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Abstract: Efficiently treating wastewater, particularly the elimination of heavy metal ions from water
systems, continues to be one of the most pressing and complex challenges in modern environmental
management. In this work, reduced graphene oxide coupled silver molybdate binary nanocomposites
(RGO-Ag2MoO4 NCs) have been prepared via hydrothermal method. The crystalline nature and
surface properties of the developed RGO-Ag2MoO4 NCs were proved by XRD, FTIR, SEM, and
EDS techniques. Adsorption experiments demonstrated that the nanocomposites (NCs) effectively
removed Pb(II) ions within 120 min, achieving a maximum removal efficiency ranging from 94.96%
to 86.37% for Pb(II) concentrations between 20 and 100 mg/L at pH 6. Kinetic studies showed
that the adsorption process followed a pseudo-second order model. Isotherm analysis presented
that the Langmuir model provided the greatest fit for the equilibrium data, with a monolayer
adsorption capacity of 128.94 mg/g. Thermodynamic analysis revealed that the adsorption process
was spontaneous and endothermic. The results of this study highlight RGO-Ag2MoO4 NCs as a highly
promising and eco-friendly material for the effective elimination of Pb(II) ions from wastewater. Their
strong adsorption capacity, coupled with sustainable properties, makes them an efficient solution
for addressing lead contamination, offering significant potential for practical applications in water
treatment systems.

Keywords: reduced graphene oxide; lead; molybdenum oxide; silver; wastewater; adsorption

1. Introduction

Water is a vital resource for sustaining life and supporting economic and social devel-
opment. However, the rapid global population growth, along with increasing demands
from agriculture, industry, and urbanization, has placed immense strain on water re-
sources [1]. This strain is further exacerbated by the contamination of water supplies with
various pollutants, particularly heavy metals released from industrial activities such as
mining, metal refining, and pesticide use [2]. Among these pollutants, lead is a major
concern owing to its widespread presence in water sources and serious health risks. Lead
contamination in water is a global issue, largely driven by human activities like mining,
the improper disposal of industrial waste, and the use of lead-based materials [3]. Lead
typically exists in its ionic form, Pb(II), which is highly toxic and difficult to remove from
water. Prolonged exposure to lead-contaminated water can result in serious health issues,
including neurological disorders, behavioral disorders, weakness, developmental delays in
children, and cardiovascular and constipation problems [4]. This makes the mitigation of
lead pollution and the improvement of drinking water quality a critical and urgent priority
for public health.

Various techniques are utilized to eliminate harmful substances from polluted water,
such as electrodialysis, chemical precipitation, photocatalysis, and membrane filtration [5,6].
Despite their widespread use, these traditional methods often come with notable limitations,
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including high energy requirements, incomplete pollutant removal, expensive machinery,
and the production of sludge or solid waste that necessitates additional disposal efforts.
Furthermore, they may struggle to handle large quantities of wastewater, which hampers
their applicability on a larger scale. Among the different methods, adsorption has gained
recognition as a highly efficient and environmentally friendly solution for extracting heavy
metals like lead from water. This approach is not only economical but also features a
straightforward design and operational flexibility, allowing for the regeneration of the
adsorbents used [7]. The efficiency of adsorption largely depends on the characteristics of
the adsorbent material, which play a crucial role in attaining optimal performance. Recent
studies are concentrating on creating advanced adsorbents with enhanced capacities for
contaminants uptake and improved regeneration capabilities for larger-scale applications.
Innovations such as hybrid adsorbents, which integrate the benefits of various materials,
along with functionalized nanomaterials, are being explored to refine water treatment
methods. These developments are critical for meeting the increasing need for effective,
scalable, and sustainable water purification solutions, especially for communities affected
by organic and inorganic contamination [8].

Metal oxides have been widely used in environmental remediation due to their unique
physicochemical properties, such as high surface area, chemical stability, and reactivity
towards various pollutants [9]. Hybridizing metal oxides with other materials has shown
to enhance these properties even further, leading to more effective solutions for pollutant
removal. Among the various metal oxides, molybdenum oxide (MoO4) has gained atten-
tion for its high potential in the adsorptive removal of contaminants like lead and other
heavy metal ions. Molybdenum-based nanomaterials are valued for their unique optical,
electronic, mechanical, and catalytic characteristics, which enhance their effectiveness in
pollutant removal [10]. Specifically, MoO4 exhibits advantageous features such as uniform
nanoscale size, resistance to acidic conditions, thermal stability, and low cytotoxicity, all
of which contribute to its high performance in water treatment applications. The oxygen-
rich structure of MoO4 provides numerous active sites, enabling strong interactions with
heavy metal ions [11]. However, the direct use of MoO4 is limited by its high solubility in
water, which can lead to leaching and secondary pollution. To mitigate this issue, MoO4 is
often incorporated into composite materials or hybridized with stable supports, such as
polymers, other metal oxides, or carbon-based materials. This hybridization improves its
adsorption capacity, selectivity, and stability, reducing environmental risks and enhancing
the material’s overall performance [12–14]. Enhancing MoO4 with the addition of silver
(Ag) significantly boosts its ability to adsorb heavy metal ions, particularly lead. Silver
atoms create extra active sites on the surface of the MoO4, which improves its capacity
to capture and bind lead ions more effectively. This modification not only increases the
overall adsorption capability of MoO4 but also improves its structural stability and reac-
tivity, making the material more resilient and efficient under challenging environmental
conditions. Consequently, the combination of MoO4 and silver forms a more powerful and
durable adsorbent for removing heavy metal contaminants from water, making it highly
effective for environmental remediation.

