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Abstract: N-heterocyclic carbene (NHC)–gold and –silver complexes have attracted the interest of the
scientific community because of their multiple applications and their versatility in being chemically
modified in order to improve their biological properties. However, most of these complexes contain
one or more chiral centers, and have been obtained and studied as racemic mixture. In particular,
concerning the interesting biological and medicinal properties, many questions about how the
chirality may influence these properties still remain unanswered. Aiming at a better understanding,
herein a series of enantiopure NHC–gold and –silver complexes was synthesized, characterized and
biologically evaluated in different in vitro systems. The individuated complexes exerted different
properties based on the complexed metal and the specific configuration, with the (R)-gold–NHC
complexes being the most active, particularly as anti-inflammatory molecules. Docking simulations
indicated a different binding mode for each enantiomer. Moreover, anticancer and antibacterial
activities were also evaluated for the considered enantiomers. Overall, the reported data may
contribute to a better understanding of the different biological properties exerted by the enantiopure
gold and silver complexes.

Keywords: N-heterocyclic carbenes (NHC); enantiopure complexes; iNOS inhibition; anticancer;
antibacterial

1. Introduction

Transition metal complexes have been demonstrated as a fruitful source in drug devel-
opment. Particularly, those stabilized by carbenes ligands, which are versatile scaffolds for
various structural modifications, have been demonstrated to target important biomolecular
structures implied in different cellular pathways [1]. Moreover, these complexes have
attracted considerable research interest due to numerous applications not only in medicinal
chemistry but also in materials science and catalysis [2–4]. For instance, complexes based on
ruthenium, copper, silver and gold with N-heterocyclic carbene (NHC) ligands frequently
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revealed significant antitumor activity [5–8]. Silver–NHC complexes have been proven to
be important antimicrobial agents, since the silver cation interacts with the membrane or
with the thiol groups of bacterial enzymes; they have also shown an interesting antiprolifer-
ative activity on cancer cell lines [9–13]. Last, but not least, gold–NHC complexes have been
tested for their anti-arthritis, anti-inflammatory and anticancer properties showing, in the
latter case, multiple mechanisms of action. Among these is the induction of mitochondrial
or DNA damage, the regulation of various enzymes (e.g., thioredoxin reductase, kinases,
phosphatases, topoisomerases) and the interference with cell cytoskeleton dynamics, which
trigger cellular apoptosis [14–19]. Recently our research group obtained interesting results
regarding the anticancer properties of silver– and gold–NHC complexes toward different
cell lines. The activity of gold complexes against the breast cancer cell lines MCF-7 and
MDA-MB-231 was particularly high, with IC50 values in the micromolar range [13,14].
The class of synthesized complexes possessed an NHC ligand having a stereogenic center
(Figure 1) and they were tested as a racemate. However, the resolution of racemic mixtures
has become fundamental in modern medicine for the development of new, more effective
and safe drugs, because, as it is known, the stereoisomers often possess notable differences
in pharmacodynamic, pharmacokinetic and toxicological properties.
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Figure 1. Anticancer Ag(I)– and Au(I)–NHC complexes previously reported [13,14].

Although selectivity is critical for the development of more effective drugs, to date,
only few data comparing the different biological activity of enantiopure organometallic
complexes have been reported [20,21]. Aiming at contributing to this interesting argument,
in this work we separately synthesized some NHC–silver and –gold complexes with oppo-
site chirality and evaluated their activity, in order to verify whether the R and S enantiomers
could possess different biological profiles. Particularly, we focused our attention to their
anti-inflammatory, anticancer and antibacterial properties. The anti-inflammatory activity
was estimated by measuring the ability in decreasing the NO production in LPS-stimulated
RAW 264.7 macrophages. Our outcomes indicate that only the (R)-NHC–gold complexes
possessed anti-inflammatory activity. In silico studies performed on iNOS furnished some
insights for the observed activity. Next, the anticancer properties were evaluated against
two breast cancer cell lines, the ER-α–positive MCF-7 and the triple-negative MDA-MB
231 cell lines. The human mammary epithelial cells, MCF-10A, were also used as a control.
The obtained IC50 values clearly indicate that, in most cases, just one enantiomer possesses
a higher activity and selectivity. Finally, almost all the complexes show a fair antibacterial
activity, particularly the NHC–silver complexes against two bacterial strains. The obtained
outcomes may contribute to current knowledge on the use of enantiopure gold- and silver-
based NHC complexes, strengthening the need to identify the eutomer for the development
of new multitarget enantiopure pharmacological agents.

