoxalinones, quinoxalin-2(1H)-one (QNO), 3-methylquinoxalin-2(1H)-one
(QNOM), and 3,7-dimethylquinoxalin-2(1H)-one (QNO2M), were investigated in various configura-
tions and protonation states. Protonated quinoxalinones demonstrated a stronger surface affinity,
primarily interacting through oxygen atoms and conjugated systems, with greater energetic stability
compared to neutral molecules, driven by enhanced electrostatic interactions and charge transfer
mechanisms. The parallel adsorption configuration was more stable than the perpendicular mode,
which in some adsorption systems did not form bonds with the iron surface. Notably, the presence
of methyl substitutions did not significantly enhance adsorption strength; QNO exhibited higher
energetic stability due to reduced steric interference, which maintained its planarity. Projected density
of states (PDOS), electron density difference (EDD), and electron localization function (ELF) analyses
confirmed the importance of charge transfer between quinoxalinone active sites and the 3d orbitals of
iron in stabilizing the adsorption of molecules. These findings underscore the importance of judicious
quinoxalinone functionalization to preserve their efficacy as corrosion inhibitors.

Keywords: corrosion inhibition; quinoxalinones; density functional theory; adsorption properties;
Fe(110) surface; electron density difference

1. Introduction

Quinoxalinones belong to the benzodiazine heterocyclic class, characterized by a
bicyclic structure comprising a benzene ring fused to a pyrazine ring [1]. The core structure
features nitrogen atoms at the 1- and 4-positions, alongside a carbonyl group at the 2-
position, forming the quinoxalinone framework [2]. This combination of nitrogen atoms and
a carbonyl group imparts notable electron-donating and electron-withdrawing properties,
which significantly influence their electronic behavior and reactivity [1,3]. These properties
make quinoxalinones highly suitable for applications involving surface interactions, such
as corrosion inhibition, where surface adsorption plays a crucial role [4,5]. In addition to
biological and pharmacological uses, quinoxalinones’ molecular structure enables them
to form stable bonds with metallic substrates, enhancing their protective capabilities in
corrosion prevention.
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Corrosion inhibition is one of quinoxalinones’ particular uses, where their ability to
form stable complexes with metal surfaces is paramount [4]. Their electron-rich properties
enable the formation of a protective layer on metal surfaces, thereby reducing electrochemi-
cal reactions that lead to corrosion [6,7]. This protective capacity is enhanced by their ability
to coordinate with metals’ atoms [8,9].

Recent studies have extensively explored various quinoxaline derivatives for their
corrosion inhibition properties [4]. However, despite the extensive research into their
practical applications, there remains a significant gap in understanding the fundamental
mechanisms of action. This gap, particularly from a theoretical perspective, offers a
unique opportunity for further exploration. Investigating how the molecular structure of
quinoxalinones affects surface adsorption and inhibition mechanisms at the molecular level
could lead to the discovery of new compounds with improved inhibition performance.

On the other hand, reported corrosion inhibition studies rely heavily on experimental
trial-and-error methodologies. Experimental techniques such as electrochemical impedance
spectroscopy (EIS) and potentiodynamic polarization are routinely used to assess the per-
formance of inhibitors by measuring their effect on metal corrosion rates in different
environments [10,11]. These techniques provide valuable data on the protective capabilities
of organic compounds such as quinoxalinones. However, on the opposite side, computa-
tional methods like density functional theory (DFT) offer deeper insights into the electronic
properties and adsorption behavior of such inhibitors [12]. First-principles DFT calculations
can effectively predict electronic characteristics and interaction energies between organic
molecules and metal surfaces, enabling a better understanding of the molecular factors
influencing corrosion inhibition [13,14].

A growing number of studies have successfully used computational approaches to
investigate corrosion inhibition mechanisms [15]. Advanced computational tools such as
ab initio DFT and DFTB (density functional tight binding) have been used to gain insights
that experimental studies cannot offer [16,17]. Specifically, comprehensive analysis of
projected density of states (PDOS), electron density difference (EDD) plots, and electron
localization function (ELF) of adsorption systems can provide a more detailed view of
molecular interactions of quinoxalinones with metal surfaces. However, a significant gap
remains in this regard.