Incorporating reduced graphene oxide (RGO) into the MoO4-Ag composite further
enhances the material’s properties, providing several additional benefits. RGO is well
known for its high surface area and superior electrical conductivity, which facilitate efficient
electron transfer during the adsorption process [15]. This improvement leads to faster
adsorption rates, allowing for the quick removal of lead from water. Furthermore, the
presence of oxygen-containing functional groups in RGO enhances its interactions with
HMIs, thereby increasing the composite’s adaptability in addressing different types of
contamination [16]. The strategic combination of MoO4, Ag, and RGO takes advantage
of the unique properties of each component, creating a highly efficient and sustainable
solution for lead adsorption. This method not only boosts adsorption efficiency and
versatility but also enhances the overall stability and reusability of the material, positioning
it as a promising option for combating lead contamination in water resources. In this
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study, hydrothermally synthesized RGO-Ag2MoO4 NCs were utilized to eliminate Pb(II)
from aqueous solutions. The adsorption process was optimized by adjusting various
parameters, including the dosage of RGO-Ag2MoO4 NCs, pH levels, temperature, and
the initial concentration of Pb(II). Additionally, kinetic, isotherm, and thermodynamic
analyses were conducted to better understand the adsorption mechanism of Pb(II) onto the
RGO-Ag2MoO4 NCs.

2. Results and Discussion

The XRD pattern presented in Figure 1 shows the diffraction peaks of both pure
Ag2MoO4 and the RGO-Ag2MoO4 composite, offering insights into the effect of RGO on
the crystalline structure of Ag2MoO4. The blue curve, representing Ag2MoO4, exhibits
sharp and well-defined peaks corresponding to crystal planes such as (111), (022), (131),
and others, confirming a highly crystalline cubic phase, consistent with the JCPDS reference
pattern (96-412-4776). In contrast, the yellow curve, representing the RGO-Ag2MoO4 NCs,
shows a reduction in peak intensity and slight broadening. This indicates a decrease in
crystallinity upon introducing RGO, which likely disrupts the regular packing of Ag2MoO4
crystallites, leading to smaller crystallite sizes or amorphous regions. Interestingly, there are
no distinct peaks corresponding to RGO, suggesting that the RGO either has a low content
in the composite or exists in an amorphous state, as typical RGO peaks around 24–26◦ might
be too weak to be detected or overlap with Ag2MoO4 peaks. The reduced crystallinity,
as evidenced by the broadened peaks, points to the successful integration of RGO into
the Ag2MoO4 matrix, which may improve the composite’s conductivity and structural
stability. RGO’s conductive properties could enhance the electrochemical performance of
Ag2MoO4, making this composite potentially useful for applications in adsorption. The
crystalline size (D) calculated using Debye-Scherrer equation

(
D = 0.9λ

βcosθ

)
[17] was found

to be 19.27 nm and 18.65 nm for Ag2MoO4 and RGO-Ag2MoO4 NCs, respectively. The
results suggest that while the crystalline structure of Ag2MoO4 is retained in the composite,
the interaction with RGO alters the crystallinity, potentially improving the composite’s
functional properties.
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Figure 1. XRD of MoO4Ag2 and RGO-Ag2MoO4NCs.



Molecules 2024, 29, 5152 4 of 18

The FTIR spectra (Figure 2) of Ag2MoO4 and RGO-Ag2MoO4 provide insights into the
chemical interactions and structural changes upon incorporating RGO. In the Ag2MoO4
spectrum, characteristic peaks around 800–1000 cm−1 correspond to the Mo-O stretching
vibrations, indicating the presence of molybdate (MoO4

2−) groups [18]. Broad absorption
bands near 3400 cm−1 is attributed to O-H stretching vibrations, signifying surface hydroxyl
groups and moisture adsorption, while peaks around 1600–1700 cm−1 suggest the presence
of adsorbed water molecules [19]. Upon integrating RGO, the FTIR spectrum of the RGO-
Ag2MoO4 NCs shows reduced intensity in the O-H stretching region, indicating a decrease
in moisture and surface hydroxyl groups. The appearance of a distinct peak around
1580 cm−1, corresponding to C=C stretching vibrations, confirms the presence of RGO’s
graphitic structure [20]. Additionally, peaks near 1300–1400 cm−1 likely represent residual
oxygenated groups in RGO, while the Mo-O peaks remain prominent, confirming that
the molybdate structure is preserved. The preserved molybdate structure, as indicated
by the Mo-O stretching peaks, ensures that the fundamental functionality of Ag2MoO4 is
maintained. The FTIR data highlights the successful interaction between Ag2MoO4 and
RGO, with the latter improving the material’s surface chemistry and functional properties.
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Figure 2. FTIR MoO4Ag2 and RGO-Ag2MoO4NCs.

