Comparison of Different Solid-Phase Microextraction Formats Dedicated to the Analysis of Volatile Compounds—A Comprehensive Study
Abstract
:1. Introduction
2. Results
2.1. Comparison of Different SPME Forms: TF-SPME, SPME Fibers, and Stir Bars
2.2. Comparison of Commercially Available TF-SPME Devices
2.3. Comparison of TF-SPME Performance in Beer Samples
2.4. Non-Targeted Analysis of Wheat Beer Volatiles by HLB TF-SPME GCxGC-ToFMS
3. Materials and Methods
3.1. Samples and Reagents
3.2. Extraction Procedure
3.3. Analysis by GC-MS
3.4. Analysis by GCxGC-ToFMS
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pawliszyn, J. Development of SPME Devices and Coatings. In Handbook of Solid Phase Microextraction; Elsevier: Amsterdam, The Netherlands, 2012; pp. 61–97. [Google Scholar]
- Emmons, R.V.; Tajali, R.; Gionfriddo, E. Development, Optimization and Applications of Thin Film Solid Phase Microextraction (TF-SPME) Devices for Thermal Desorption: A Comprehensive Review. Separations 2019, 6, 39. [Google Scholar] [CrossRef]
- Gruszecka, D.; Grandy, J.; Gionfriddo, E.; Singh, V.; Pawliszyn, J. Direct immersion thin film solid phase microextraction of polychlorinated n-alkanes in cod liver oil. Food Chem. 2021, 353, 129244. [Google Scholar] [CrossRef] [PubMed]
- Peng, S. Novel solid-phase microextraction fiber coatings: A review. J. Sep. Sci. 2022, 45, 282–304. [Google Scholar] [CrossRef] [PubMed]
- Grandy, J.J.; Singh, V.; Lashgari, M.; Gauthier, M.; Pawliszyn, J. Development of a Hydrophilic Lipophilic Balanced Thin Film Solid Phase Microextraction Device for Balanced Determination of Volatile Organic Compounds. Anal. Chem. 2018, 90, 14072–14080. [Google Scholar] [CrossRef] [PubMed]
- David, F.; Ochiai, N.; Sandra, P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. TrAC Trends Anal. Chem. 2019, 112, 102–111. [Google Scholar] [CrossRef]
- Dunkel, A. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.N.; Zhou, W.; Pawliszyn, J. Sequential thin film-solid phase microextraction as a new strategy for addressing displacement and saturation effects in food analysis. Food Chem. 2022, 389, 133038. [Google Scholar] [CrossRef] [PubMed]
- Stuff, J.R.; Whitecavage, J.A.; Grandy, J.J.; Pawliszyn, J. Analysis of Beverage Samples Using Thin Film Solid Phase Microextraction (TF-SPME) and Thermal Desorption GC/MS. 2018, 1–10. Available online: https://gerstel.com/sites/default/files/2024-04/AppNote-200.pdf (accessed on 30 July 2019).
- Huang, Y.; Liew, C.S.M.; Goh, S.X.L.; Goh, R.M.V.; Ee, K.H.; Pua, A.; Liu, S.Q.; Lassabliere, B.; Yu, B. Enhanced extraction using a combination of stir bar sorptive extraction and thin film-solid phase microextraction. J. Chromatogr. A 2020, 1633, 461617. [Google Scholar] [CrossRef] [PubMed]