The objective of this research is to address the current gaps in understanding surface
adsorption of quinoxalinones, as corrosion inhibitors for metallic equipment, at the molec-
ular level. This study aimed to employ dispersion-corrected density functional theory
(DFT) with Becke–Johnson D3(BJ) to explore the adsorption properties of three quinox-
alinone derivatives, namely, quinoxalin-2(1H)-one (QNO), 3-methylquinoxalin-2(1H)-one
(QNOM), and 3, 7-dimethylquinoxalin-2(1H)-one (QNO2M) (Figure 1). This research
employed advanced computational modelling and analyses to uncover molecular-level
mechanisms of corrosion inhibition. The ultimate aim is to aid in developing more efficient
corrosion inhibitors for diverse industrial applications, ensuring that functionalization
improves performance.Molecules 2024, 29, x FOR PEER REVIEW 3 of 18 

 

 

 
Figure 1. Molecular structure of investigated quinoxalinones. (a) QNO (quinoxalin-2(1H)-one), (b) 
QNOM (3-methylquinoxalin-2(1H)-one), and (c) QNO2M (3, 7-dimethylquinoxalin-2(1H)-one). 

2. Results and Discussion 
2.1. Optimized Geometries of Adsorbed Systems 

The adsorption of organic molecules on metal surfaces is a key criterion for their clas-
sification as corrosion inhibitors [18,19]. Successful surface adsorption enhances the pro-
tective capacity that reduces direct metal exposure to corrosive environments, thereby 
slowing down the corrosion process. Quinoxalinones, with their nitrogen and oxygen het-
eroatoms along with the planar conjugated system, are particularly attractive as corrosion 
inhibitors due to their ability to form stable interactions with metal surfaces [20–22]. As 
emphasized in the literature, the effectiveness of an inhibitor is closely tied to its adsorp-
tion characteristics on the metal surface [13]. This section explores the adsorption charac-
teristics of quinoxalin-2(1H)-one (QNO), 3-methylquinoxalin-2(1H)-one (QNOM), and 
3,7-dimethylquinoxalin-2(1H)-one (QNO2M) on Fe(110), providing insights into their in-
teraction mechanisms in neutral and protonated forms. 

The neutral and protonated forms of QNO, QNOM, and QNO2M exhibit different 
adsorption configurations on the Fe(110) surface upon optimization, with notable varia-
tions in bond lengths and coordination modes, as shown in Figures 2–4. 

For QNO, the neutral molecule in parallel orientation formed three strong bonds: one 
Fe–O bond at 1.936 Å and two Fe–C bonds at 2.209 Å and 2.211 Å, indicating strong ad-
sorption. In the protonated state (QNOH), the molecule formed two Fe–O bonds (2.027 Å 
and 2.156 Å) and two Fe–C bonds (2.159 Å and 2.271 Å), slightly elongating the bond 
lengths. The perpendicular configuration of the quinoxalinone on the nitrogen side 
(QNO3) reoriented to a parallel configuration during optimization, forming three Fe–C 
bonds with distances of 2.283, 2.306, and 2.257 Å. This confirms that this molecule tends 
to be more energetically stable in its parallel form. In contrast, the perpendicular 

Figure 1. Molecular structure of investigated quinoxalinones. (a) QNO (quinoxalin-2(1H)-one),
(b) QNOM (3-methylquinoxalin-2(1H)-one), and (c) QNO2M (3, 7-dimethylquinoxalin-2(1H)-one).
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2. Results and Discussion
2.1. Optimized Geometries of Adsorbed Systems

