Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Characteristics of FC
2.2. HPLC-DAD-ESI-MS/MS Identification and Quantification of PCs of FC
2.3. Sensory Analysis
3. Discussion
4. Material and Methods
4.1. Chemicals
4.2. Grape and Apple
4.3. FC Preparation
4.4. Evaluation of Physicochemical Characteristics of FC
4.5. Evaluation of HPLC-DAD-ESI-MS/MS Identification and Quantification of PCs of FC
4.6. Evaluation of Sensory Analysis
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3,5-glc | 3,5-diglucoside. |
3-acglc | 3-(6″-acetyl)-glucoside. |
3-acglc-5-glc | 3-(6″-acetyl)-glucoside-5-glucoside. |
3-cfglc | 3-(6″-p- caffeoyl)-glucoside. |
3-cfglc-5-glc | 3-(6″-p-caffeoyl)-glucoside-5-glucoside. |
3-cmglc | 3-(6″-p-coumaroyl)-glucoside. |
3-cmglc-5-glc | 3-(6″-p-coumaroyl)-glucoside-5-glucoside. |
3-gal | 3-galactoside. |
3-glc | 3-glucoside. |
3-glcU | 3-glucuronic acid. |
3-rhm | 3-rhamnose. |
3-xyl | 3-xyloside. |
c | cis isomer. |
CO2 | Carbon dioxide. |
ESI-MSn | Electrospray ionization and ion trap analyzer. |
FC | Fruit cube snack. |
gal | 3-galactoside. |
HCAD | Hydroxycinnamic acid derivatives. |
HPLC-DAD | Liquid chromatography with diode array detector coupled with mass spectrometry. |
m/z | MS/MS spectra. |
NaCl | Sodium chloride. |
ND | Not detected. |
PCs | Phenolic compounds. |
pent | Pentosideo. |
pH | Hydrogen potential. |
Quercetin-3-rut | Quercetin-3-(6′′-rhamnosyl)-glucoside or rutin. |
RATA | Rate-all-that-apply. |
SS | Soluble solids. |
t | trans isomer. |
TA | Titratable acidity. |
Wa | Water activity. |
References
- Danalache, F.; Beirão-da-Costa, S.; Mata, P.; Alves, V.D.; Moldão-Martins, M. Texture, microstructure and consumer preference of mango bars jellified with gellan gum. LWT—Food Sci. Technol. 2015, 62, 584–591. [Google Scholar] [CrossRef]
- Oliveira, A.; Amaro, A.L.; Pintado, M. Impact of food matrix components on nutritional and functional properties of fruit-based products. Curr. Opin. Food Sci. 2018, 22, 153–159. [Google Scholar] [CrossRef]
- Mesias, M.; Delgado-Andrade, C.; Morales, F.J. Risk/benefit evaluation of traditional and novel formulations for snacking: Acrylamide and furfurals as process contaminants. J. Food Compos. Anal. 2019, 79, 114–121. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, A.Y.; Corfield, R.; Sosa, N.; Salvatori, D.; Schebor, C. Physicochemical, functional, and sensory characterization of apple leathers enriched with acáchul (Ardisia compressa Kunth) powder. LWT—Food Sci. Technol. 2021, 146, 111472. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Zhu, C.; Wei, M. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT—Food Sci. Technol. 2022, 154, 112829. [Google Scholar] [CrossRef]
- Leal, A.R.; Oliveira, L.d.S.; Farias, L.M.; Alves, C.A.N.; da Costa, J.N.; Mata, P.; de Sousa, P.H.M. Elaboration of mixed structured fruit formulations with agar and gellan gum: Texture, physicochemical, and sensory properties. Int. J. Gastron. Food Sci. 2021, 23, 100294. [Google Scholar] [CrossRef]
- Soukoulis, C.; Tzia, C. Grape, raisin and sugarcane molasses as potential partial sucrose substitutes in chocolate ice cream: A feasibility study. Int. Dairy J. 2018, 76, 18–29. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent applications of grapes and their derivatives in dairy products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Silva, F.A.; do Egypto, R.D.C.R.; de Souza, E.L.; Voss, G.B.; Borges, G.D.S.C.; dos Santos Lima, M.; Pintado, M.M.E.; da Silva Vasconcelos, M.A. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt. Food Chem. 2022, 369, 130957. [Google Scholar] [CrossRef]