The SEM and EDX analyses provide valuable insights into the morphological and com-
positional changes resulting from the incorporation of RGO into Ag2MoO4 (Figure 3A–F).
In the SEM images of pure Ag2MoO4 (Figure 3A,B), the material displays a dense, clustered
morphology with irregularly shaped particles forming large, aggregated structures. This
dense configuration suggests a limited surface area, which could impede its performance
in adsorption applications, where surface interactions are critical for effectiveness. The
EDX spectra confirm the elemental composition of both samples, showing distinct peaks
for silver (Ag), molybdenum (Mo), and oxygen (O), indicating the presence of Ag2MoO4
(Figure 3C). However, after the incorporation of RGO, significant morphological changes
are observed. The SEM images of the RGO-Ag2MoO4 composite (Figure 3D,E) reveal
a more open and porous structure, with visible voids and gaps between the Ag2MoO4
particles. This increased porosity, attributed to RGO acting as a scaffold, prevents particle
agglomeration and promotes a more dispersed and structured arrangement. The enhanced
porosity effectively increases the surface area, which is particularly advantageous for Pb(II)
adsorption, as it provides more accessible sites for interaction with metal ions. In the
RGO-Ag2MoO4 composite, the EDX spectra not only confirm the presence of Ag, Mo, and
O (Figure 3F) but also show an additional peak for carbon (C), confirming the successful
incorporation of RGO. This carbon peak corresponds to the reduced graphene oxide frame-
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work. One of the primary challenges in this study was maintaining uniform particle size
and preventing agglomeration. Variability in nanoparticle size can significantly impact
adsorption efficiency, as smaller particles typically offer a larger surface area for adsorption,
thereby enhancing performance. However, synthesizing nanoparticles with a consistently
narrow size distribution is inherently challenging due to factors such as material properties,
which can result in agglomeration and, consequently, reduced accessibility of active sites.
Addressing these challenges required careful control of parameters to optimize the stability
and distribution of the nanocomposite structure, as even minor variations in size and
morphology could lead to inconsistent adsorption performance across different batches.
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The thermogravimetric analysis (TGA) plot provided reveals the thermal behavior
of Ag2MoO4 and RGO-Ag2MoO4 across a temperature range from ambient to 700 ◦C
(Figure 4). Initially, both samples exhibit minor weight loss below 200 ◦C, likely due to
the evaporation of adsorbed moisture or other volatile species. This behavior is expected
in materials with exposed surfaces, as adsorbed water or loosely bound molecules are
released at relatively low temperatures. The weight loss for both materials in this region is
minimal, indicating no significant organic impurities or other volatile contaminants. As
the temperature increases from 200 ◦C to 400 ◦C, the Ag2MoO4 sample, represented by
the blue line, shows a stable thermal profile with minimal additional weight reduction.
This indicates that Ag2MoO4 alone has a high degree of thermal stability within this
intermediate temperature range, remaining largely unaffected by thermal decomposition
processes. In contrast, the RGO-Ag2MoO4 composite (yellow line) begins to display a
gradual weight reduction over this same temperature range. This difference suggests that
the presence of RGO introduces additional components or phases that are more susceptible
to decomposition or oxidation as the temperature increases. The gradual weight loss
in RGO-Ag2MoO4 could be attributed to the partial oxidation or degradation of carbon-
based structures within the RGO layer, which typically occurs over a broad temperature
range depending on the degree of reduction and structural integrity of the RGO. A more
substantial weight loss is observed in the RGO-Ag2MoO4 sample around 400–500 ◦C. This
prominent weight reduction is likely due to the decomposition or oxidation of the RGO
component, which is more thermally labile compared to the metal oxide framework of
Ag2MoO4. At elevated temperatures, RGO can undergo oxidation or structural breakdown,
resulting in a notable loss in weight as carbon-based materials are more susceptible to
thermal degradation. The pure Ag2MoO4 sample, on the other hand, remains stable
through this temperature range, reflecting its robust thermal stability and indicating the
absence of components susceptible to oxidation or decomposition at these temperatures.
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Above 500 ◦C, the weight loss in the RGO-Ag2MoO4 composite stabilizes, suggesting
that most thermally degradable components in the composite have already decomposed.
This stabilization indicates that any remaining structure, potentially the Ag2MoO4 core,
retains its integrity up to 700 ◦C. The high-temperature stability of Ag2MoO4 throughout
the entire temperature range highlights its intrinsic thermal resilience, making it more
suitable for applications requiring stability at elevated temperatures. Incorporating RGO
while potentially enhancing properties like surface area, electrical conductivity, or catalytic
activity introduces a trade-off by reducing the composite’s thermal stability due to the
thermal susceptibility of carbon-based RGO. This TGA analysis provides valuable insights
into the thermal degradation patterns of both materials, underscoring Ag2MoO4s superior
stability and the impact of RGO addition on the composite’s thermal endurance.
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Adsorption Study