The adsorption of organic molecules on metal surfaces is a key criterion for their
classification as corrosion inhibitors [18,19]. Successful surface adsorption enhances the
protective capacity that reduces direct metal exposure to corrosive environments, thereby
slowing down the corrosion process. Quinoxalinones, with their nitrogen and oxygen
heteroatoms along with the planar conjugated system, are particularly attractive as corro-
sion inhibitors due to their ability to form stable interactions with metal surfaces [20–22].
As emphasized in the literature, the effectiveness of an inhibitor is closely tied to its ad-
sorption characteristics on the metal surface [13]. This section explores the adsorption
characteristics of quinoxalin-2(1H)-one (QNO), 3-methylquinoxalin-2(1H)-one (QNOM),
and 3,7-dimethylquinoxalin-2(1H)-one (QNO2M) on Fe(110), providing insights into their
interaction mechanisms in neutral and protonated forms.

The neutral and protonated forms of QNO, QNOM, and QNO2M exhibit different
adsorption configurations on the Fe(110) surface upon optimization, with notable variations
in bond lengths and coordination modes, as shown in Figures 2–4.
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For QNO, the neutral molecule in parallel orientation formed three strong bonds: one
Fe–O bond at 1.936 Å and two Fe–C bonds at 2.209 Å and 2.211 Å, indicating strong
adsorption. In the protonated state (QNOH), the molecule formed two Fe–O bonds
(2.027 Å and 2.156 Å) and two Fe–C bonds (2.159 Å and 2.271 Å), slightly elongating
the bond lengths. The perpendicular configuration of the quinoxalinone on the nitrogen
side (QNO3) reoriented to a parallel configuration during optimization, forming three
Fe–C bonds with distances of 2.283, 2.306, and 2.257 Å. This confirms that this molecule
tends to be more energetically stable in its parallel form. In contrast, the perpendicular
configuration on the oxygen side (QNO2) created only a single Fe–O bond at 1.907 Å,
reflecting weaker adsorption.

For QNOM, the additional methyl group at position 3 caused notable changes. The
neutral parallel configuration (QNOM) formed two bonds: one Fe–O at 1.989 Å and one
Fe–C at 2.179 Å. The protonated form (QNOMH) formed two Fe–C bonds at 2.316 Å and
2.295 Å, indicating weaker coordination compared to QNO. The perpendicular configu-
ration on the nitrogen side (QNOM3) did not create any bonds, while the perpendicular
configuration on the oxygen side (QNOM2) formed a single Fe–O bond at 1.925 Å.

The QNO2M molecule, with two methyl groups at positions 3 and 7, showed similar
trends. In the neutral parallel configuration (QNO2M), the molecule formed an Fe–O bond
at 2.012 Å and an Fe–C bond at 2.183 Å. The protonated form (QNO2MH) created one Fe–O
bond at 2.006 Å and three Fe–C bonds (2.323 Å, 2.264 Å, and 2.216 Å). As with QNOM3,
the perpendicular configuration on the nitrogen side (QNO2M3) did not form any bonds,
while the perpendicular configuration on the oxygen side (QNO2M2) formed a single Fe–O
bond at 1.912 Å. In comparison with the experimental covalent radii of Fe–O (1.98 Å) and
Fe–C (2.08 Å), these bond lengths suggest relatively strong metal–molecule interactions,
particularly in the parallel and protonated configurations [23].

The interaction energies further corroborated the stability of the adsorption config-
urations. As listed in Table 1, for QNO, the neutral molecule in a parallel configuration
(QNO) exhibited an interaction energy of −1.715 eV, while the protonated form (QNOH)
showed a stronger interaction energy of −1.823 eV, indicating thermodynamic favorabil-
ity for protonated adsorption [24,25]. Similarly, QNOM displayed stronger adsorption
in the protonated state (QNOMH, −1.753 eV) compared to the neutral form (QNOM,
−1.680 eV). QNO2M showed a similar pattern, with the protonated molecule (QNO2MH)
having an interaction energy of −1.743 eV compared to the neutral parallel configuration
(QNO2M, −1.669 eV).

Table 1. Interaction energies for the adsorption of quinoxalinone derivatives on the Fe(110) surface.

