Efficient Simultaneous Isolation of Pinostrobin and Panduratin A from Boesenbergia rotunda Using Centrifugal Partition Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of Method for Quantification PN and PA
2.1.1. Validation of UHPLC-UV Method for Quantification PN and PA in B. rotunda Crude Extract
2.1.2. Validation of LC-ESI-MS/MS Method for Quantification PN and PA of Purified Compounds
2.2. Effects of Various Conditions on Extraction of PN and PA from B. rotunda by Ultrasound-Assisted Extraction and Quantification by UHPLC System
2.3. Effects of Various Conditions on Separation of PN and PA from Crude n-hexane Extract by CPC System
2.3.1. Effect of Partition Coefficient (K) and Separation Factor (α)
2.3.2. Effects of Solvent Ratio, Sample Load Volume, and Diluent System
2.4. Quality Assessment of Purified PN and PA
3. Materials and Methods
3.1. Plant Materials
3.2. Reagents
3.3. The Extraction of PN and PA from B. rotunda by UAE
3.4. Quantification PN and PA by UHPLC and Validation Method
3.5. Evaluation of Partition Coefficient (K) and Separation Factor (α)
3.6. Preparation of the Two-Phase Solvent System and Sample Solution for CPC System
3.7. CPC Separation Procedure
3.8. LC-ESI-MS/MS Analysis of Purified Compounds and Validation Method
3.9. Identified Structures of Purified Compounds by Nuclear Magnetic Resonance (1HNMR)
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Wen, C.; Olatunji, O.J. Anti-Inflammatory and Antinociceptive Effects of Boesenbergia rotunda Polyphenol Extract in Diabetic Peripheral Neuropathic Rats. J. Pain. Res. 2022, 15, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Chitapanarux, T.; Lertprasertsuke, N.; Toworakul, C. Efficacy and safety of fingerroot (Boesenbergia rotunda) extract in patients with functional dyspepsia: A randomized, placebo-controlled trial. Digestion 2021, 102, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Eakwaropas, P.; Aye, N.M.M.; Ngawhirunpat, T.; Pamornpathomkul, B. Antioxidant Activity, Antimicrobial Activities, and Effect on the Viability of Fibroblast Cells of Boesenbergia rotunda-Loaded Hydrogel Patches. Key Eng. Mater. 2022, 914, 37–43. [Google Scholar] [CrossRef]
- Md-Mustafa, N.D.; Khalid, N.; Gao, H.; Peng, Z.; Alimin, M.F.; Bujang, N.; Ming, W.S.; Mohd-Yusuf, Y.; Harikrishna, J.A.; Othman, R.Y. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. BMC Genom. 2014, 15, 984. [Google Scholar] [CrossRef]
- Tan, B.C.; Tan, S.K.; Wong, S.M.; Ata, N.; Rahman, N.A.; Khalid, N. Distribution of Flavonoids and Cyclohexenyl Chalcone Derivatives in Conventional Propagated and In Vitro-Derived Field-Grown Boesenbergia rotunda (L.). Mansf. Evid. -Based Complement. Altern. Med. 2015, 2015, 451870. [Google Scholar]
- Sujana, D.; Sumiwi, S.A.; Saptarini, N.M.; Levita, J. The Nephroprotective Activity of Boesenbergia rotunda Rhizome by Reducing Creatinine, Urea Nitrogen, Glutamic Pyruvic Transaminase, and Malondialdehyde Levels in the Blood and Attenuating the Expression of Havcr1 (KIM-1), Lcn2 (NGAL), Casp3, and Casp7 Genes in the Kidney Cortex of Cisplatin-Induced Sprague-Dawley Rats. J. Exp. Pharmacol. 2024, 16, 189–200. [Google Scholar]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Wang, T.; Liu, C.; Shu, S.; Zhang, Q.; Olatunji, O.J. Therapeutic efficacy of polyphenol-rich fraction of Boesenbergia rotunda in diabetic rats: A focus on hypoglycemic, antihyperlipidemic, carbohydrate metabolism, antioxidant, anti-inflammatory and pancreato-protective activities. Front. Biosci.