Figure S1 displays the Pb(II) removal efficiency for the tested materials: RGO (63.88%),
MoO4 (61.05%), Ag2MoO4 (70.47%), RGO-MoO4 (81.58%), and RGO-Ag2MoO4 (91.64%). A
clear progressive increase in efficiency is observed, with RGO-Ag2MoO4 demonstrating the
highest removal efficiency. The adsorption performance of MoO4 is attributed to its ability
to provide active oxygen sites for Pb(II) binding. The introduction of Ag into the MoO4
structure enhances adsorption by creating additional active sites and increasing surface
reactivity, which leads to improved Pb(II) capture. Furthermore, the addition of RGO into
the composite significantly boosts the adsorption process by increasing the surface area
available for Pb(II) ions and facilitating faster electron transfer. This synergy between RGO,
Ag, and MoO4 contributes to the highest observed removal efficiency, underscoring the
combined effect of increased active sites and enhanced electron mobility.

To assess the influence of RGO-Ag2MoO4 NCs dose on the adsorption capacity and ad-
sorption efficiency of Pb(II) ions, varying amounts of adsorbent (ranging from 3 mg/20 mL
to 50 mg/20 mL) were tested (Figure 5). The outcomes presented an interesting trend:
that as the adsorbent dose increased from 3 mg to 50 mg/20 mL, the removal efficiency
of Pb(II) improved from 67.92 to 94.40%, while the adsorption capacity per unit mass of
adsorbent showed a decreasing trend from 271.69 to 22.66 mg/g. This inverse relation-
ship can be explained by the following factors: that as the adsorbent dose increases from
3 mg/20 mL to 20 mg/20 mL, the percentage of Pb(II) removed from the solution increases
significantly—from 67.92 to 91.64%—due to the larger surface area and the availability
of more adsorption sites. However, beyond the optimal dose of 20 mg/20 mL, further
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increases in the adsorbent dose did not yield a proportionate increase in removal efficiency,
as the system approached equilibrium. At higher adsorbent doses, while more Pb(II) ions
are removed from the solution overall, the adsorption capacity (amount of Pb(II) adsorbed
per gram of adsorbent) decreases. This is because, at higher doses, more adsorption sites
are available, but many of these sites remain unoccupied due to the limited amount of Pb(II)
ions in the solution. Essentially, the ratio of available Pb(II) ions to the number of adsorption
sites decreases, leading to a lower adsorption capacity. Thus, while removal efficiency
increases with adsorbent dose, the adsorption capacity decreases owing to the saturation of
available binding sites and the reduced concentration of Pb(II) ions per gram of sorbent [21].
The optimum adsorbent dose for the adsorption of Pb(II) onto the RGO-Ag2MoO4 NCs
was chosen to be 20 mg/20 mL for further adsorption study.
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Figure 5. Effects RGO-Ag2MoO4 NCs dose on the adsorption of Pb(II).

The pH of the solution plays a critical role in the adsorption process of heavy metals,
influencing not only the surface charge of the adsorbent but also the speciation, mobility,
and availability of the metal ions. The pH affects several key chemical processes, such
as hydrolysis, complexation, redox reactions, and precipitation, all of which determine
the efficiency of metal adsorption. In the case of lead (Pb(II)) adsorption onto RGO-
Ag2MoO4 NCs, the optimal pH was found to be 6 with a removal efficiency of 91.64%
(Figure 6). At lower pH levels, excessive protonation of the adsorbent surface occurs,
which decreases the availability of binding sites for metal ions due to competition between
protons (H+) and Pb(II) ions. As the pH increases, deprotonation of functional groups
on the RGO-Ag2MoO4 NCs occurs, leading to a more negatively charged surface, which
enhances the adsorption of positively charged Pb(II) ions. This trend continues until the
pH reaches 6, at which maximum adsorption was achieved. Beyond pH 6, the adsorption
efficiency declines due to the onset of lead hydroxide precipitation (e.g., Pb(OH)2), which
reduces the availability of free Pb(II) ions for adsorption. Therefore, the ideal pH for Pb(II)
removal using RGO-Ag2MoO4 NCs was 6, where optimal sorption was achieved due to
favorable electrostatic interactions and minimized competition with protons. This pattern
aligns with studies showing that the adsorption of lead is highly dependent on pH, as
observed in other sorbents [22,23]. The surface of RGO-Ag2MoO4 NCs likely contains
active sites or functional groups that can attract and bind Pb(II) ions through different
chemical interactions, such as electrostatic attraction, complexation, or ion exchange as
shown in Figure 7. The SEM images taken after Pb(II) adsorption (Figure 8A) reveal that
the RGO-Ag2MoO4 NCs surface has become less porous compared to the SEM image of
RGO-Ag2MoO4 NCs before adsorption (Figure 3D,E), suggesting that Pb(II) ions effectively
occupy the available active sites and surface voids. Before adsorption, the nanocomposite
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displayed an open, porous structure that provided ample surface area and accessible sites
for interaction. However, following Pb(II) adsorption, the reduction in visible porosity
indicates that the Pb(II) ions are now covering these surface pores. The FTIR analysis of
the RGO-Ag2MoO4 NCs before and after Pb(II) adsorption (Figure 8B) reveals significant
changes in functional groups, suggesting specific interactions between Pb(II) ions and the
composite surface. Initially, a broad O-H stretching band is observed around 3400 cm−1,
indicating surface hydroxyl groups. After Pb(II) adsorption, the intensity of this band
increases, implying that hydroxyl groups are actively involved in binding Pb(II) ions, likely
through hydrogen bonding or ion-dipole interactions. This change suggests that these
groups serve as primary active sites for Pb(II) capture. Additionally, the C=C stretching
vibrations at approximately 1580 cm−1, characteristic of the RGO structure, exhibit a shift
or slight change in intensity post-adsorption, indicating potential cation-π interactions
between Pb(II) ions. Furthermore, oxygen groups on RGO, indicated by peaks around
1300–1400 cm−1, also show changes, suggesting that these groups may participate in
complexation or ion exchange with Pb(II) ions. Meanwhile, the Mo-O bonds within the
molybdate structure (typically found around 800–1000 cm−1) remain largely stable after
adsorption, implying that the core molybdate structure is preserved. However, slight shifts
in these peaks hint at minor interactions between Pb(II) ions and the molybdate surface.
Collectively, these FTIR changes confirm that the RGO-Ag2MoO4 NCs binds Pb(II) ions
through various interaction mechanisms, underscoring the composite’s effectiveness for
Pb(II) adsorption in aqueous solutions.
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Figure 6. Effects on pH on the adsorption of Pb(II) using RGO-Ag2MoO4 NCs.