- Riazi Kermani, F.; Pawliszyn, J. Thin Film Microextraction Coupled to Liquid Chromatography-Mass Spectrometry for Analyzing Pesticides in Environmental Samples. Anal. Chem. 2012, 84, 8990–8995. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Pawliszyn, J. Thin-Film Microextraction: Application to Environmental Analysis. Anal. Chem. 2014, 86, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Deng, H.; Song, D.; Xu, H. Thin Film Microextraction: Innovations and Applications. Anal. Chim. Acta 2015, 898, 50–60. [Google Scholar]
- Tintrop, L.K.; Solazzo, L.; Salemi, A.; Jochmann, M.A.; Schmidt, T.C. Characterization of a hydrophilic-lipophilic balanced SPME material for enrichment of analytes with different polarities from aqueous samples. Adv. Sample Prep. 2023, 8, 100099. [Google Scholar] [CrossRef]
- Yu, J.; Xu, X.-B.; Murtada, K.; Pawliszyn, J. Untargeted analysis of microbial metabolites and unsaturated fatty acids in salmon via hydrophilic-lipophilic balanced solid-phase microextraction arrow. Food Chem. 2022, 380, 132219. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.N.; Zhou, W.; Jeleń, H.H.; Pawliszyn, J. Automated sequential SPME addressing the displacement effect in food samples. Food Chem. 2024, 439, 138093. [Google Scholar] [CrossRef] [PubMed]
- Langos, D.; Granvogl, M.; Schieberle, P. Characterization of the Key Aroma Compounds in Two Bavarian Wheat Beers by Means of the Sensomics Approach. J. Agric. Food Chem. 2013, 61, 11303–11311. [Google Scholar] [CrossRef] [PubMed]
- Grandy, J.J.; Boyacı, E.; Pawliszyn, J. Development of a Carbon Mesh Supported Thin Film Microextraction Membrane As a Means to Lower the Detection Limits of Benchtop and Portable GC/MS Instrumentation. Anal. Chem. 2016, 88, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
Compound Name | log p Value |
---|---|
2,3-butanedione | −1.34 |
ethyl 2-butanoate | 2.2 |
hexanal | 1.8 |
1-octen-3-one | 2.4 |
acetic acid | −0.2 |
methional | 0.3 |
trans 2-nonenal | 3.1 |
butanoic acid | 0.8 |
2-methylbutanoic acid | 1.2 |
2,4-decadienal | 3.2 |
vanillin | 1.2 |
Alcohols | Log p | RI | Mean | sd | |
---|---|---|---|---|---|
^106 | |||||
(S)-(+)-1,2-Propanediol | −0.9 | 1032 | 33.28 | ± | 3.04 |
1-Butanol, 3-methyl- | 1.2 | 744 | 16.21 | ± | 13.80 |
1-Decanol | 4.6 | 1257 | 5.73 | ± | 0.64 |
1-Decanol, 2-hexyl- | 7 | 1503 | 192.66 | ± | 52.23 |
1-Dodecanol | 5.1 | 1565 | 21.07 | ± | 0.35 |
1-Eicosanol | 9.5 | 2275 | 128.21 | ± | 57.95 |
1-Heptanol | 2.7 | 943 | 7.75 | ± | 0.23 |
1-Hexadecanol | 7.3 | 2166 | 0.51 | ± | 0.07 |
1-Hexanol, 2-ethyl- | 3.1 | 1013 | 6.36 | ± | 2.93 |
1H-Indole-3-ethanol | 1.5 | 1522 | 9.79 | ± | 0.92 |
1-Nonanol | 4.3 | 1154 | 11.70 | ± | 3.75 |