-Landmark 2022, 27, 206. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, M.-S.; Sa, B.-K.; Kim, M.-B.; Hwang, J.-K. Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. Int. J. Mol. Sci. 2012, 13, 994–1005. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Q.; Wang, X.; Jaisi, A.; Olatunji, O.J. Boesenbergia rotunda displayed anti-inflammatory, antioxidant and anti-apoptotic efficacy in doxorubicin-induced cardiotoxicity in rats. Sci. Rep. 2023, 13, 11398. [Google Scholar] [CrossRef]
- Salama, S.M.; AlRashdi, A.S.; Abdulla, M.A.; Hassandarvish, P.; Bilgen, M. Protective activity of Panduratin A against thioacetamide-induced oxidative damage: Demonstration with in vitro experiments using WRL-68 liver cell line. BMC Complement. Altern. Med. 2013, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, S.I.; Mohan, S.; Abdulla, M.A.; Sukari, M.A.; Abdul, A.B.; Taha, M.M.E.; Syam, S.; Ahmad, S.; Lee, K.-H. The methanolic extract of Boesenbergia rotunda (L.) Mansf. and its major compound pinostrobin induces anti-ulcerogenic property in vivo: Possible involvement of indirect antioxidant action. J. Ethnopharmacol. 2011, 137, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Eng-Chong, T.; Yean-Kee, L.; Chin-Fei, C.; Choon-Han, H.; Sher-Ming, W.; Li-Ping, C.T.; Gen-Teck, F.; Khalid, N.; Abd Rahman, N.; Karsani, S.A. Boesenbergia rotunda: From ethnomedicine to drug discovery. Evid. -Based Complement. Altern. Med. 2012, 2012, 473637. [Google Scholar] [CrossRef] [PubMed]
- Fakhrudin, N.; Pramiastuti, O.; Wahyuono, S. A simple, fast, and inexpensive nonchromatographic method for the isolation of pinostrobin from Boesenbergia rotunda rhizome. Rasayan J. Chem. 2021, 14, 735–740. [Google Scholar] [CrossRef]
- Kumar, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal. 2017, 7, 349–364. [Google Scholar] [CrossRef]
- Mishra, J.; Sharma, R.K.; Misra, K. Characterization techniques for herbal products. In Management of High Altitude Pathophysiology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 171–202. [Google Scholar]
- International, A. Appendix K: Guidelines for dietary supplements and botanicals. AOAC Off. Methods Anal. 2013, 2, 1–32. [Google Scholar]
- Vassiliadis, S.; Elkins, A.C.; Reddy, P.; Guthridge, K.M.; Spangenberg, G.C.; Rochfort, S.J. A simple LC–MS method for the quantitation of alkaloids in endophyte-infected perennial ryegrass. Toxins 2019, 11, 649. [Google Scholar] [CrossRef]
- Adhikari, D.; Gong, D.-S.; Oh, S.H.; Sung, E.H.; Lee, S.O.; Kim, D.-W.; Oak, M.-H.; Kim, H.J. Vasorelaxant effect of Boesenbergia rotunda and its active ingredients on an isolated coronary artery. Plants 2020, 9, 1688. [Google Scholar] [CrossRef]
- Kim, M.; Choi, S.; Noh, K.; Kim, C.; Kim, E.; Hwang, J.K.; Kang, W. Determination of panduratin A in rat plasma by HPLC-MS/MS and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2017, 137, 151–154. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Chen, S. The pharmacokinetics, tissue distribution, metabolism, and excretion of pinostrobin in rats: Ultra-high-performance liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry studies. Front. Pharmacol. 2020, 11, 574638. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Titier, K.; Picard, S.; Ducint, D.; Teilhet, E.; Moore, N.; Berthaud, P.; Mahon, F.-X.; Molimard, M. Quantification of imatinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry. Ther. Drug Monit. 2005, 27, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Fathoni, A.; Candraditya, A.; Rudiana, T. Antioxidant activity and identification of flavonoid compounds in Patat. J. Pendidik. Kim. 2022, 14, 149–156. [Google Scholar] [CrossRef]