- de Oliveira Nishiyama-Hortense, Y.P.; de Paula Rossi, M.J.; Shimizu-Marin, V.D.; Janzantti, N.S.; Gómez-Alonso, S.; Da-Silva, R.; Lago-Vanzela, E.S. Jelly candy enriched with BRS Violeta grape juice: Anthocyanin retention and sensory evaluation. Future Foods 2022, 6, 100179. [Google Scholar] [CrossRef]
- Milani, E.; Hashemi, N.; Hashemi, M. Physicochemical properties and flow behavior of natural sweetener and colorant from foam-mat dried grape powder. J. Food Process Eng. 2024, 47, e14538. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Colombo, R.C.; Roberto, S.R.; Nixdorf, S.L.; Pérez-Navarro, J.; Gómez-Alonso, S.; Mena-Morales, A.; García-Romero, E.; Gonçalves, L.S.A.; da Cruz, M.A.; de Carvalho, D.U.; et al. Analysis of the phenolic composition and yield of ‘BRS Vitoria’ seedless table grape under different bunch densities using HPLC–DAD–ESI-MS/MS. Food Res. Int. 2020, 130, 108955. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.C.; Roberto, S.R.; da Cruz, M.A.; de Carvalho, D.U.; Yamamoto, L.Y.; Nixdorf, S.L.; Pérez-Navarro, J.; Gómez-Alonso, S.; Shahab, M.; Ahmed, S.; et al. Characterization of the phenolic ripening development of ‘BRS Vitoria’ seedless table grapes using HPLC–DAD–ESI-MS/MS. J. Food Compos. Anal. 2021, 95, 103693. [Google Scholar] [CrossRef]
- Costa, J.N.; Leal, A.R.; Nascimento, L.G.; Rodrigues, D.C.; Muniz, C.R.; Figueiredo, R.W.; Mata, P.; Noronha, J.P.; de Sousa, P.H.M. Texture, microstructure and volatile profile of structured guava using agar and gellan gum. Int. J. Gastron. Food Sci. 2020, 20, 100207. [Google Scholar] [CrossRef]
- Chang, X.; Yang, A.; Bao, X.; He, Z.; Zhou, K.; Dong, Q.; Luo, W. An innovative structured fruit (SF) product made from litchi juice, king oyster mushroom (Pleurotus eryngii) and gellan gum: Nutritional, textural, sensorial properties. LWT—Food Sci. Technol. 2021, 152, 12344. [Google Scholar] [CrossRef]
- Yang, F.; Sun, X.; Hu, J.; Cai, H.; Xiao, H.; Wu, X.; Liu, C.; Wang, H. Edible gum addition improves the quality of freeze-dried restructured strawberry blocks. Food Chem. X 2023, 18, 100702. [Google Scholar] [CrossRef]
- Neog, U.; Dhar, P.; Kumari, T.; Nickhil, C.; Deka, S.C.; Pandiselvam, R. Optimization of microwave-assisted process for extraction of phytochemicals from norabogori fruit (Prunuspersica L. Batsch) and its application as fruit leather. Biomass Convers. Biorefin. 2023, 1–15. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Guo, H.; Li, H.; Ran, W.; Yu, W.; Xiao, Y.; Gan, R.; Gao, H. Structural and functional characteristics of pectins from three cultivars of apple (Malus pumila Mill.) pomaces. Int. J. Biol. Macromol. 2024, 269, 132002. [Google Scholar] [CrossRef]
- García-García, A.B.; Ochoa-Martínez, L.A.; Lara-Ceniceros, T.E.; Rutiaga-Quiñones, O.M.; Rosas-Flores, W.; González-Herrera, S.M. Changes in the microstructural, textural, thermal and sensory properties of apple leathers containing added agavins and inulin. Food Chem. 2019, 301, 124590. [Google Scholar] [CrossRef] [PubMed]