1-Octanol | 3 | 1077 | 6.93 | ± | 4.96 |
1-Octanol, 2,7-dimethyl- | 3.3 | 1350 | 0.60 | ± | 0.03 |
1-Octen-3-ol | 2.7 | 1066 | 3.45 | ± | 0.64 |
1-Pentanol | 1.4 | 804 | 37.12 | ± | 43.95 |
1-Propanol, 3-(methylthio)- | 0.8 | 1040 | 0.77 | ± | 0.06 |
1-Tridecanol | 5.1 | 1680 | 7.83 | ± | 0.44 |
1-Undecanol | 4.5 | 1530 | 5.04 | ± | 0.62 |
1,6-Octadien-3-ol, 3,7-dimethyl- | 2.7 | 1082 | 27.59 | ± | 14.90 |
2-Ethyl-1-dodecanol | 5.2 | 1620 | 26.55 | ± | 4.60 |
2-Furanmethanol | 0.3 | 1600 | 19.59 | ± | 6.13 |
2-Methoxy-4-vinylphenol | 2 | 1604 | 52.72 | ± | 4.95 |
2-Methyl-1-undecanol | 4.8 | 1611 | 0.78 | ± | 0.07 |
2-Nonen-1-ol, (E)- | 3.5 | 1222 | 0.35 | ± | 0.01 |
2-Pentanol | 1.1 | 720 | 1.07 | ± | 0.01 |
2,3-Butanediol | −0.9 | 1200 | 56.94 | ± | 2.04 |
2,6-Octadien-1-ol, 3,7-dimethyl-, (E)- | 3.5 | 1227 | 7.50 | ± | 0.38 |
3-Pentanol | 1.2 | 735 | 3.52 | ± | 0.85 |
4-Penten-2-ol | 1.2 | 820 | 0.72 | ± | 0.05 |
Isopropyl Alcohol | 0.05 | 453 | 4.06 | ± | 0.49 |
Phenol | 1.5 | 978 | 4.11 | ± | 1.46 |
Phenol, 2-butyl- | 3.3 | 1301 | 1.07 | ± | 0.11 |
Phenol, 3-ethyl- | 2.6 | 1160 | 7.03 | ± | 1.68 |
Phenylethyl alcohol | 1.4 | 1080 | 43.84 | ± | 38.51 |
Aldehydes | |||||
2-Nonenal, (E)- | 3.52 | 1160 | 1.59 | ± | 0.05 |
2,4-Decadienal | 4.13 | 1404 | 19.63 | ± | 1.84 |
Cinnamaldehyde, (E)- | 2.29 | 1380 | 18.61 | ± | 0.57 |
Decanal | 3.74 | 1202 | 3.83 | ± | 0.34 |
Furfural | 0.83 | 950 | 25.83 | ± | 0.12 |
Heptanal | 2.64 | 901 | 8.18 | ± | 0.26 |
Nonanal | 3.35 | 1120 | 9.17 | ± | 0.28 |
Octanal | 3.06 | 1001 | 29.50 | ± | 5.50 |
Undecanal | 4.06 | 1302 | 1.74 | ± | 0.18 |
Esters | |||||
1-Butanol, 3-methyl-, acetate | 1.45 | 901 | 266.62 | ± | 285.26 |
2-Butoxyethyl acetate | 1.26 | 1200 | 0.60 | ± | 0.03 |
2-Propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester | 5.6 | 2102 | 2.25 | ± | 0.17 |
2-Propenoic acid, 3-phenyl-, ethyl ester | 3.25 | 1521 | 1.19 | ± | 0.09 |
á-Phenylethyl butyrate | 3.5 | 1311 | 1.46 | ± | 1.61 |
Acetic acid, 2-phenylethyl ester | 2.52 | 1310 | 121.20 | ± | 5.81 |
Acetic acid, hexyl ester | 2.89 | 1150 | 1.67 | ± | 0.08 |
Acetic acid, phenylmethyl ester | 2.1 | 1251 | 6.72 | ± | 0.32 |
Benzoic acid, 2-ethylhexyl ester | 4.94 | 1466 | 6.06 | ± | 1.07 |
Benzoic acid, 2-hydroxy-, butyl ester | 3.70 | 1524 | 2.05 | ± | 0.19 |
Benzoic acid, 2-hydroxy-, pentyl ester | 4.1 | 1659 | 6.14 | ± | 7.68 |
Benzoic acid, 2-hydroxy-, phenylmethyl ester | 4.5 | 1773 | 9.10 | ± | 0.56 |
Benzyl Benzoate | 4.0 | 1911 | 6.04 | ± | 0.29 |
Butanoic acid, 2-methyl-, ethyl ester | 1.85 | 886 | 3.03 | ± | 0.23 |
Butyric acid, 2,3-dioxo-, 2-methyloxime, ethyl ester | 2.1 | 1117 | 5.61 | ± | 0.42 |
Dodecanoic acid, 1-methylethyl ester | 6.50 | 1781 | 1.82 | ± | 0.09 |