- Pasfield, L.A.; de la Cruz, L.; Ho, J.; Coote, M.L.; Otting, G.; McLeod, M.D. Synthesis of (±)-panduratin A and related natural products using the high pressure Diels–Alder reaction. Asian J. Org. Chem. 2013, 2, 60–63. [Google Scholar] [CrossRef]
- Ponphaiboon, J.; Krongrawa, W.; Aung, W.W.; Chinatangkul, N.; Limmatvapirat, S.; Limmatvapirat, C. Advances in Natural Product Extraction Techniques, Electrospun Fiber Fabrication, and the Integration of Experimental Design: A Comprehensive Review. Molecules 2023, 28, 5163. [Google Scholar] [CrossRef]
- Liana, D.; Eurtivong, C.; Phanumartwiwath, A. Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling. Antioxidants 2024, 13, 74. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Li, J.; Qi, Y.; Li, Y.; Li, S. Development of “ultrasound-assisted dynamic extraction” and its combination with CCC and CPC for simultaneous extraction and isolation of phytochemicals. Ultrason. Sonochem. 2015, 26, 111–118. [Google Scholar] [CrossRef]
- Wang, S.; Lin, A.H.-M.; Han, Q.; Xu, Q. Evaluation of direct ultrasound-assisted extraction of phenolic compounds from potato peels. Processes 2020, 8, 1665. [Google Scholar] [CrossRef]
- Phaiphan, A.; Baharin, B.S. Ultrasound-assisted extraction produce better antibacterial and antioxidant activities of Senna siamea (Lam.) leaf extracts than solvent extraction. Malays. J. Microbiol. 2019, 15, 34–43. [Google Scholar]
- Hao, C.; Chen, L.; Dong, H.; Xing, W.; Xue, F.; Cheng, Y. Extraction of flavonoids from scutellariae radix using ultrasound-assisted deep eutectic solvents and evaluation of their anti-inflammatory activities. ACS Omega 2020, 5, 23140–23147. [Google Scholar] [CrossRef]
- Yusuf, N.A.; M Annuar, M.S.; Khalid, N. Existence of bioactive flavonoids in rhizomes and plant cell cultures of ‘Boesenbergia rotund’ (L.). Mansf. Kulturpfl. Aust. J. Crop Sci. 2013, 7, 730–734. [Google Scholar]
- Kim, H.-H.; Kim, H.-S.; Ko, J.-Y.; Kim, C.-Y.; Lee, J.-H.; Jeon, Y.-J. A single-step isolation of useful antioxidant compounds from Ishige okamurae by using centrifugal partition chromatography. Fish. Aquat. Sci. 2016, 19, 22. [Google Scholar] [CrossRef]
- Nam, B.; Paudel, S.B.; Kim, J.-B.; Jin, C.H.; Lee, D.; Nam, J.-W.; Han, A.-R. Preparative Separation of Three Monoterpenes from Perilla frutescens var. crispa using centrifugal partition chromatography. Int. J. Anal. Chem. 2019, 2019, 8751345. [Google Scholar] [CrossRef] [PubMed]
- Liakakou, A.; Angelis, A.; Papachristos, D.P.; Fokialakis, N.; Michaelakis, A.; Skaltsounis, L.A. Isolation of volatile compounds with repellent properties against Aedes albopictus (Diptera: Culicidae) using CPC technology. Molecules 2021, 26, 3072. [Google Scholar] [CrossRef] [PubMed]
- Boonloed, A.; Weber, G.L.; Ramzy, K.M.; Dias, V.R.; Remcho, V.T. Centrifugal partition chromatography: A preparative tool for isolation and purification of xylindein from Chlorociboria aeruginosa. J. Chromatogr. A 2016, 1478, 19–25. [Google Scholar] [CrossRef]
- Lorántfy, L.; Rutterschmid, D.; Örkényi, R.; Bakonyi, D.; Faragó, J.; Dargó, G.; Könczöl, Á. Continuous Industrial-Scale Centrifugal Partition Chromatography with Automatic Solvent System Handling: Concept and Instrumentation. Org. Process Res. Dev. 2020, 24, 2676–2688. [Google Scholar] [CrossRef]
