Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent
Abstract
:1. Introduction
2. Results
2.1. Flavonoids
2.2. Non-Flavonoids
2.3. Flavonoid Identification in Some Natural Products
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Commercial Supplements and Clover Honey
4.3. Reagent and Sample Preparation
4.4. Method Development and Optimization
4.5. Instrumentation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef] [PubMed]
- Griesbach, R.J. Biochemistry and genetics of flower color. Plant Breed Rev. 2005, 25, 89–114. [Google Scholar]
- Metodiewa, D.; Kochman, A.; Karolczak, S. Evidence for antiradical and antioxidant properties of four biologically active N, N-diethylaminoethyl ethers of flavanone oximes: A comparison with natural polyphenolic flavonoid (rutin) action. Biochem. Mol. Biol. Int. 1997, 41, 1067–1075. [Google Scholar] [PubMed]
- Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod. 1988, 51, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Pasinetti, G.M. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol. 2010, 154, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Christ, B.; Mueller, K.H. On the serial determination of the content of flavonol derivatives in drugs. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1960, 293, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Barnum, D.W. Spectrophotometric determination of catechol, epinephrine, dopa, dopamine and other aromatic vic-diols. Anal. Chim. Acta 1977, 89, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Liu, H.; Song, Y.; Zhang, X. Determination of Total Flavonoids in Leek by AlCl3 Colorimetric Assay. Chem. Eng. Trans. 2017, 59, 775–780. [Google Scholar]
- Lawag, I.L.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antioxidants 2023, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Foster, K.J.; Lawag, I.L.; Lim, L.Y.; Hammer, K.; Locher, C. Estrogenic Isoflavones in Clover Plants, Flower Nectar, Unripe Honeys and Mature Honeys: A Natural Biochemical Transformation of Isoflavones by Honeybees. Foods 2024, 13, 1739. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Foster, K.; Bates, T.; Hossain, M.L.; Lim, L.Y.; Hammer, K.; Locher, C. Determination of Physicochemical Characteristics, Phytochemical Profile and Antioxidant Activity of Various Clover Honeys. Chem. Biodivers. 2024, 21, e202301880. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Determination of Antioxidant and Antibacterial Activities of Honey-Loaded Topical Formulations: A Focus on Western Australian Honeys. Appl. Sci. 2023, 13, 7440. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, R.; Lei, L.; Wang, Y. Total Flavonoid Content, the Antioxidant Capacity, Fingerprinting and Quantitative Analysis of Fupenzi (Rubus chingii Hu.). Chin. Med. 2015, 6, 204–213. [Google Scholar] [CrossRef]
Flavonoids | λmax of Non-Derivatized Flavonoid (nm) | Number of Chelation Options between Rings A and C1 | Chelation Option with Vicinal OH Groups in Ring B1 | λmax After Complexation with Al3+ (nm) | % Change in Absorbance Intensity after Derivatization with NaNO2-AlCl3-NaOH | |
---|---|---|---|---|---|---|
Subclass | Example | |||||
Flavonols | Myricetin | 374, 264, 205 | 2 | Yes | 418, 317, 270, 210 | 16 |
Kaempferitrin | 342, 268, 197 | 1 | No | 388, 342, 275, 208 | Unchanged2 | |
Fisetin | 324, 267, 204 | 1 | Yes | 397, 321, 267, 205 | 5% | |
Flavanolols | Taxifolin | 293, 220, 201 | 2 | Yes | 390, 313, 223, 203 | 64 |
Flavan-3-ol | Epicatechin | 330, 280, 204 | 0 | Yes | 400, 280, 206 | 150 |
Catechin | 380, 281, 204 | 0 | Yes | 400, 281, 205 | 140 | |
Flavones | Apigenin | 333, 272, 199 | 1 | No | 389, 298, 206 | Unchanged2 |
Chrysin | 316, 271, 196 | 1 | No | 380, 324, 280, 218 | Unchanged2 | |
Luteolin | 348, 269, 204 | 1 | Yes | 381, 272, 210 | 11 | |
Flavanones | Hesperetin | 291, 224, 200 | 1 | No | 380, 305, 224, 201 | Unchanged2 |
Naringin | 287, 228, 196 | 1 | No | 385, 225, 197 | Unchanged2 | |
Isoflavones | Sissotrin | 303, 262, 200 | 1 | No | 373, 271, 201 | Unchanged 2 |