Molecule Interaction Energy
(in eV) Molecule Interaction Energy

(in eV) Molecule Interaction Energy
(in eV)

QNO −1.715 QNOM −1.680 QNO2M −1.669
QNO2 −1.514 QNOM2 −1.508 QNO2M2 −1.491
QNO3 −1.683 QNOM3 −1.541 QNO2M3 −1.530
QNOH −1.823 QNOMH −1.753 QNO2MH −1.743

The comparison across the three molecules suggests that protonation generally en-
hances adsorption strength, as seen in the more negative interaction energies for the
protonated forms. This can be attributed to the strong contribution of long-range van
der Waals interactions to the stability of molecules under study. However, the effect of
additional methyl groups on QNOM and QNO2M did not significantly increase inter-
action energy compared to QNO. This observation highlights a potential limitation in
methylation’s influence on adsorption energy, suggesting that while methyl groups may
impact steric factors, they do not substantially improve bonding. Interestingly, it can be
stated that methylation alters the adsorption strength of the parent molecule, which is well
reflected in the adsorption configurations of QNOM3 and QNO2M3, where no bonding is
observed compared to strongly adsorbed QNO3. The core quinoxalinone is the main factor



Molecules 2024, 29, 5123 6 of 16

responsible for coordination with the Fe surface, and therefore each molecule’s bonding
characteristics. Notably, the perpendicular configurations showed weaker adsorption, at-
tributed to the preferred parallel adsorption mode of this kind of molecules [26]. The QNO
molecule seemed to be in an optimal adsorption mode without additional functionalization.

The results from this section provide crucial insights for the further design of quinox-
alinones. The findings emphasize the critical effect that a small functional group may have
on the adsorption characteristics. Given the present investigation and its conditions, it can
be concluded that the overall impact of the present functionalization strategy on adsorption
energy is limited. In contrast, the protonation state significantly improved adsorption
stability. It is well-reported that protonated molecules play an important role in the initial
adsorption process of inhibitors, specifically in acidic media [27,28].

2.2. Projected Density of States

Projected density of states (PDOS) analysis is a vital tool for examining metal–molecule
interactions, particularly in the context of corrosion inhibition [17,29]. By decomposing the
total electronic structure into contributions from individual atomic orbitals, PDOS allows
us to identify orbital interactions that are responsible for stabilizing adsorption complexes.
This approach provides detailed insight into how specific orbitals of the organic molecules
hybridize with the Fe surface, leading to charge transfer and bonding [17].

As shown in Figure 5, in their isolated states, placed 6 Å above the Fe(110) surface to
minimize interaction, the PDOS for the quinoxalin-2(1H)-one (QNO), 3-methylquinoxalin-
2(1H)-one (QNOM), and 3,7-dimethylquinoxalin-2(1H)-one (QNO2M) molecules exhibited
distinct peaks within the range of −5 eV to 5 eV [30]. These states align closely with the
unoccupied Fe 3d states. This suggests that when the molecules adsorb onto the surface,
significant orbital hybridization might occur. This alignment between the molecular orbitals
and the metal’s 3d orbitals indicates that these states are likely to participate in bonding,
enhancing the interaction strength upon adsorption.

So, in Figures 6–8 of adsorbed molecules, upon adsorption of quinoxalinone molecules
onto the Fe(110) surface, the PDOS showed clear signs of electronic interaction. The sharp
peaks observed in the isolated state were significantly broadened and attenuated. This
broadening reflects an increased electronic disorder due to interaction with the metal
surface, signaling orbital overlap between the molecules and the metal [31,32]. Specifically,
the s and p orbitals of the quinoxalinones hybridized with the Fe 3d orbitals, reinforcing the
covalent bonding character. The broadening of molecular states, particularly those around
the Fermi level (0 eV), indicates that electrons from the molecule’s occupied states were
delocalized over the metal, suggesting strong adsorption [17]. However, perpendicular
configurations that exhibited weaker interactions (as seen in some QNOM and QNO2M
cases) showed less pronounced broadening, indicating weaker bonding and minimal orbital
overlap in these orientations.

