Enhanced Gallium Extraction Using Silane-Modified Mesoporous Silica Synthesized from Coal Gasification Slag
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Acid Leaching Conditions for Mesoporous Silica Construction
2.2. Influence of Acid Immersion on Silanol Group Formation
2.3. Acid Immersion Mechanism
2.4. Adsorption Behavior of Mesoporous Silica on Gallium
2.5. Competitive Adsorption
2.6. Regeneration Cycle
2.7. Adsorption Mechanism Exploration
3. Experimental Section
3.1. Materials and Reagents
3.2. Characterization
3.3. Silanol Group Quantification
3.4. Cycle Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, J.; Zhang, J.; Li, H.; Li, S.; Hou, X.; Chang, R.; Zhang, Y. Coal gasification slag-derived highly reactive silica for high modulus sodium silicate synthesis: Process and mechanism. Chem. Eng. J. 2024, 479, 147771. [Google Scholar] [CrossRef]
- Gai, H.; Feng, Y.; Lin, K.; Guo, K.; Xiao, M.; Song, H.; Chen, X.; Zhou, H. Heat integration of phenols and ammonia recovery process for the treatment of coal gasification wastewater. Chem. Eng. J. 2017, 327, 1093–1101. [Google Scholar] [CrossRef]
- Gary, F. Bennett. Book review: Gasification technologies: A primer for engineers and scientists. J. Hazard. Mater. 2006, 138, 205–206. [Google Scholar]
- Hsieh, P.Y.; Kwong, K.; Bennett, J. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes. Fuel Process. Technol. 2016, 142, 13–26. [Google Scholar] [CrossRef]
- Jia, W.; Guo, Y.; Guo, F.; Li, H.; Li, Y.; Zhang, Y.; Wu, J.; Si, C. Co-combustion of carbon-rich fraction from coal gasification fine slag and biochar: Gas emission, ash sintering, heavy metals evolutions and environmental risk evaluation. Chem. Eng. J. 2023, 471, 144312. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, J.; Li, H.; Li, S. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation. Sci. Total Environ. 2021, 801, 149761. [Google Scholar] [CrossRef]
- Su, S.; Tahir, M.H.; Cheng, X.; Zhang, J. Modification and resource utilization of coal gasification slag-based material: A review. J. Environ. Chem. Eng. 2024, 12, 112112. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Shen, T.; Sun, J.; Pan, H.; Sun, X.; Lu, W.; Lu, X.; Gao, G.; Fan, Y.; et al. Preparation and performance of multi-ionic composite coagulants based on coal gasification coarse slag by one-step acid leaching. Process Saf. Environ. Protect. 2023, 173, 249–262. [Google Scholar]
- Yuan, N.; Zhao, A.; Hu, Z.; Tan, K.; Zhang, J. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review. Chemosphere 2021, 287, 132227. [Google Scholar] [CrossRef]
- Yang, X.; Tang, W.; Liu, X.; Du, H.; Wu, Y.; Zhang, J. Synthesis of mesoporous silica from coal slag and co2 for phenol removal. J. Clean. Prod. 2019, 208, 1255–1264. [Google Scholar] [CrossRef]
- Velty, A.; Corma, A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of co2 to chemicals and fuels. Chem. Soc. Rev. 2023, 52, 1773–1946. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, T.; Kubota, Y.; Tatsumi, T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A Gen. 2012, 421–422, 14–37. [Google Scholar] [CrossRef]