Genistein | 303, 260, 196 | 1 | No | 370, 270, 201 | Unchanged 2 | |
Daidzein | 306, 250, 196 | 0 | No | 307, 250, 195 | Not applicable |
Non-Flavonoids | λmax of Non-Derivatized Flavonoid (nm) | λmax After Complexation with Al3+ (nm) |
---|---|---|
Gallic Acid | 275, 219 | 292, 226 |
Acetyl salicylic acid | 277, 230, 196 | 282, 237, 202 |
Salicylic Acid | 310, 265, 198 | 315, 278, 203 |
Rosmarinic Acid | 329, 280, 230 | 350, 234, 277, 285 |
Analysed Sample | Rf | λmax (nm) Before Derivatization | λmax (nm) After Derivatization | % Increased Absorbance Intensity after Derivatization with NaNO2-AlCl3-NaOH |
---|---|---|---|---|
Rutin capsule 1 | 0.21 | 364, 266, 204 | 402, 267, 208 | 26.5 |
Naringin capsule 2 | 0.32 | 287, 226, 197 | 386, 317, 196 | Unchanged |
Red clover honey 2 | 0.46 | 303, 260, 196 | 370, 271, 199 | Unchanged |
0.35 | 306, 250, 196 | 306, 250, 195 | Unchanged |
Spray Reagent | Experimental Condition | Observation | Optimized Condition |
---|---|---|---|
AlCl3 | Single application of 2% AlCl3, spectral monitoring over 180 min | Maximum absorbance intensity directly after application (0 min) | Single application of 2% AlCl3, no heating, spectrum to be recorded immediately after spraying |
Three successive applications of 2% AlCl3, spectral monitoring over 180 min | Unchanged or decreasing absorbance intensity with multiple sprays | ||
Single application of 10% AlCl3, spectral monitoring over 180 min | Decreasing absorbance intensity compared to a single application of 2% AlCl3 | ||
Single application of 2% AlCl3, plate heated to 100 °C for 3 min, spectral monitoring over 180 min | Degradation of peak | ||
Single application of 15% AlCl3, spectral monitoring over 180 min | Decreasing absorbance intensity compared to a single application of 2% AlCl3 | ||
NaNO2 followed by AlCl3 and NaOH | 2% NaNO2,-AlCl3-NaOH, single application of each reagent separately, spectral monitoring over 180 min | Maximum absorbance intensity directly after application (0 min), time-consuming process with three subsequent derivatization steps | Single application of a mixture of 2% NaNO2-AlCl3-NaOH, no heating, spectrum to be recorded immediately after spraying |
2% NaNO2-AlCl3-NaOH applied as mixture in a single application, spectral monitoring over 180 min | Maximum absorbance intensity directly after application (0 min) | ||
2% NaNO2-AlCl3-NaOH applied as mixture, two successive applications, spectral monitoring over 180 min | Unchanged or decreasing absorbance intensity compared to a single application | ||
5% NaNO2, 10% AlCl3 and 4% NaOH, single application of each reagent separately, spectral monitoring over 180 min | Decreasing absorbance intensity compared to 2% reagent concentration and time-consuming | ||
2% NaNO2-AlCl3-NaOH applied as mixture in a single application, plate heated to 100 °C for 3 min, spectral monitoring over 180 min | Degradation of peak | ||
10% NaNO2, 15% AlCl3 and 10% NaOH, single application of each reagent separately, spectral monitoring over 180 min | Decreasing absorbance intensity compared to 2% reagent concentration and time-consuming |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, S.; Hossain, M.L.; Sostaric, T.; Lim, L.Y.; Foster, K.J.; Locher, C. Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent. Molecules 2024, 29, 5161. https://doi.org/10.3390/molecules29215161
Sultana S, Hossain ML, Sostaric T, Lim LY, Foster KJ, Locher C. Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent. Molecules. 2024; 29(21):5161. https://doi.org/10.3390/molecules29215161
Chicago/Turabian StyleSultana, Sharmin, Md Lokman Hossain, Tom Sostaric, Lee Yong Lim, Kevin J. Foster, and Cornelia Locher. 2024. "Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent" Molecules 29, no. 21: 5161. https://doi.org/10.3390/molecules29215161
APA StyleSultana, S., Hossain, M. L., Sostaric, T., Lim, L. Y., Foster, K. J., & Locher, C. (2024). Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent. Molecules, 29(21), 5161. https://doi.org/10.3390/molecules29215161