The hybridization of the molecules’ s and p orbitals with the metal’s 3d states is
a key mechanism that stabilizes the adsorbed complexes. PDOS analysis suggests that
charge transfer occurs from the molecule to the metal, particularly in the case of proto-
nated molecules, where greater orbital overlap is observed. This transfer is evident in the
redistribution of electronic states near the Fermi level, indicating covalent bonding and
some degree of electron sharing. The presence of such covalent interactions enhances the
inhibitor’s performance by effectively minimizing the electrochemical reactions responsible
for corrosion.

While PDOS provides crucial insights into orbital interactions and bonding mecha-
nisms, a more comprehensive understanding of the adsorption process requires additional
electronic structure analyses. EDD and ELF analyses are also reported to complement the
PDOS findings by visualizing charge redistribution and electron localization.
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2.3. Electron Density Difference Analysis

EDD analysis serves as a critical complement to PDOS when studying the electronic
interactions between organic molecules and metal surfaces. While PDOS provides insights
into orbital interactions, EDD plots visualize charge redistribution between the adsorbed
molecules and the metal surface. These maps display regions of electron accumulation
(colored red) and electron depletion (colored yellow), highlighting areas where bonding
occurs and charge transfer takes place.

In this analysis, the three parallel adsorption configurations of neutral quinoxalinones
were considered for comparison. The EDD plots are shown in Figure 9. This figure reveals
distinct patterns of charge redistribution. Significant electron accumulation (red) was
observed around the Fe-C bonds, indicating strong interaction between the π-conjugated
systems of the molecule and the metal surface. In particular, the Fe-O bond also showed
considerable electron accumulation, emphasizing the role of oxygen as a key site for inter-
action with iron. The electron depletion regions (yellow) were primarily located around
the areas between the molecular core and the metal surface, suggesting electron flow
from the molecules to the metal. This redistribution indicates a strong quinoxalinone–
Fe interaction, further solidifying the role of these bonds in stabilizing the adsorbed
state [33,34].

The EDD plots show evidence of a dual charge transfer mechanism at the molecule–
metal interface. This is attributed to electron donation from the active sites of the organic
molecules, particularly π-systems and oxygen atoms, into the vacant d-orbitals of the Fe
surface. Simultaneously, back-donation occurs from the filled d-orbitals of the metal to
the π* orbitals of the molecules, particularly in the conjugated ring systems [12,15]. This
bidirectional charge transfer strengthens the covalent bonding between the molecules and
the metal. The extent of charge accumulation around the Fe-C and Fe-O bonds is indicative
of the strength of these covalent interactions, with larger red regions corresponding to
stronger electron sharing between the molecules and metal.
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The findings from the EDD analysis confirm that strong covalent interactions and
charge transfer mechanisms stabilize the adsorption of quinoxalinones on the Fe(110)
surface. These results are consistent with PDOS findings, where hybridization of molecular
orbitals with metal d-states reinforces the strength of interactions.
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2.4. Electron Localization Function Maps

The ELF is a powerful tool for analyzing the electronic configurations and bonding
characteristics of molecules adsorbed on metal surfaces [35,36]. ELF provides a visual
representation of electron localization, allowing for the differentiation between different
types of chemical bonding. High ELF values, approaching 1, indicate strong covalent bonds
where electrons are highly localized, typically in areas with shared electron pairs. Values
around 0.5 represent electron delocalization, suggesting weaker, metallic, or physisorptive
interactions. Lower ELF values below 0.5 are indicative of metallic bonding or weaker van
der Waals forces, typical in physisorption. By mapping these ELF values, one can visually
distinguish between strong chemisorption and weaker physisorption [35].