- Ncube, T.; Kumar Reddy, K.S.; Al Shoaibi, A.; Srinivasakannan, C. Benzene, toluene, m-xylene adsorption on silica-based adsorbents. Energy Fuels 2017, 31, 1882–1888. [Google Scholar] [CrossRef]
- Qi, P.; Xu, Z.; Zhou, T.; Zhang, T.; Zhao, H. Study on a quartz crystal microbalance sensor based on chitosan-functionalized mesoporous silica for humidity detection. J. Colloid. Interface. Sci. 2021, 583, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiao, X. A new approach to prepare mesoporous silica using coal fly ash. Chem. Eng. J. 2016, 302, 388–394. [Google Scholar] [CrossRef]
- Zhu, D.; Zuo, J.; Jiang, Y.; Zhang, J.; Zhang, J.; Wei, C. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing. Sci. Total Environ. 2020, 707, 136102. [Google Scholar]
- Liu, S.; Chen, X.; Ai, W.; Wei, C. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption. J. Clean. Prod. 2019, 212, 1062–1071. [Google Scholar] [CrossRef]
- Xu, Y.; Ai, W.; Zuo, J.; Yang, W.; Wei, C.; Xu, S. Mesoporous spherical silica filler prepared from coal gasification fine slag for styrene butadiene rubber reinforcement and promoting vulcanization. Polymers 2022, 14, 4427. [Google Scholar] [CrossRef]
- Wei, X.; Liu, J.; Yan, H.; Li, T.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, G. Synthesis of large mesoporous silica for efficient CO2 adsorption using coal gasification fine slag. Sep. Purif. Technol. 2025, 353, 128348. [Google Scholar] [CrossRef]
- Shu, Q.; Sun, Z.; Zhu, G.; Wang, C.; Li, H.; Qi, F.; Zhang, Q.; Li, S. Highly efficient synthesis of zsm-5 zeolite by one-step microwave using desilication solution of coal gasification coarse slag and its application to vocs adsorption. Process Saf. Environ. Protect. 2022, 167, 173–183. [Google Scholar] [CrossRef]
- Chai, Z.; Liu, B.; Lv, P.; Bai, Y.; Wang, J.; Song, X.; Su, W.; Yu, G. Recycling of coal gasification fine slag as ultra-high capacity adsorbents for the removal of rhodamine b dye: Graded synthesis method, kinetics and adsorption mechanism. Fuel 2023, 333, 126318. [Google Scholar] [CrossRef]
- Liu, B.; Lv, P.; Wu, R.; Bai, Y.; Wang, J.; Su, W.; Song, X.; Yu, G. Coal gasification fine slag based multifunctional nanoporous silica microspheres for synergistic adsorption of pb(ii) and congo red. Sep. Purif. Technol. 2023, 323, 124478. [Google Scholar] [CrossRef]
- Yang, B.; Han, F.; Li, Y.; Bai, Y.; Xie, Z.; Yang, J.; Liu, T. Phosphate removal mechanism of a novel magnesium slag-modified coal gasification coarse slag adsorbent. Environ. Sci. Pollut. Res. 2023, 30, 60607–60617. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Qi, W.; Pang, H.; Zhao, Q.; Huang, Y.; Zhao, D.; Zhu, W.; Zhang, J. A novel coal gasification coarse slag-based geopolymer: Influences of physico-chemical coupling activation on its properties, microstructure, and hazardous material immobilization. Constr. Build. Mater. 2024, 420, 135591. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, Y.; Zhang, Z.; Wang, W.; Peng, W.; Cao, Y. Synthesis of silane-modified mesoporous silica from coal gasification coarse slag and its novel application on gallium extraction. Sep. Purif. Technol. 2024, 347, 127734. [Google Scholar] [CrossRef]
- Yan, S.; Xuan, W.; Cao, C.; Zhang, J. A review of sustainable utilization and prospect of coal gasification slag. Environ. Res. 2023, 238, 117186. [Google Scholar] [CrossRef]