- Nizamlioglu, N.M.; Yasar, S.; Bulut, Y. Chemical versus infrared spectroscopic measurements of quality attributes of sun or oven dried fruit leathers from apple, plum and apple-plum mixture. LWT—Food Sci. Technol. 2022, 153, 112420. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A case study on circular economy approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.; Ramudhin, A.; Colicchia, C.; Creazza, A.; Li, C. A systematic review of research on food loss and waste prevention and management for the circular economy. Int. J. Prod. Econ. 2021, 239, 108209. [Google Scholar] [CrossRef]
- Facchini, F.; Silvestri, B.; Digiesi, S.; Lucchese, A. Agri-food loss and waste management: Win-win strategies for edible discarded fruits and vegetables sustainable reuse. Innov. Food Sci. Emerg. Technol. 2023, 83, 103235. [Google Scholar] [CrossRef]
- Lins, A.C.d.A.; Cavalcanti, D.T.d.B.; Azoubel, P.M.; Mélo, E.d.A.; Maciel, M.I.S. Effect of hydrocolloids on the physicochemical characteristics of yellow mombin structured fruit. Food Sci. Technol. 2014, 34, 456–463. [Google Scholar] [CrossRef]
- Orrego, C.E.; Salgado, N.; Botero, C.A. Developments and trends in fruit bar production and characterization. Crit. Rev. Food Sci. Nutr. 2014, 54, 84–97. [Google Scholar] [CrossRef]
- BRASIL. Brazilian Health Regulatory Agency (ANVISA). Board of Directors Resolution—RDC n. 272, Dated 22 September 2005. Technical Regulation for Vegetable Products, Fruit Products, and Edible Mushrooms; Federal Official Gazette, Diário Oficial da União (DOU): Brasília, DF, Brazil, 2005.
- Miranda, G.; Berna, A.; Mulet, A. Dried-fruit storage: An analysis of package headspace atmosphere changes. Foods 2019, 8, 56. [Google Scholar] [CrossRef]
- Feng, S.; Bi, J.; Laaksonen, T.; Laurén, P.; Yi, J. Texture of freeze-dried intact and restructured fruits: Formation mechanisms and control technologies. Trends Food Sci. Technol. 2023, 143, 104267. [Google Scholar] [CrossRef]
- Raj, G.V.S.B.; Dash, K.K. Development of hydrocolloids incorporated dragon fruit leather by conductive hydro drying: Characterization and sensory evaluation. Food Hydrocoll. Health 2022, 2, 100086. [Google Scholar] [CrossRef]
- Lago-Vanzela, E.S.; Procópio, D.P.; Fontes, E.A.F.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Aging of red wines made from hybrid grape cv. BRS Violeta: Effects of accelerated aging conditions on phenolic composition, color and antioxidant activity. Food Res. Int. 2014, 56, 182–189. [Google Scholar] [CrossRef]
- Olivati, C.; Nishiyama, Y.P.O.; de Souza, R.T.; Janzantti, N.S.; Mauro, M.A.; Gomes, E.; Hermosín-Gutiérrez, I.; da Silva, R.; Lago-Vanzela, E.S. Effect of the pre-treatment and the drying process on the phenolic composition of raisins produced with a seedless Brazilian grape cultivar. Food Res. Int. 2019, 116, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Tavares, I.M.C.; Castilhos, M.B.M.; Mauro, M.A.; Ramos, A.M.; Teodoro de Souza, R.T.; Gómez-Alonso, S.; Gomes, E.; Da-Silva, R.; Hermosín-Gutiérrez, I.; Lago-Vanzela, E.L.S. BRS Violeta (BRS Rúbea × IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chem. 2019, 298, 124971. [Google Scholar] [CrossRef] [PubMed]
- Zardo, D.M.; Silva, K.M.; Guyot, S.; Nogueira, A. Phenolic profile and antioxidant capacity of the principal apples produced in Brazil. Int. J. Food Sci. Nutr. 2013, 64, 611–620. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Couto, M.; Judacewski, P.; Mafra, L.I.; Nogueira, A. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening. J. Food Sci. Technol. 2017, 54, 1511–1518. [Google Scholar] [CrossRef]
- Feng, S.; Yi, J.; Li, X.; Wu, X.; Zhao, Y.; Ma, Y.; Bi, J. Systematic review of phenolic compounds in apple fruits: Composition, distribution, absorption, metabolism, and processing stability. J. Agric. Food Chem. 2021, 69, 7–27. [Google Scholar] [CrossRef]