ELF maps of the neutral and protonated forms of investigated quinoxalinones ad-
sorbed on the metal surface are shown in Figures 10–12. Different regions of electron
localization are color-coded. In these figures, red areas indicate regions of high electron
localization, suggesting strong covalent bonding, particularly near the oxygen atoms of
carbonyl groups where Fe-O bonds are present. The red-yellow regions represent partial
electron localization, indicative of weaker physisorption interactions, which are located
around the aromatic rings and nitrogen atoms. Yellow-green regions are observed where
weaker interactions or metallic bonding occurs, signifying less localized electron density.
These maps reveal that electron-rich areas around oxygen atoms and some carbon atoms
contribute to strong covalent bonds with the metal. It should be noted that some π-electrons
of aromatic rings are involved in covalent and non-covalent interactions.

The ELF plots provide clear insights into the chemical bonding characteristics at the
molecule–metal interface. The physisorptive interactions, although weaker, complement
the stronger covalent bonds, providing additional stability.

The findings from the ELF analysis demonstrate that a combination of strong covalent
bonds and physisorption bonding enhances the stability of the adsorbed molecules on the
metal surface. The presence of highly localized electron density in certain regions ensures
strong chemisorptive interactions, while the weaker physisorptive bonds provide flexibility
and adaptability at the molecule–metal interface. The ELF analysis thus confirms the robust
interaction between the quinoxalinone molecules and the metal surface.
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3. Computational Details
3.1. DFT Computation Details

The first-principles simulations were performed using the CASTEP software package
implemented in Materials Studio 7.0, which is specifically designed for material simulations
based on density functional theory (DFT) [37]. Spin-polarized DFT was employed to ac-
count for magnetic effects in the system. The DFT method, with the Becke–Johnson D3(BJ)
dispersion-corrected technique, was applied to include van der Waals interactions [38,39].
The generalized gradient approximation (GGA) was used to treat exchange-correlation,
specifically the Perdew–Wang functional [40,41]. A plane-wave basis set was used with a
kinetic energy cut-off of 30 Ry. To ensure convergence of the calculations, a self-consistent
field (SCF) tolerance of 1 × 10−6 eV per atom was set. The geometric structures were opti-
mized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which is widely
known for its reliability in molecular geometry optimization. Convergence criteria for struc-
tural optimization were set to “fine” quality within the CASTEP settings, which included
stringent thresholds for force, stress, and displacement to guarantee accurate geometries.
For the bulk Fe metal structure, the body-centered cubic (BCC) lattice was modeled with a
Monkhorst–Pack k-point grid of 8 × 8 × 8 to sample the Brillouin zone. The Fe(110) surface
was chosen to represent the iron surface because Fe is the primary component of steel
responsible for interactions with inhibitor molecules in corrosion studies [33,42]. When
simulating adsorption systems, the k-point grid was reduced to 2 × 2 × 1 for efficiency, as
a large supercell was employed. The calculated lattice parameter for the bulk metal was
2.854 Å, closely matching the experimental value of 2.866 Å, ensuring the accuracy of the
used settings prior to modelling surface interactions with quinoxalinones. Adsorption
studies were conducted on the (110) surface of the iron, modelled using a slab consist-
ing of four atomic layers in a 4 × 4 supercell. To reduce computational complexity, the
optimization process kept the two bottom layers of the slab fixed, while the remaining
layers were free to relax. A vacuum gap of 20 Å was introduced to eliminate interactions
between periodic images. Quinoxalinone molecules were placed in various adsorption
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configurations, including one parallel orientation, two perpendicular orientations, and one
protonated parallel mode, to reflect common adsorption behavior. Initial configurations
and their abbreviations are represented in Figure 13. To simulate isolated molecules, the
“molecule in a box” approach was applied. The simulation box was set to 40 Å in each
dimension to prevent artificial interactions between the molecule and its periodic images.
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(a) QNO, (b) QNO2, (c) QNO3, and (d) QNOH. The same abbreviations were used for QNOM
(QNOM, QNOM2, QNOM3, and QNOMH) and QNO2M (QNO2M, QNO2M2, QNO2M3, and
QNO2MH).