2. Results and Discussion

The synthesis of the enantiopure (S) complexes was carried out by reacting imidazole
or 4,5-dchloro-imidazole with (S)-(−)-styrene oxide, in the presence of K2CO3. This base
deprotonates the amino-nitrogen of imidazole producing the nucleophilic species. The
nucleophilic attack of this nitrogen on the less substituted carbon of the epoxide ring
causes its opening, leading to the formation of a β-amino alcohol. Since the opening of
the oxirane ring is always trans, this reaction produces N-((S)-2-hydroxy-2-phenyl-ethyl)-
imidazole or N-((S)-2-hydroxy-2-phenyl-ethyl)-4,5-dichloro-imidazole, respectively. The
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following step involves the reaction between these products with methyl iodide to give
the alkylation of the sp2-hybridized nitrogen atom producing the iodo [N-methyl, N’-
((S)-2-hydroxy-2-phenyl)ethyl-imidazol-2-ylidine] ((S)-P1) or iodo [4,5-dichloro N-methyl,
N’-((S)-2-hydroxy-2-phenyl) ethyl-imidazol-2-ylidine] pro-ligands ((S)-P2) (see Scheme 1).
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Similarly, to obtain pro-ligands with the opposite absolute configuration of the asym-
metric carbon atom, it is necessary to use (R)-(+)-styrene oxide as an oxirane reagent.
1H- and 13C-NMR, mass spectroscopy and elemental analysis confirmed the structure
of the salts. A polarimetric analysis allowed us to evaluate the specific rotation ([α]25

D )
of the compounds. The values obtained, reported in Table 1, are consistent with what
was expected.

Table 1. Specific rotation ([α]25
D ) of pro-ligands and of complexes (S)-AgL1, (R)-AgL1, (S)-AuL1 and

(R)-AuL1.

Compound [α]25
D

(S)-P1 +44.68
(S)-P2 +73.22
(R)-P1 −44.79
(R)-P2 −65.29

(S)-AgL1 +64.18
(R)-AgL1 −74.62
(S)-AuL1 +106.03
(R)-AuL1 −103.58

The synthesis of NHC–metal complexes was carried out following the procedure
previously reported in the literature [13,22] and shown in Scheme 2. To the pro-ligands
(S)-P1 and (S)-P2, AgNO3 is added and afterward potassium carbonate, which generates
the respective carbene ligands (S)-L1 and (S)-L2 in situ. These undergo metalation by Ag(I)
to generate the (S)-AgL1 and (S)-AgL2 complexes. Lastly, transmetalation with Me2SAuCl
produces the analogous gold complexes (S)-AuL1 and (S)-AuL2.
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The complexes were characterized by 1H- and 13C-NMR, mass spectroscopy and
elemental analysis.

Obviously, the data obtained are exactly the same as those found with the racemic
complexes and already previously reported. The reactions reported in Scheme 2 cannot
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lead to racemization of our chiral center; however, to confirm this assumption, we also
determined the specific rotation of the pair of complexes (S)-AgL1, (R)-AgL1 and (S)-AuL1,
(R)-AuL1, which have the chiral center with the opposite absolute configuration. The
data obtained are consistent with what was hypothesized (see Table 1). Moreover, circular
dichroism spectra of the final enantiomeric complexes (S)-AuL1 and (R)-AuL1 showed to
be superimposable and opposite (see Supporting Information, Figure S1).