- Horvacki, N.; Andrić, F.; Gašić, U.; Đurović, D.; Tešić, Ž.; Akšić, M.F.; Milojković-Opsenica, D. Phenolic Compounds as Phytochemical Tracers of Varietal Origin of Some Autochthonous Apple Cultivars Grown in Serbia. Molecules 2022, 27, 7651. [Google Scholar] [CrossRef]
- Arraibi, A.A.; Liberal, Â.; Dias, M.I.; Alves, M.J.; Ferreira, I.C.F.R.; Barros, L.; Barreira, J.C.M. Chemical and Bioactive Characterization of Spanish and Belgian Apple Pomace for Its Potential Use as a Novel Dermocosmetic Formulation. Foods 2021, 10, 1949. [Google Scholar] [CrossRef]
- He, W.; Laaksonen, O.; Tian, Y.; Heinonen, M.; Bitz, L.; Yang, B. Phenolic compound profiles in Finnish apple (Malus × domestica Borkh.) juices and ciders fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe strains. Food Chem. 2022, 373, 131437. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2019, 109, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Neri-Numa, I.A.; Kido, L.A.; Júnior, M.R.M.; Pastore, G.M. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J. Funct. Foods 2020, 75, 104203. [Google Scholar] [CrossRef]
- Borah, P.; Banik, B.K. 22—Medicinal plants and their compounds with anticancer properties. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 759–776. [Google Scholar] [CrossRef]
- Giacco, R.; Costabile, G.; Fatati, G.; Frittitta, L.; Maiorino, M.I.; Marelli, G.; Parillo, M.; Pistis, D.; Tubili, C.; Vetrani, C.; et al. Effects of polyphenols on cardio-metabolic risk factors and risk of type 2 diabetes. A joint position statement of the Diabetes and Nutrition Study Group of the Italian Society of Diabetology (SID), the Italian Association of Dietetics and Clinical Nutrition (ADI) and the Italian Association of Medical Diabetologists (AMD). Nutr. Metab. Cardiovasc. Dis. 2020, 30, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Haas, I.C.d.S.; Marmitt, D.J.; Fedrigo, I.M.T.; Goettert, M.I.; Bordignon-Luiz, M.T. Evaluation of antiproliferative and anti-inflammatory effects of non-pomace sediment of red grape juices (Vitis labrusca L.) in healthy and cancer cells after in vitro gastrointestinal simulation. PharmaNutrition 2020, 13, 100204. [Google Scholar] [CrossRef]
- Kato-Schwartz, C.G.; Corrêa, R.C.G.; Lima, D.D.S.; de Sá-Nakanishi, A.B.; Gonçalves, G.D.A.; Seixas, F.A.V.; Haminiuk, C.W.; Barros, L.; Ferreira, I.C.F.R.; Bracht, A.; et al. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Res. Int. 2020, 137, 109462. [Google Scholar] [CrossRef]
- Rahaiee, S.; Assadpour, E.; Esfanjani, A.F.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci. 2020, 279, 102153. [Google Scholar] [CrossRef]
- Sanches-Silva, A.; Testai, L.; Battino, M.; Devi, K.P.; Tejada, S.; Sureda, A.; Xu, S.; Yousefi, B.; Majidinia, M.; Russo, G.L.; et al. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol. Res. 2020, 152, 104626. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Fernández-González, M.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Red-color related phenolic composition of Garnacha tintorera (Vitis vinifera L.) grapes and red wines. J. Agric. Food Chem. 2009, 57, 7883–7891. [Google Scholar] [CrossRef]
- World Geodetic System 1984 (WGS84) (Optimized) International Civil Aviation Organization (ICAO) 2015 FIR WORLD Mod. Available online: https://gis.icao.int/portal/home/webmap/viewer.html?useExisting=1 (accessed on 1 July 2024).