The adsorption of Pb(II) ions onto RGO-Ag2MoO4 NCs was investigated by analyzing
the effects of contact time (ranging from 2 to 140 min) and varying initial lead concen-
trations. The results, as shown in Figure 9, indicate that the amount of Pb(II) adsorbed
increased progressively with time, reaching equilibrium at around 120 min for all tested
concentrations. The adsorption process followed a two-phase pattern: an initial rapid stage,
during which around 45% of the lead ions were adsorbed at all concentrations within the
first 10 min, followed by a slower phase as equilibrium approached. This adsorption behav-
ior can be attributed to the availability of active sites on the RGO-Ag2MoO4 NCs surface.
During the early phase, these sites were highly accessible, enabling a rapid adsorption
process. However, as time progressed, the active sites became increasingly saturated, and
competition among the remaining Pb(II) ions for the limited available sites slowed the ad-
sorption rate. This slowdown explains the transition to the slower phase until equilibrium
was reached after 120 min, a pattern also observed by Mahmood et al. [24]. They noted that
enhanced accessibility to active sites renders the early stage swift, but over time, saturation
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and ion competition delay the process. Despite the increase in initial lead concentration,
the equilibrium time remained consistent at 120 min across all concentrations. This can be
explained by the fact that with higher lead concentrations, more Pb(II) ions were present
in the solution, creating a stronger driving force for the diffusion of lead ions toward the
adsorbent surface. This greater concentration gradient accelerated the adsorption process,
owing to a rise in the adsorption capacity as more ions were able to interact with the avail-
able active sites. However, the adsorbent’s active sites reached saturation within the same
time frame, as the equilibrium adsorption capacity is dependent on the number of available
sites rather than solely on concentration. Thus, even with higher initial lead concentrations,
equilibrium was reached at the same time—120 min, due to the finite number of adsorption
sites on the RGO-Ag2MoO4 NCs. Based on these observations, 120 min was considered the
optimum contact time for efficient Pb(II) removal across various lead concentrations.
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Figure 9. Effect of time on the adsorption of Pb(II) adsorption using RGO-Ag2MoO4 NCs.

The adsorption kinetics of b(II) ions onto RGO-Ag2MoO4 NCs were analyzed using
various kinetic models, including the pseudo-first-order, pseudo-second-order, and Weber–
Morris intraparticle diffusion models (IPD), to understand the adsorption mechanism
and controlling factors as shown in Figure 10A–C. The equations of these models are
given in the Supplementary File Equations (S3)–(S5) in Text S3. Among these models, the
pseudo-second-order model provided the best fit for the experimental data, suggesting
that chemisorption plays a key role in the adsorption process. The pseudo-first-order
kinetic model, commonly used to describe physical adsorption processes, was applied to
the data. However, the correlation coefficients (R2) obtained from this model were low,
and the calculated equilibrium adsorption capacities (qe) significantly deviated from the
experimentally observed qe values (Table 1). This indicates that the pseudo-first-order
model is inadequate for describing the interactions between Pb(II) ions and the RGO-
Ag2MoO4 NCs. In contrast, the pseudo-second-order kinetic model, which assumes that
the rate-limiting step involves chemisorption—where chemical bonding through electron
sharing or exchange occurs between the adsorbent and the adsorbate—proved to be much
more accurate. The plot of t/qt versus t resulted in straight lines for all lead concentrations
tested, with high correlation coefficient values (R2 > 0.99) (Figure 10B and Table 1). This
strong linearity and the close agreement between the calculated and experimental qe values
confirmed that the adsorption of Pb(II) onto the RGO-Ag2MoO4 NCs follows pseudo-
second-order kinetics. This indicates that the adsorption process is primarily controlled by
chemical interactions, such as the formation of chemisorptive bonds between Pb(II) ions
and the functional groups on the NCs surface.