- Li, T.; He, S.; Shen, T.; Sun, J.; Sun, C.; Pan, H.; Yu, D.; Lu, W.; Li, R.; Zhang, E.; et al. Using one-step acid leaching for the recovering of coal gasification fine slag as functional adsorbents: Preparation and performance. Int. J. Environ. Res. Public Health 2022, 19, 12851. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Zhou, L.; Pan, Z. Effect of Al2O3 and mgo on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux. J. Iron Steel Res. Int. 2021, 28, 552–562. [Google Scholar] [CrossRef]
- Peng, L.; Qisui, W.; Xi, L.; Chaocan, Z. Investigation of the states of water and oh groups on the surface of silica. Colloids Surf. A Physicochem. Eng. Asp. 2009, 334, 112–115. [Google Scholar] [CrossRef]
- Xu, Y.; Weng, S. Fourier Transform Infrared Spectral Analysis, 3rd ed.; Chemical Industry Press: Beijing, China, 2016. [Google Scholar]
- Banerjee, P.; Chakraborty, T. Confinement effects on c–h and c–f stretching vibrational frequencies of difluoromethane in cold inert gas matrixes: A combined infrared spectroscopy and electronic structure theory study. Eur. Phys. J. D 2021, 75, 131. [Google Scholar] [CrossRef]
- Chen, H.; Sun, Z.Y.; Shao, J. Infrared Spectral Characteristics of Silica from Eight Different Sources. Bull. Chin. Silic. Soc. 2011, 30, 934–937. [Google Scholar]
- Qin, Z.; Wang, S.; Fan, L.; Zhou, C.; Wang, C.; Song, L.; Ma, K.; Yue, H. A hydrazine amidoxime crosslinked polyacrylonitrile resin for efficient extraction of gallium from vanadium-containing waste solution. Chem. Eng. Sci. 2023, 282, 119240. [Google Scholar] [CrossRef]
- Sontakke, A.D.; Annapurna, K. Network coordination in low germanium alkaline-earth gallate systems: Influence on glass formation. RSC Adv. 2012, 2, 13024–13031. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Song, Y.; Lou, Z.; Shan, W.; Xiong, Y. Novel chitosan-based ions imprinted bio-adsorbent for enhanced adsorption of gallium(iii) in acidic solution. J. Mol. Liq. 2020, 320, 114413. [Google Scholar] [CrossRef]
- Kang, S.; Hong, S.I.; Choe, C.R.; Park, M.; Rim, S.; Kim, J. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 2001, 42, 879–887. [Google Scholar] [CrossRef]
- Lin, O.H.; Md Akil, H.; Ishak, Z.A.M. Characterization and properties of activated nanosilica/polypropylene composites with coupling agents. Polym. Compos. 2009, 30, 1693–1700. [Google Scholar] [CrossRef]
- Fujiki, J.; Yogo, K.; Furuya, E. Role of silanol groups on silica gel on adsorption of benzothiophene and naphthalene. Fuel 2018, 215, 463–467. [Google Scholar] [CrossRef]
- Balcom, H.; Hoffman, A.J.; Locht, H.; Hibbitts, D. Correction to “brønsted acid strength does not change for bulk and external sites of mfi except for al substitution where silanol groups form”. ACS Catal. 2024, 14, 1231. [Google Scholar] [CrossRef]
- Maximiano, P.; Simões, P.N. Silica aerogel-carbon nanotube composites: Mechanistic insights into condensation reactions. Chem. Eng. J. 2024, 496, 153580. [Google Scholar] [CrossRef]
Sample | as,BET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
CGCS | 6.3855 | 0.0047 | 2.9184 |
HCl-CGCS | 240.0500 | 0.1393 | 2.3217 |