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of the Association of Official Analytical Chemists, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Rebello, L.P.G.; Lago-Vanzela, E.S.; Barcia, M.T.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Castillo-Muñoz, N.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea × IAC 1398-21) Using HPLC–DAD–ESI-MS/MS. Food Res. Int. 2013, 54, 354–366. [Google Scholar] [CrossRef]
- Olivati, C.; Nishiyama, Y.P.O.; da Silva, R.; Gómez-Alonso, S.; Lago-Vanzela, E.S. BRS Clara raisins production: Effect of the pre-treatment and the drying process on the phenolic composition. J. Food Compos. Anal. 2022, 114, 104771. [Google Scholar] [CrossRef]
- Ares, G.; Bruzzone, F.; Vidal, L.; Cadena, R.S.; Giménez, A.; Pineau, B.; Hunter, D.C.; Paisley, A.G.; Jaeger, S.R. Evaluation of a Rating-Based Variant of Check-All-That-Apply Questions: Rate-All-That-Apply (RATA). Food Qual. Prefer. 2014, 36, 87–95. [Google Scholar] [CrossRef]
- Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; Taylor & Francis: Abingdon, UK, 2015; ISBN 9781482216905. [Google Scholar]
- Ares, G.; Jaeger, S.R. Check-All-That-Apply Questions: Influence of Attribute Order on Sensory Product Characterization. Food Qual. Prefer. 2013, 28, 141–153. [Google Scholar] [CrossRef]
Determinations | FC1 | FC2 |
---|---|---|
Moisture (%) | 25.23 ± 1.50a | 24.86 ± 0.58a |
Wa | 0.76 ± 0.00a | 0.75 ± 0.00a |
TA (acid g·100 g−1) | 0.02 ± 0.00a | 0.02 ± 0.00a |
pH | 3.29 ± 0.00a | 3.32 ± 0.00a |
Assignation 1 | Molecular Ion; Product Ions (m/z) | Molar Ratio (%) | |
---|---|---|---|
FC1 | FC2 | ||
Delphinidin-3-glc | 465; 303 | 2.01 ± 0.48b | 5.22 ± 0.38a |
Cyanidin-3-glc | 449; 287 | 2.10 ± 0.31b | 3.89 ± 0.13a |
Petunidin-3-glc | 479; 317 | 0.90 ± 0.76b | 6.21 ± 0.37a |
Peonidin-3-glc | 463; 301 | 3.59 ± 0.44b | 5.12 ± 0.01a |
Malvidin-3-glc | 493; 331 | 10.07 ± 1.12a | 11.91 ± 0.09a |
Delphinidin-3-acglc | 507; 303 | 0.20 ± 0.02b | 0.41 ± 0.02a |
Cyanidin-3-acglc | 491; 287 | 0.61 ± 0.14a | 0.74 ± 0.10a |
Petunidin-3-acglc | 521; 317 | 0.22 ± 0.03b | 0.41 ± 0.02a |
Peonidin-3-acglc | 505; 301 | 0.19 ± 0.06a | 0.15 ± 0.01a |
Malvidin-3-acglc | 535; 331 | 1.33 ± 0.07a | 1.46 ± 0.02a |
Cyanidin-3-cfglc | 611; 287 | 1.43 ± 0.16a | 1.55 ± 0.08a |
Malvidin-3-cfglc | 655; 331 | 1.68 ± 0.12a | 1.69 ± 0.10a |
c-delphinidin-3-cmglc | 611; 303 | 0.08 ± 0.02b | 0.15 ± 0.01a |
c-petunidin-3-cmglc | 625; 317 | 0.49 ± 0.07a | 0.58 ± 0.04a |
c-malvidin-3-cmglc | 639; 331 | 0.72 ± 0.05a | 0.68 ± 0.06a |
t-delphinidin-3-cmglc | 611; 303 | 2.56 ± 0.31b | 4.48 ± 0.20a |
Cyanidin-3-cmglc | 595; 287 | 2.36 ± 0.42b | 5.39 ± 0.35a |
t-petunidin-3-cmglc | 625; 317 | 3.75 ± 0.29b | 5.25 ± 0.22a |