The Weber–Morris intraparticle diffusion model (IPD), depicted in Figure 10C,D,
outlines three distinct stages in the adsorption process: (I) Pb(II) ions first diffuse onto
the adsorbent’s surface; (II) the ions then penetrate deeper into the material’s porous
structure; (III) equilibrium is eventually reached, resulting in the saturation of the available
adsorption sites [25]. The model’s findings show that the initial phase (ki1) exhibits the
fastest adsorption rate, which progressively declines during the next stage (ki2) before
reaching equilibrium (ki3). This trend emphasizes that the adsorption process begins
rapidly and slows down as it progresses toward equilibrium.
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Table 1. Kinetic parameters for removal of Pb(II) onto RGO-Ag2MoO4 NCs (Experimental parameters:
RGO-Ag2MoO4 NCs dose = 20 mg/20 mL, pH = 6, temperature = 298 K).

Kinetics Parameters

Experimental
Co (mg/L) 20 60 100

Qexp (mg/L) 18.992 54.983 86.372

Pseudo-first-order

Qfo (mg/g) 24.312 38.474 59.781

K1 (g/mg min) 0.0469 0.0162 −0.0277

R2 0.772 0.979 0.983

Pseudo-second-order

Qso (mg/g) 21.321 61.666 92.981

K2 (g/mg min) 3.136 × 10−3 1.079 × 10−3 4.4056 × 10−5

R2 0.996 0.990 0.996

Weber–Morris
intraparticle diffusion

model

Ki,1 (mg/g min−1/2) 3.043 9.081 14.382

R2 0.945 0.914 0.949

Ki,2 (mg/g min−1/2) 1.297 3.651 5.446

R2 0.972 0.901 0.967

Ki,3 (mg/g min−1/2) 0.00228 0.00341 0.00341

R2 0.998 0.960 0.960
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The adsorption data for Pb(II) ions onto RGO-Ag2MoO4 NCs were analyzed using the
Langmuir and Freundlich isotherm models to better understand the adsorption mechanism
and capacity. The equations of these models are given in the Supplementary File Equations
(S6) and (S7) Text S3. The results demonstrated that the Langmuir isotherm model pro-
vided the best fit for the experimental data, as indicated by a higher correlation coefficient
(R2 = 0.998) and a strong degree of linearity (Figure 11A and Table 2). This confirms that
the Pb(II) adsorption onto RGO-Ag2MoO4 NCs is consistent with monolayer adsorption on
the surface of the nanocomposite, with a theoretical maximum adsorption capacity (QL) for
Pb(II) ions of 128.94 mg/g. This suggests that each Pb(II) ion occupies a specific adsorption
site without significant interaction between adsorbed ions. In contrast, the Freundlich
isotherm model exhibited a lower correlation coefficient (R2 = 0.976), indicating that it was
less suitable for describing the adsorption of Pb(II) onto RGO-Ag2MoO4 NCs. The Fre-
undlich model accounts for multilayer adsorption and surface heterogeneity, which did not
accurately capture the adsorption behavior observed in this study. The adsorption capacity
was found to be higher in comparison with the existing literature given in Table 3 [26–32].
To assess the favorability of the adsorption process, the dimensionless separation factor
or equilibrium parameter (RL) was calculated by RL = 1

1+KLCo
[33]. The RL values were

found to be within the range of 0 to 1, which indicates that the adsorption of Pb(II) ions
onto RGO-Ag2MoO4 NCs was favorable.
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Table 2. Isotherm model factors for the elimination of Pb(II) onto RGO-Ag2MoO4 NCs (Experimental
parameters: RGO-Ag2MoO4 NCs dose = 20 mg/20 mL, pH = 6, temperature= 298 K, time = 120 min).

Isotherms Parameters Pb(II)

Langmuir
QL (mg/g) 128.942

KL (L/g) 0.1432

R2 0.9982

Freundlich

KF (mg/g) 25.151

nF (L/g) 0.448

R2 0.9766
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Table 3. Comparison with the reported literature data for the adsorption of Pb(III) onto the vari-
ous adsorbents.

Adsorbents Adsorption Capacity
(mg/g) Dose (g/L) pH Time (h) Temperature

(K) Ref.

RGO-Fe0/Fe3O4-PEI 60.24 0.05 6 1 268 [26]

GO/Fe3O4 38.5 - 6 2 293 [27]

Carbon/iron oxide 67.1 2 6 1 323 [28]

GO-polydopamine 53.6 - - 5 302 [29]

TiO2/rGO 9.1 1 - 2 - [30]

Fe3O4@SiO2-MnO2 35.1 0.5 4 24 298 [31]

ZnO/Carbon nanofibers 92.59 1 7 45 min - [32]