- Spînu, S.; Ortan, A.; Ionescu, D.; Moraru, I. Centrifugal partition chromatography (CPC)–A novel method of separation and purification of natural products-a SHORT review. Curr. Trends Nat. Sci. 2020, 9, 06–11. [Google Scholar] [CrossRef]
- Kim, H.-S.; Fernando, I.P.S.; Lee, S.-H.; Ko, S.-C.; Kang, M.C.; Ahn, G.; Je, J.-G.; Sanjeewa, K.; Rho, J.-R.; Shin, H.J. Isolation and characterization of anti-inflammatory compounds from Sargassum horneri via high-performance centrifugal partition chromatography and high-performance liquid chromatography. Algal Res. 2021, 54, 102209. [Google Scholar] [CrossRef]
- Nyokat, N.; Yen, K.H.; Hamzah, A.S.; Lim, I.F.; Saaidin, A.S. Isolation and synthesis of pinocembrin and pinostrobin from Artocarpus odoratissimus. Malays. J. Anal. Sci. 2017, 21, 1156–1161. [Google Scholar]
- Pattamadilok, D.; Sakpetch, A. Isolation of pinostrobin, a chemical marker from fingerroots for quality control purposes. J. Tradit. Thai Altern. Med. 2021, 19, 424–434. [Google Scholar]
- Kim, H.-S.; Je, J.-G.; An, H.; Baek, K.; Lee, J.M.; Yim, M.-J.; Ko, S.-C.; Kim, J.-Y.; Oh, G.-W.; Kang, M.-C. Isolation and characterization of efficient active compounds using high-performance centrifugal partition chromatography (CPC) from anti-inflammatory activity fraction of Ecklonia maxima in South Africa. Mar. Drugs 2022, 20, 471. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.I.; Pastene-Navarrete, E.; Bustamante, L.; Baeza, M.; Alarcón-Enos, J. Isolation of Three Lycorine Type Alkaloids from Rhodolirium speciosum (Herb.) Ravenna Using pH-Zone-Refinement Centrifugal Partition Chromatography and Their Acetylcholinesterase Inhibitory Activities. Metabolites 2020, 10, 309. [Google Scholar] [CrossRef] [PubMed]
- Maly, M.; Benes, F.; Binova, Z.; Zlechovcova, M.; Kastanek, P.; Hajslova, J. Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography. Anal. Bioanal. Chem. 2023, 415, 4827–4837. [Google Scholar] [CrossRef] [PubMed]
- Kongratanapasert, T.; Boonyarattanasoonthorn, T.; Supannapan, K.; Hongeng, S.; Khemawoot, P. Oral Bioavailability, Tissue Distribution, Metabolism, and Excretion of Panduratin A from Boesenbergia rotunda Extract in Healthy Rats. Drug Des. Dev. Ther. 2024, 18, 2905–2917. [Google Scholar] [CrossRef] [PubMed]
- Karkoula, E.; Angelis, A.; Koulakiotis, N.S.; Gikas, E.; Halabalaki, M.; Tsarbopoulos, A.; Skaltsounis, A.L. Rapid isolation and characterization of crocins, picrocrocin, and crocetin from saffron using centrifugal partition chromatography and LC–MS. J. Sep. Sci. 2018, 41, 4105–4114. [Google Scholar] [CrossRef]
- Bojczuk, M.; Żyżelewicz, D.; Hodurek, P. Centrifugal partition chromatography–A review of recent applications and some classic references. J. Sep. Sci. 2017, 40, 1597–1609. [Google Scholar] [CrossRef]
- Boonyarattanasoonthorn, T.; Kongratanapasert, T.; Jiso, A.; Techapichetvanich, P.; Nuengchamnong, N.; Supannapan, K.; Kijtawornrat, A.; Khemawoot, P. Absolute oral bioavailability and possible metabolic pathway of panduratin A from Boesenbergia rotunda extract in beagle dogs. Pharm. Biol. 2023, 61, 590–597. [Google Scholar] [CrossRef]
- Goshawk, J.; Wood, M. Evaluation of Ion Ratios as an Additional Level of Confirmation in Accurate Mass Toxicology Screening. Waters White Paper 720005866. Available online: https://www.waters.com/waters/library.htm?locale=en_US&lid=134922443&srsltid=AfmBOop7R_Gf6nbsYWAc0iJoGdB9Ifc5TxpI3qlvZdb20Ma1ESgZgugW (accessed on 17 September 2024).