Peonidin-3-cmglc | 609; 301 | 2.07 ± 0.13b | 2.80 ± 0.08a |
t-malvidin-3-cmglc | 639; 331 | 9.32 ± 0.41a | 9.30 ± 0.27a |
cyanidin-3,5-diglc | 611; 449, 287 | 0.46 ± 0.01b | 0.57 ± 0.01a |
Petunidin-3,5-diglc | 641; 479, 317 | 0.98 ± 0.06b | 1.39 ± 0.02a |
Peonidin-3,5-diglc | 641; 479, 317 | 7.24 ± 0.38a | 6.27 ± 0.19b |
Malvidin-3,5-diglc | 655; 493, 331 | 21.75 ± 0.09a | 13.10 ± 0.72b |
Peonidin-3-acglc-5glc | 667; 505, 301 | 0.21 ± 0.02a | 0.14 ± 0.01b |
Malvidin-3-acglc-5glc | 697; 535, 493, 331 | 1.24 ± 0.15a | 0.60 ± 0.02b |
Malvidin-3-cfglc-5-glc | 817; 655, 331 | 2.85 ± 0.33a | 1.11 ± 0.10b |
c-delphinidin-3-cmglc-5-glc | 773; 611, 465, 303 | 0.68 ± 0.13a | 0.76 ± 0.19a |
c-petunidin-3-cmglc-5-glc | 787; 625, 479, 317 | 0.06 ± 0.03a | 0.04 ± 0.04a |
t-delphinidin-3-cmglc-5-glc | 773; 611, 465, 303 | 3.14 ± 0.29a | 2.37 ± 0.09b |
t-petunidin-3-cmglc-5-glc | 787; 625, 479, 317 | 1.70 ± 0.53a | 0.50 ± 0.05a |
peonidin-3-cmglc-5-glc | 771; 609, 463, 301 | 0.26 ± 0.05a | 0.33 ± 0.03a |
malvidin-3-cmglc-5-glc | 801; 639, 493, 331 | 13.74 ± 0.89a | 5.46 ± 0.15a |
Total (mg malvidin-3-glc·kg−1) | 2000.62 ± 156.48a | 2123.76 ± 63.12a | |
Total (mg malvidin-3,5-glc·kg−1) | 2984.53 ± 233.43a | 3168.23 ± 94.17a |
Assignation 1 | Molecular Ion; Product Ions (m/z) | Molar Ratio (%) | |
---|---|---|---|
FC1 | FC2 | ||
Myricetin-3-glcU | 493; 317 | 1.69 ± 0.65a | 0.77 ± 0.20a |
Myricetin-3-gal | 479; 317 | 4.84 ± 0.63a | 8.44 ± 0.02a |
Myricetin-3-glc | 479; 317 | 5.65 ± 2.84a | 2.44 ± 0.13a |
Quercetin-3-gal | 463; 301 | 26.96 ± 2.27a | 20.262 ± 2.90a |
Quercetin-3-glcU | 477; 301 | 10.86 ± 3.54a | 15.56 ± 2.66a |
Quercetin-3-glc | 463; 301 | 19.57 ± 0.78a | 21.03 ± 0.51a |
Quercetin-3-rut | 609; 301 | 4.29 ± 0.16a | 2.38 ± 0.19a |
Quercetin-3-xyl | 433; 301 | 3.66 ± 0.47a | 6.86 ± 1.49a |
Quercetin-3-rhm | 447; 301 | 9.58 ± 0.40a | 12.15 ± 2.77a |
Laricitrin-3-glc | 493; 331 | 3.44 ± 0.62a | 3.50 ± 0.37a |
Kaempferol-3-glc | 447; 285 | 5.57 ± 3.10a | 1.98 ± 0.43a |
Isorhamnetin-3-glc | 477; 315 | 1.90 ± 0.16a | 2.57 ± 0.54a |
Syringetin-3-glc | 507; 345 | 1.99 ± 0.07a | 2.05 ± 0.31a |
Total (% of flavonol) | 100 | 100 | |
Quercetin type | 74.92 ± 6.81a | 78.24 ± 2.00a | |
Myricetin type | 12.18 ± 2.86a | 11.66 ± 0.35a | |
Laricitrin type | 3.44 ± 0.62a | 3.50 ± 0.37a | |
Kaempferol type | 5.57 ± 3.10a | 1.98 ± 0.43a | |
Isorhamnetin type | 1.90 ± 0.16a | 2.57 ± 0.54a | |
Syringetin type | 1.99 ± 0.07a | 2.05 ± 0.31a | |
Total (% by type of flavonol) | 100 | 100 | |
Total (mg of quercetin-3-glc·kg−1) | 442.10 ± 11.55a | 485.04 ± 81.76a |
Assignation | Molecular Ion; Product Ions (m/z) | Molar Ratio (%) | |
---|---|---|---|
FC1 | FC2 | ||