RGO-Ag2MoO4 NCs 128.94 1 6 2 298 Our result

The influence of system temperature on the removal of Pb(II) using RGO-Ag2MoO4
NCs was examined, with the corresponding fitting curves and data shown in Figure S2. As
the temperature increased from 298 K to 323 K, the removal efficiency for Pb(III) improved
from 91.64% to 97.63%, suggesting that higher temperatures enhanced the adsorption
process. The heat of sorption (∆H), Gibbs energy change (∆G), and entropy change (∆S)
of the sorption of Pb(II) onto RGO-Ag2MoO4 NCs were calculated using Equations (S8)
and (S9) in Text S3. Thus, from ln Kc versus 1/T plot (Figure 11B), the ∆H is calculated and
found to be 37.99 kJ/mol. A positive value of ∆H confirms the endothermic nature of the
process. The negative values of ∆G (Table 4) indicate the spontaneous nature of sorption
for Pb(II). The positive values of ∆S (152.07 J/K/mol) suggest the increased randomness at
the solid/solution interface during the removal of Pb(II) onto RGO-Ag2MoO4 NCs [34].

Table 4. Thermodynamic factors for the removal of Pb(II) onto RGO-Ag2MoO4 NCs (Experimental
parameters: RGO-Ag2MoO4 NCs dose = 20 mg/20 mL, pH = 6, concentration of Pb(II) = 60 mg/L).

T(K) ∆S◦ (J/K/mol) ∆H◦ (kJ/mol) ∆G◦ (kJ/mol) R2

298

152.068 37.995

−7.286

0.9989
303 −8.101
313 −9.656
323 −11.083

Desorption experiments were performed by agitating Pb(II)-loaded RGO-Ag2MoO4
NCs with 0.1 M HCl, 0.1 M NaOH, C2H5OH and distilled water and equilibrates for 120
min and then centrifuged. After centrifugation, the supernatant was analyzed and percent
desorption (%D) was computed by employing the following relation [35]:

%D =
md
ma

× 100 (1)

where, ma and md represent the concentrations of Pb(II) ion adsorbed and desorbed in
mg/L, respectively. The results showed that the desorption efficiency remained above 90%
for up to three adsorption–desorption cycles. Importantly, the adsorption capacity of the
nanocomposite decreased only by 3.28% after the third cycle, indicating strong reusability
and minimal loss in performance over multiple cycles (Figure 12).
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Figure 12. Adsorption and desorption performance in the cycling experiment.

To evaluate the practical applicability of the synthesized RGO-Ag2MoO4 NCs in real-
world wastewater treatment, a selectivity test was conducted to investigate the effect of
co-existing ions commonly found in wastewater. These ions included both anions (Cl−,
NO3

−, and SO4
2−) and cations (Na+, K+, and Ca2+). The performance of the nanocomposite

in the presence of these ions was evaluated under optimal conditions (Figure 13). The
results showed that the anions had a negligible effect on the adsorption performance of
the RGO-Ag2MoO4 NCs, with no significant reduction in Pb(II) removal efficiency ob-
served. However, the presence of cationic species, especially Ca2+, had a more pronounced
negative impact on the adsorption efficiency [36]. This is likely due to the competitive
binding between the cationic species and Pb(II) ions for the available active sites on the
nanocomposite surface. The greater negative effect of Ca2+ is attributed to its lower ionic
radius, which allows for easier competition with Pb(II) ions. This finding is consistent
with previous reports [36]. Despite this competitive interaction, the RGO-Ag2MoO4 NCs
retained a high lead adsorption capacity, highlighting its potential for the selective removal
of Pb(II) even in the presence of common co-existing ions found in wastewater.
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3. Experimental Section
Synthesis of Reduced Graphene Oxide Modified Silver Molybdate Ternary Nanocomposite
(RGO–Ag2MoO4 NCs)

The synthesis of RGO-Ag2MoO4 nanocomposites (NCs) involves the following de-
tailed steps:

Step 1: Preparation of Graphene Oxide (GO)
Graphite is oxidized to graphene oxide (GO) using the modified Hummer’s method [37].

This method combines concentrated sulfuric acid (100 mL), sodium nitrate (1 g), and potassium
permanganate (12 g) with graphite (2 g). This reaction exfoliates graphite into hydrophilic
GO sheets by introducing oxygen functional groups (hydroxyl, epoxide, and carboxyl groups)
onto the carbon basal planes, enhancing GO’s dispersibility in water.

The simplified reactions are as follows:
Oxidation Reaction:

C + KMnO3 + H2SO4 → GO + MnO−
4

Functionalization:
Various functional groups are attached to the GO sheets through further reactions

with sulfuric acid (H2SO4) and other reagents, introducing groups such as –OH, −COOH
and −C–O–C.

Step 2: Preparation of Precursor Solution
Sodium molybdate (1 mM) and silver nitrate (1 mM) are separately prepared and

introduced into an aqueous GO suspension. Here, sodium molybdate dissociates to pro-
vide MoO4

2− ions, and silver nitrate dissociates to provide Ag+ ions. In the subsequent
steps, these ions serve as essential precursors for forming Ag2MoO4 nanoparticles. The
sodium molybdate and silver nitrate concentration is typically set to 1 mM, while the GO
concentration is adjusted to 2 mg/mL in the solution.