Compounds | Linear Equation | R2 | Analytical Limits | Precision (%CV) | %Recovery Range ± SD of 3 Determinations | ||
---|---|---|---|---|---|---|---|
LOD (µg/mL) | LOQ (µg/mL) | Intra-Assay (n = 6, 3 Replicates) | Inter-Assay (n = 18, 3 Replicates) | ||||
PN | Y = 4794.66X + 76.6758 | 0.9996 | 0.042 | 0.126 | 0.50–1.63% | 1.76% | 100.06 ± 0.96 to 102.19 ± 0.30 |
PA | Y = 3288.92X + 97.0319 | 0.9994 | 0.044 | 0.133 | 0.90–1.94% | 0.60% | 101.08 ± 0.49 to 102.50 ± 2.01 |
Compounds | Linear Equation | R2 | Analytical Limits | Precision (%CV) | %Recovery Range ± SD of 3 Determinations | ||
---|---|---|---|---|---|---|---|
LOD (µg/mL) | LOQ (µg/mL) | Intra-Day Assay (n = 6, 3 Replicates) | Inter-Day Assay (n = 18, 3 Replicates) | ||||
PN | Y = 82.5225X + 1066.06 | 0.9998 | 24.025 | 72.804 | 1.71–1.93% | 1.56% | 99.555 ± 1.08 to 100.38 ± 3.85 |
PA | Y = 2060.46X + 5618.97 | 0.9969 | 0.635 | 1.924 | 1.11–1.58% | 0.83% | 99.649 ± 1.317 to 101.44 ± 3.05 |
Solvent System | Ratio (v/v) | Solubility of PN in Solvent System (Area) | K1 | Solubility of PA in Solvent System (Area) | K2 | α | ||
---|---|---|---|---|---|---|---|---|
Upper | Lower | Upper | Lower | |||||
n-hexane/MeOH/H2O | 5/3.2/1.8 | 324,352 | 52,725 | 0.16 | 14,469 | 42,017 | 2.90 | 17.86 |
5/3.3/1.7 | 323,672 | 46,876 | 0.15 | 14,942 | 38,041 | 2.55 | 17.58 | |
5/3.4/1.6 | 374,084 | 73,138 | 0.20 | 16,140 | 54,928 | 3.40 | 17.41 | |
5/3.5/1.5 | 304,702 | 79,302 | 0.26 | 12,067 | 57,781 | 4.79 | 18.40 |
Compounds | Calculated Compounds in Crude n-hexane Extract (mg) | Obtained Pure Crystals (mg) | %Yield | %Purity |
---|---|---|---|---|
PN | ~2.4 mg | 2.16 ± 0.11 | 90% | 98.78 ± 4.78 |
PA | ~0.7 mg | 0.4 ± 0.02 | 57% | 99.69 ± 4.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eiamart, W.; Wittayalertpanya, S.; Tadtong, S.; Samee, W. Efficient Simultaneous Isolation of Pinostrobin and Panduratin A from Boesenbergia rotunda Using Centrifugal Partition Chromatography. Molecules 2024, 29, 5186. https://doi.org/10.3390/molecules29215186
Eiamart W, Wittayalertpanya S, Tadtong S, Samee W. Efficient Simultaneous Isolation of Pinostrobin and Panduratin A from Boesenbergia rotunda Using Centrifugal Partition Chromatography. Molecules. 2024; 29(21):5186. https://doi.org/10.3390/molecules29215186
Chicago/Turabian StyleEiamart, Wanna, Supeecha Wittayalertpanya, Sarin Tadtong, and Weerasak Samee. 2024. "Efficient Simultaneous Isolation of Pinostrobin and Panduratin A from Boesenbergia rotunda Using Centrifugal Partition Chromatography" Molecules 29, no. 21: 5186. https://doi.org/10.3390/molecules29215186
APA StyleEiamart, W., Wittayalertpanya, S., Tadtong, S., & Samee, W. (2024). Efficient Simultaneous Isolation of Pinostrobin and Panduratin A from Boesenbergia rotunda Using Centrifugal Partition Chromatography. Molecules, 29(21), 5186. https://doi.org/10.3390/molecules29215186