Dodecanoic acid, ethyl ester | 5.51 | 1643 | 0.42 | ± | 0.02 |
Dodecanoic acid, methyl ester | 4.86 | 1551 | 4.21 | ± | 0.20 |
Formic acid, 2-phenylethyl ester | 2.09 | 1253 | 5.50 | ± | 0.26 |
Formic acid, octyl ester | 2.75 | 1213 | 0.67 | ± | 0.03 |
Hexanoic acid, ethyl ester | 2.83 | 1012 | 11.14 | ± | 0.53 |
Isopropyl myristate | 7.34 | 2210 | 20.13 | ± | 1.89 |
Methyl 2-furoate | 1.13 | 1177 | 17.78 | ± | 0.85 |
Methyl salicylate | 2.55 | 1193 | 2.38 | ± | 0.11 |
Octanoic acid, ethyl ester | 3.69 | 1233 | 7.20 | ± | 7.01 |
Oxalic acid, allyl hexadecyl ester | 7.5 | 2309 | 7.89 | ± | 0.59 |
Oxalic acid, allyl octadecyl ester | 8.0 | 2502 | 7.26 | ± | 5.44 |
Oxalic acid, allyl octadecyl ester | 8.0 | 2411 | 7.10 | ± | 0.53 |
Oxalic acid, isobutyl hexadecyl ester | 7.8 | 2437 | 12.32 | ± | 0.92 |
Oxirane, tetradecyl- | 4.98 | 1522 | 30.35 | ± | 38.52 |
Phthalic acid, butyl 4-octyl ester | 7.5 | 2412 | 30.29 | ± | 31.55 |
Propanoic acid, 2-hydroxy-, ethyl ester | −0.3 | 761 | 3.82 | ± | 4.91 |
Alkanes | |||||
Cyclohexane, (3-methylpentyl)- | 5.56 | 1064 | 5.70 | ± | 0.15 |
1-Cyclohexyl-1-(4-methylcyclohexyl)ethane | 7.32 | 1722 | 0.14 | ± | 0.01 |
Cyclooctane, 1,2-diethyl- | 4.78 | 1173 | 13.34 | ± | 0.58 |
Eicosane | 11.4 | 2000 | 38.97 | ± | 0.47 |
10-Heneicosene (c,t) | 10.54 | 2314 | 6.18 | ± | 4.65 |
Heptadecane | 8.76 | 1711 | 42.87 | ± | 43.21 |
Heptadecane, 2,6,10,14-tetramethyl- | 9.37 | 1912 | 40.47 | ± | 3.90 |
Nonadecane | 9.96 | 1763 | 286.72 | ± | 40.60 |
Octadecane | 9.36 | 1803 | 7.74 | ± | 0.28 |
Pentadecane | 7.55 | 1505 | 30.80 | ± | 0.52 |
Pentadecane, 2,6,10-trimethyl- | 8.15 | 1589 | 29.23 | ± | 9.22 |
Tetradecane | 6.94 | 1411 | 9.04 | ± | 0.55 |
Tridecane | 6.33 | 1302 | 12.66 | ± | 2.29 |
Tridecane, 2-methyl- | 6.94 | 1333 | 0.47 | ± | 0.03 |
Undecane | 5.10 | 1104 | 3.49 | ± | 1.03 |
Undecane, 3,8-dimethyl- | 5.71 | 1159 | 7.01 | ± | 0.55 |
Heptadecane, 2,6-dimethyl- | 8.76 | 1744 | 11.23 | ± | 1.71 |
Hexadecane | 8.15 | 1605 | 110.19 | ± | 10.26 |
Heptacosane | 15.18 | 2711 | 21.20 | ± | 24.62 |
Hexadecane, 4-methyl- | 8.91 | 1649 | 4.99 | ± | 0.03 |
Alkenes | |||||
1-Docosene | 11.04 | 2200 | 157.77 | ± | 59.05 |
1-Dodecene | 6.34 | 1201 | 1.03 | ± | 0.09 |
1-Nonene | 4.82 | 952 | 0.82 | ± | 0.03 |
1-Octene, 3,7-dimethyl- | 5.23 | 1000 | 1.93 | ± | 0.41 |
1-Octene, 6-methyl- | 5.21 | 993 | 0.70 | ± | 0.06 |
1H-Phenalene | 3.42 | 1643 | 2.80 | ± | 0.20 |
5-Eicosene, (E)- | 10.32 | 2241 | 0.50 | ± | 0.01 |
Azulene | 4.5 | 1700 | 2.25 | ± | 0.21 |
Cyclohexene, 4-(4-ethylcyclohexyl)-1-pentyl- | 6.18 | 1423 | 7.89 | ± | 0.00 |
Pyrene | 5.18 | 2511 | 0.19 | ± | 0.01 |
Ketones | |||||
2-Nonanone | 3.63 | 1178 | 1.05 | ± | 0.00 |