3.2. Interaction Energies and Electronic Characteristics

The interaction energy (Einter) quantifies the strength of the interaction between the
quinoxalinone molecule and the Fe(110) metal surface. It is calculated by subtracting the
energies of the isolated molecule and metal surface from the total energy of the adsorbed
system. The formula is given as

Einter = Emol/sur f −
(

Emol + Esur f

)
(1)

where Emol/sur f is the total energy of the molecule–metal system, Emol is the energy of the
standalone molecule, and Esur f is the energy of the isolated metal surface. A negative value
for Einter indicates a stable adsorption configuration.

To investigate charge transfer between the molecule and the metal surface, charge den-
sity difference (∆ρ(r)) calculations were performed. This provides a spatial representation
of electron redistribution upon adsorption. The charge density difference is calculated as

∆ρ(r) = ρ mol
Fe(110)

(r)− ρFe(110)(r)− ρmol(r) (2)

where ρ mol
Fe(110)

(r) is the charge density of the combined molecule–metal system, ρFe(110)(r)

is the charge density of the isolated metal surface, and ρmol(r) is the charge density of the
isolated molecule. This calculation reveals areas of electron accumulation and depletion,
highlighting charge transfer and interaction strength between the molecule and the metal.

The electron localization function (ELF) is used to analyze the bonding characteristics
within the adsorption system by evaluating the likelihood of electron pair localization. The
ELF is a dimensionless quantity that ranges from 0 to 1, where values close to 1 indicate
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high electron localization, and values near 0 suggest delocalized electrons. The ELF is
computed using the following formula:

ELF =
1

1 + (D(r)/Dh(r))2 (3)

where D(r) represents the electron localization at position r, and Dh(r) is the localization
function for a homogeneous electron gas. ELF helps visualize regions of strong bonding
and local electron concentration in the molecule–metal system, offering insight into the
nature of chemical bonds formed during adsorption.

The PDOS was computed to investigate the interaction of molecular orbitals with the
metal surface. PDOS was calculated for the isolated molecule positioned 6 Å above the top
layer of the metal surface, as well as for the adsorbed molecule. For iron, the 3d orbitals
were considered, while for the organic molecule, the s and p orbitals were analyzed. This
comparison allowed us to understand how molecular states hybridize with metal states
during adsorption, identifying specific orbital contributions to the bonding.

Together, these analyses elucidate the electronic structure, bonding mechanisms, and
charge redistribution during quinoxalinone adsorption on the Fe(110) surface.

4. Conclusions

This work reported the ab initio DFT computation of the adsorption characteristics of
quinoxalin-2(1H)-one and two methyl substituted quinoxalin-2(1H)-ones on the Fe(110)
surface. A DFT with the D3 dispersion correction methodology was employed to assess the
bonding behavior, interaction energies, and electronic properties of quinoxalinones under
different adsorption configurations and the protonation state. The following conclusions
can be drawn from this study:

• Adsorption of quinoxalinones on Fe(110) showed stable interaction energies, with
protonated forms exhibiting stronger adsorption than neutral ones.

• Charge transfer between the molecule and metal surface played a key role in adsorp-
tion stability, particularly through electron donation from the molecule’s active sites to
the metal’s d-orbitals and back-donation to the π*-orbitals.

• EDD analysis highlighted significant electron accumulation (red) around Fe-C and
Fe-O bonds, showing strong covalent interactions.

• ELF analysis showed strong covalent bonding (high electron localization) near oxygen
atoms and regions of Fe-C bonding, confirming robust chemisorption.

• Physisorption was also found to contribute significantly through nitrogen atoms and
aromatic rings, enhancing adsorption stability via weaker interactions.

• PDOS analysis revealed molecular orbital hybridization with metal d-orbitals, with
the broadening of molecular peaks upon adsorption, indicating stronger molecule–
metal interaction.

The stable adsorption of quinoxalinones on Fe(110) is reinforced by a combination
of strong covalent bonds and physisorption, enhancing their effectiveness as corrosion
inhibitors. The interplay between chemisorption and physisorption can form a protective
layer, which is essential for preventing corrosion.
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