H2SO4-CGCS | 179.3500 | 0.1081 | 2.4100 |
HAc-CGCS | 8.2362 | 0.0068 | 3.3101 |
Sample | as,BET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
CGCS | 6.3855 | 0.0047 | 2.9184 |
HCl(2)-CGCS | 79.7940 | 0.0424 | 2.1235 |
HCl(4)-CGCS | 167.7100 | 0.0963 | 2.2967 |
HCl(6)-CGCS | 258.4000 | 0.1526 | 2.3626 |
HCl(8)-CGCS | 240.0500 | 0.1393 | 2.3217 |
HCl(10)-CGCS | 194.9600 | 0.1029 | 2.1116 |
HCl(12)-CGCS | 204.4900 | 0.1052 | 2.0570 |
t (h) | as,BET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
t = 1 | 227.7500 | 0.1216 | 2.1364 |
t = 2 | 227.4900 | 0.1234 | 2.1694 |
t = 3 | 257.8400 | 0.1482 | 2.2987 |
t = 4 | 247.4413 | 0.1471 | 2.3786 |
t = 5 | 253.4111 | 0.1553 | 2.4513 |
t = 6 | 221.3612 | 0.1338 | 2.4172 |
t = 7 | 245.4923 | 0.1533 | 2.4972 |
t = 8 | 182.1936 | 0.1127 | 2.4737 |
T (°C) | as,BET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
T = 20 | 43.5290 | 0.0244 | 2.2414 |
T = 30 | 61.2870 | 0.0318 | 2.0733 |
T = 40 | 87.2240 | 0.0455 | 2.0885 |
T = 50 | 117.5300 | 0.0588 | 2.0016 |
T = 60 | 115.7700 | 0.0617 | 2.1332 |
T = 70 | 172.7800 | 0.0915 | 2.1191 |
T = 80 | 199.8900 | 0.1111 | 2.2237 |
T = 90 | 257.8400 | 0.1482 | 2.2987 |
T = 95 | 248.2500 | 0.0920 | 2.4819 |
Qe,exp, (mg/g) | Pseudo First-Order | Pseudo Second-Order | ||||
---|---|---|---|---|---|---|
Qe (mg/g) | K1 (min−1) | R2 | Qe (mg/g) | K2 (g·mg−1·min−1) | R2 | |
3.9600 | 3.0791 | 2.1360 | 0.9833 | 4.1853 | 1.5770 | 0.9997 |
T (K) | Qm,exp (mg/g) | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|---|
Qm (mg/g) | b (L/mg) | R2 | RL | n | KF (mg/g)(L/mg) 1/n | R2 | ||
303.1500 | 27.6243 | 0.0110 | 0.9853 | 0.9853 | 0.6947 | 2.5423 | 2.1076 | 0.9827 |
Number of Cycles | as,BET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
0 | 257.0100 | 0.1349 | 2.3609 |
1 | 202.2232 | 0.1087 | 2.4264 |
2 | 113.0098 | 0.0582 | 2.3269 |
3 | 30.84711 | 0.0225 | 3.2899 |
4 | 10.0210 | 0.0055 | 2.2059 |
5 | 3.4663 | 0.0020 | 2.3490 |
Component | SiO2 | Fe2O3 | Al2O3 | CaO | MgO | K2O | Na2O | TiO2 | LOI | Others |
---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 50.24 | 14.72 | 14.75 | 10.46 | 2.27 | 2.26 | 1.79 | 1.00 | 1.32 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Fan, G.; Ma, L.; Wei, C.; Li, P.; Cao, Y.; Teng, D. Enhanced Gallium Extraction Using Silane-Modified Mesoporous Silica Synthesized from Coal Gasification Slag. Molecules 2024, 29, 5232. https://doi.org/10.3390/molecules29225232
Yang S, Fan G, Ma L, Wei C, Li P, Cao Y, Teng D. Enhanced Gallium Extraction Using Silane-Modified Mesoporous Silica Synthesized from Coal Gasification Slag. Molecules. 2024; 29(22):5232. https://doi.org/10.3390/molecules29225232
Chicago/Turabian StyleYang, Shiqiao, Guixia Fan, Lukuan Ma, Chao Wei, Peng Li, Yijun Cao, and Daoguang Teng. 2024. "Enhanced Gallium Extraction Using Silane-Modified Mesoporous Silica Synthesized from Coal Gasification Slag" Molecules 29, no. 22: 5232. https://doi.org/10.3390/molecules29225232
APA StyleYang, S., Fan, G., Ma, L., Wei, C., Li, P., Cao, Y., & Teng, D. (2024). Enhanced Gallium Extraction Using Silane-Modified Mesoporous Silica Synthesized from Coal Gasification Slag. Molecules, 29(22), 5232. https://doi.org/10.3390/molecules29225232