2-Undecanone | 4.26 | 1294 | 11.97 | ± | 1.03 |
Butyrolactone | −0.56 | 752 | 4.72 | ± | 0.44 |
2H-Pyran-2-one, tetrahydro-6-methyl- | 0.97 | 1205 | 8.57 | ± | 1.28 |
3-Buten-2-one, 4-phenyl-, (E)- | 2.6 | 1500 | 0.76 | ± | 0.07 |
Other compounds | |||||
1-Octadecyne | 8.45 | 1911 | 27.93 | ± | 1.99 |
1H-Benzotriazole, 4-methyl- | 1.77 | 1349 | 3.12 | ± | 0.19 |
Benzothiazole, 2-methyl- | 2.52 | 1603 | 0.34 | ± | 0.09 |
Dibenzofuran | 3.76 | 1500 | 4.30 | ± | 0.18 |
Dibutyl phthalate | 4.5 | 2201 | 2.81 | ± | 0.16 |
Furan, tetrahydro- | 0.55 | 605 | 1.93 | ± | 0.20 |
Glycerin | −1.76 | 611 | 17.94 | ± | 0.52 |
Indole | 2.14 | 1402 | 1.62 | ± | 0.15 |
Levoglucosenone | −0.12 | 1233 | 7.27 | ± | 0.13 |
Methoxyacetic acid, 2-propenyl ester | 0.9 | 1100 | 1.98 | ± | 0.61 |
Triacetin | −0.14 | 1004 | 13.31 | ± | 0.93 |
Trimethylamine | 0.36 | 400 | 11.13 | ± | 2.30 |
Acids | |||||
2-Propenoic acid, 3-phenyl- | 2.15 | 1427 | 0.54 | ± | 0.04 |
4-Ethylbenzoic acid | 3.19 | 1734 | 6.56 | ± | 0.04 |
Acetic acid | −0.17 | 840 | 9.79 | ± | 13.36 |
Benzoic acid | 1.87 | 1593 | 10.53 | ± | 5.81 |
Benzoic acid, 3-methyl- | 2.26 | 1630 | 0.49 | ± | 0.05 |
Butanoic acid, 3-methyl- | 1.92 | 947 | 4.69 | ± | 0.35 |
Dodecanoic acid | 2.41 | 1884 | 11.38 | ± | 5.02 |
Formic acid | −0.54 | 640 | 19.78 | ± | 0.35 |
Heptanoic acid | 2.41 | 1389 | 86.59 | ± | 0.95 |
Hexanoic acid | 2.05 | 1279 | 73.86 | ± | 66.00 |
n-Decanoic acid | 4.09 | 1690 | 120.15 | ± | 9.16 |
n-Hexadecanoic acid | 7.23 | 2213 | 0.51 | ± | 0.07 |
Nonanoic acid | 3.46 | 1579 | 33.63 | ± | 4.77 |
Octadecanoic acid | 7.14 | 2295 | 20.00 | ± | 6.75 |
Octanoic acid | 2.92 | 1489 | 355.23 | ± | 21.93 |
Oleic acid | 7.64 | 2210 | 4.00 | ± | 0.63 |
Tetradecanoic acid | 5.9 | 2110 | 4.31 | ± | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, M.N. Comparison of Different Solid-Phase Microextraction Formats Dedicated to the Analysis of Volatile Compounds—A Comprehensive Study. Molecules 2024, 29, 5137. https://doi.org/10.3390/molecules29215137
Wieczorek MN. Comparison of Different Solid-Phase Microextraction Formats Dedicated to the Analysis of Volatile Compounds—A Comprehensive Study. Molecules. 2024; 29(21):5137. https://doi.org/10.3390/molecules29215137
Chicago/Turabian StyleWieczorek, Martyna Natalia. 2024. "Comparison of Different Solid-Phase Microextraction Formats Dedicated to the Analysis of Volatile Compounds—A Comprehensive Study" Molecules 29, no. 21: 5137. https://doi.org/10.3390/molecules29215137
APA StyleWieczorek, M. N. (2024). Comparison of Different Solid-Phase Microextraction Formats Dedicated to the Analysis of Volatile Compounds—A Comprehensive Study. Molecules, 29(21), 5137. https://doi.org/10.3390/molecules29215137