Caftaric acid | 311; 179, 149, 135 | 2.42 ± 0.16a | 2.67 ± 0.68a |
Caffeic acid-O-glucoside 1 | 341; 179 | 7.67 ± 2.45a | 10.43 ± 1.10a |
Caffeic acid-O-glucoside 2 | 341; 179 | 3.50 ± 0.60a | 4.06 ± 0.85a |
Dicaffeoylquinic acid | 515; 353, 191 | 23.70 ± 2.04a | 16.44 ± 4.28a |
Chlorogenic acid | 353, 191 | 15.78 ± 2.51a | 14.86 ± 2.10a |
Coutaric acid | 295; 163, 149, 119 | 1.86 ± 0.68a | 1.92 ± 0.45a |
Fertaric acid | 325; 193, 149 | 21.85 ± 2.09a | 25.54 ± 2.99a |
p-Coumaroyl-glucose | 325; 163, 145 | 12.88 ± 1.12a | 15.89 ± 2.98a |
4-O-p-Coumaroylquinic acid | 339; 337, 173 | 10.33 ± 1.01a | 8.20 ± 0.95a |
Total (mg caftaric acid·kg−1) | 674.97 ± 116.95a | 612.80 ± 103.95a |
Sensory Analysis | ||
---|---|---|
Descriptors Terms 1 | Mean ± Standard Deviation | |
Appearance | Roughness | 3.47 ± 1.23 |
Brightness | 2.79 ± 1.65 | |
Color uniformity | 3.54 ± 1.34 | |
Purple color | 4.18 ± 1.33 | |
Odor | Sweetness/Caramelized | 2.96 ± 1.47 |
Apple juice | 1.49 ± 1.52 | |
Grape juice | 2.36 ± 1.49 | |
Flavor | Sour/Acid | 3.81 ± 1.33 |
Sweet | 2.78 ± 1.47 | |
Apple | 2.65 ± 1.57 | |
Grape juice | 3.50 ± 1.31 | |
Texture | Soft | 3.89 ± 1.50 |
Presence of particles | 3.19 ± 1.63 | |
Hedonic Terms | Memorable | 3.43 ± 1.64 |
Natural | 3.86 ± 1.38 | |
Enjoyable | 3.46 ± 1.56 | |
Tasty | 4.07 ± 1.24 | |
Pleasant | 3.83 ± 1.30 | |
Interesting | 3.97 ± 1.26 | |
Sophisticated | 3.11 ± 1.60 | |
Attractive | 3.18 ± 1.52 | |
Global Acceptance 2 | 7.51 ± 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishiyama-Hortense, Y.P.; Olivati, C.; Shimizu-Marin, V.D.; Gonçales, A.C.; Soares Janzantti, N.; Da Silva, R.; Lago-Vanzela, E.S.; Gómez-Alonso, S. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Molecules 2024, 29, 5205. https://doi.org/10.3390/molecules29215205
Nishiyama-Hortense YP, Olivati C, Shimizu-Marin VD, Gonçales AC, Soares Janzantti N, Da Silva R, Lago-Vanzela ES, Gómez-Alonso S. Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Molecules. 2024; 29(21):5205. https://doi.org/10.3390/molecules29215205
Chicago/Turabian StyleNishiyama-Hortense, Yara Paula, Carolina Olivati, Victoria Diniz Shimizu-Marin, Ana Carolina Gonçales, Natália Soares Janzantti, Roberto Da Silva, Ellen Silva Lago-Vanzela, and Sergio Gómez-Alonso. 2024. "Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes" Molecules 29, no. 21: 5205. https://doi.org/10.3390/molecules29215205
APA StyleNishiyama-Hortense, Y. P., Olivati, C., Shimizu-Marin, V. D., Gonçales, A. C., Soares Janzantti, N., Da Silva, R., Lago-Vanzela, E. S., & Gómez-Alonso, S. (2024). Structured Fruit Cube Snack of BRS Vitoria Grape with Gala Apple: Phenolic Composition and Sensory Attributes. Molecules, 29(21), 5205. https://doi.org/10.3390/molecules29215205