Step 3: Hydrothermal Treatment
The precursor solution undergoes hydrothermal treatment at 180 ◦C for 24 h under

alkaline conditions (pH~9). During this treatment:
GO is reduced to reduced graphene oxide (RGO) as oxygen-containing groups are

partially removed, restoring the sp2 carbon structure and enhancing its conductivity.
Ag+ ions react with MoO4

2− ions, leading to the nucleation and growth of Ag2MoO4
nanoparticles, which anchor onto the RGO surface. The residual oxygen functional groups
on RGO, such as hydroxyl and carboxyl groups, facilitate the attachment of Ag2MoO4
nanoparticles via electrostatic attractions and hydrogen bonding.

In the aqueous suspension, sodium molybdate (Na2MoO4) and silver nitrate (AgNO3)
dissociate, providing MoO2−

4 and Ag+ ions, respectively.
Dissociation:

Na2MoO4 → 2Na+ + MoO2−
4

AgNO3 → Ag+ + NO−
3

Formation of Ag2MoO4:
Under alkaline hydrothermal conditions, Ag+ ions react with MoO2−

4 ions to form
Ag2MoO4 nanoparticles

2Ag+ + MoO2−
4 → Ag2MoO4

Reduction of GO to RGO and Formation of RGO-Ag2MoO4 Nanocomposite
During the hydrothermal process at 180 ◦C, GO is partially reduced to reduced

graphene oxide (RGO), as some oxygen-containing functional groups are removed, restor-
ing the sp2 carbon structure. Simultaneously, Ag2MoO4 nanoparticles anchor onto the
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RGO sheets due to residual oxygen functionalities (hydroxyl and carboxyl groups) through
electrostatic interactions and hydrogen bonding.

GO + H+ + e− → RGO + H2O

The Ag2MoO4 nanoparticles interact with the RGO surface through electrostatic
interactions and possible covalent bonding with remaining oxygen-containing functional
groups, forming a stable RGO-Ag2MoO4 nanocomposite.

GO + Na2MoO4 + AgNO3 + H2O → RGO − Ag2MoO4 + NaNO3

Step 4: Formation of RGO-Ag2MoO4 Nanocomposite
The hydrothermal process yields a stable nanocomposite with Ag2MoO4 nanoparticles

uniformly dispersed on the RGO surface. This distribution prevents the aggregation of
nanoparticles and enhances the composite’s structural stability and surface area, which
are beneficial for applications in adsorption. The resulting RGO-Ag2MoO4 NCs exhibit
synergistic properties, combining the high surface area and conductivity of RGO with the
active adsorption sites of Ag2MoO4, making it practical for environmental remediation,
particularly for the removal of heavy metals like Pb(II) from wastewater. The Schematic
synthesis procedure of RGO-Ag2MoO4 NCs is given in Figure 14.
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4. Conclusions

This study highlights the effective utilization of RGO-Ag2MoO4 NCs, synthesized via
a hydrothermal process, as efficient adsorbents for the removal of Pb(II) ions from aqueous
solutions. Several key factors influence the adsorption efficiency of the RGO-Ag2MoO4
NCs, including adsorbent dosage, contact time, solution pH, initial Pb(II) concentration,
and system temperature. The RGO-Ag2MoO4 NCs demonstrated remarkable adsorption
performance, achieving a removal efficiency approximately in the range of 94.96% to
86.37% for Pb(II) concentrations between 20 and 100 mg/L at a solution pH of 6, and
an equilibrium time of 120 min. According to the Langmuir isotherm model, Pb(II) ions
formed a monolayer on the surface of the RGO-Ag2MoO4 NCs, with a maximum adsorption
capacity of 128.94 mg/g. The time-dependent experimental data aligned well with the
pseudo-second-order kinetic model, indicating a strong correlation between adsorption
rate and time. The potential adsorption mechanisms for Pb(II) removal include surface
precipitation, ion exchange, electrostatic attraction, and physical adsorption. To further
assess the practical applicability of RGO-Ag2MoO4 NCs, a selectivity test was performed
in real wastewater, investigating the effect of co-existing ions such as anions (Cl−, NO3

−,
and SO4

2−) and cations (Na+, K+, and Ca2+). The results showed that anions had a
negligible effect on the adsorption performance, while cations, especially Ca2+, had a more
pronounced impact due to competitive binding. Despite this, the material maintained a
high lead adsorption capacity, indicating its robustness for selective Pb(II) removal even in
complex wastewater environments. Overall, this study concludes that RGO-Ag2MoO4 NCs
are highly effective adsorbents with excellent adsorption characteristics and significant
capacity. Their ability to effectively remove Pb(II) ions from contaminated water, combined
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with their stability under varying conditions, positions them as a promising candidate for
large-scale wastewater treatment and environmental remediation applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29215152/s1, Text S1: Materials; Text S2: Instrumental
Characterization; Text S3: Batch adsorption studies; Figure S1: Removal efficiency of Pb(II) onto the
RGO, MoO4, Ag2MoO4, RGO-MoO4 and RGO-Ag2MoO4 NCs; Figure S2: Effect of temperature on the
removal efficiency of Pb(II) onto the RGO-Ag2MoO4 NCs [38,39].
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