2.1. Nitric Oxide (NO) Synthesis Inhibition

Inflammation is an important process, in which the immune system is activated,
allowing the protection from infections by eliminating pathogens and promoting repairing
phenomena [23]. However, in some cases, the inflammation can become chronic, playing a
key role in several diseases, such as cancer, diabetes, autoimmune and neurodegenerative
disorders [24]. Moreover, chronic inflammation is characterized by a proliferation of
different specialized cells, for instance macrophages, fibroblasts, granulocytes and so
on [25]. Nitric oxide (NO) production was demonstrated in murine macrophages [26]
and, then, emerged as a major mediator of inflammation. NO is produced by nitric oxide
synthases (NOS) isoforms, but under different pro-inflammatory stimuli (cytokines or
microbial products) [27] it is massively produced by the inducible NOS (iNOS, NOS2;
or type II NOS). iNOS can be also overexpressed in several diseases, producing NO in
an unregulated manner and contributing to the disease progression. For these reasons,
its inhibition represents a good strategy for the treatment of various diseases related to
chronic inflammation, amongst them cancer. The anti-inflammatory activity, in terms of
NO production inhibition, of the new synthesized chiral complexes was evaluated by the
means of a Griess-based assay. Particularly, the NO production was induced in murine
macrophages RAW 264.7 stimulated with bacterial lipopolysaccharide (LPS), then they
were exposed to the complexes for 24 h and the released NO was quantified (as detailed in
the Section 3). Indomethacin (Ind), a nonsteroidal anti-inflammatory drug (NSAID), was
adopted as the positive control, at four different concentrations (see Figure 2), in order to
compare the reference drug activity to the studied complexes. Therefore, pro-ligands P1
and P2, as R and S pure enantiomers, were tested. The obtained outcomes are visible in
Figure 2 (panels A and B, P1 and P2 series, respectively), where it is possible to notice “at
glance” that most of the enantiopure compounds were unable to decrease the NO synthesis,
induced by LPS treatment in RAW 264.7 macrophages (see pink bars in the graph), with
the exception of (R)-AuL1 and (R)-AuL2. Particularly, (R)-AuL1 was able to decrease, dose-
dependently, the NO production of about 23 and 35% at 5 and 10 µM, respectively, whereas
the S enantiomer was unable to reduce NO, under the same experimental conditions. As
well (R)-AuL2 reduced the NO production, in a dose-dependent manner, of about 10 and
50% at 1 and 5 µM, respectively, but not the S enantiomer, which was totally inactive at the
tested concentrations. Furthermore, none of the pro-ligands was found able to decrease NO
production. These results clearly indicate that (i) gold is necessary for the iNOS inhibition,
in terms of NO production diminution; (ii) the R enantiomers were able to inhibit iNOS
(eutomers), whereas S enantiomers were totally inactive (dystomers), at least under the
adopted experimental conditions; and (iii) the presence of the two chlorine substituents at
the carbenic ring enhances the potency ((R)-AuL2 vs. (R)-AuL1). Moreover, it should also
be remarked that both abovementioned eutomers possessed a better ability to decrease the
NO synthesis in LPS-stimulated RAW 264.7 macrophages (thus a better anti-inflammatory
activity) than Ind, at the adopted concentrations. Indeed, only at 50 µM was Ind able to
decrease NO production of about 26%. Finally, viability assays were performed on RAW
264.7 macrophages, recovered after the Griess test. As visible in Figure 2 (panels A and
B, see blue bars), the complexes, pro-ligands and Ind did not impact the macrophages
viability at the adopted concentrations, compared to the LPS-treated cells, used as the
experimental control. Summing up, the obtained outcomes strongly suggested that the
stereochemistry of the NHC–gold complexes, together with the substituents at the carbenic
ring, are fundamental for the inhibitory activity toward murine iNOS.
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production was induced in murine macrophages RAW 264.7 treated with LPS (1 µg/mL), in presence
or not of the enantiopure complexes and pro-ligands at the indicated concentrations (µM), for 24 h.
Indomethacin (Ind) was used as the reference molecule. Data were plotted as % NO inhibition with
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experimental conditions of anti-inflammatory activity, in order to verify the effect of the complexes,
pro-ligands and indomethacin (Ind) on RAW 264.7 cells viability. Data were plotted as % of cell
viability with respect to LPS-only treatment (1 µg/mL). Experiments were performed three times,
in triplicate. Columns ± SD are reported. ** p > 0.01, *** p > 0.001, **** p < 0.0001, or not significant
(where not indicated), treated vs. LPS only.

2.2. Docking Studies

Through molecular docking simulations, we evaluated the most probable binding
modes of the most interesting complexes to iNOS (Figure 3).

We used a “blind-docking approach” for our simulations, a procedure that has been
successfully employed by our research group in several previous studies. The goal of
these simulations was twofold: to identify the most promising candidate among the tested
compounds and to enhance the molecular structure of our compounds. We calculated the
binding affinities of the complexes to human iNOS using Autodock. Autodock calculates
a possible binding affinity constant (Ki) based on the binding energy between the target
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protein and the ligand, according to the expression Ki = exp(deltaG/(R*T)). To rank the po-
tential binding modes, we considered the clustering of the simulation results, as discussed
in previous works [28]. The best poses obtained for each complex were visually examined
to evaluate the quality of the protein interactions. Our docking simulations indicated
that our complexes bind iNOS near the protein’s heme group, forming hydrogen bonds
and hydrophobic interactions with the protein and its prosthetic group (Figure 4A). All
molecules were nearly superimposed on the crystallographic binding site of the molecule
O-(5-methyl-2-nitrophenyl)-D-tyrosinamide [29]. Results from our docking simulations
show that (R)-AuL1 binds the protein forming hydrogen bonds with the heme carboxylate
and with protein residue Ser256. The gold atom interacts with Glu371, while the bound
chlorine atom forms a halogen bond with Asp376. Hydrophobic interactions with the heme
plane and the side chains of residues Ser256, Pro344, Val346, Phe363 and Tyr485 stabilize
the binding pose (Figure 4B). Its enantiomer, (S)-AuL1, instead forms a hydrogen bond
with the carboxyl moiety of Trp366 while the gold atom bonds to the heme carboxylate
(Figure 4C). (R)-AuL2 forms hydrogen bonds with the heme carboxylate and with the
carboxylate and N-peptidic groups of Ala345 and Val346. The ligand is further stabilized
by a halogen bond between the gold-bound chlorine atom and the carboxylate of Asp376.
The gold atom is bound to the carboxylate group of Glu371 (Figure 4D). Finally, (S)-AuL2
is perfectly superimposed onto its enantiomer (R)-AuL2, but the opposite configuration
causes the loss of its interaction with the heme (Figure 4E).
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Binding energies for the four complexes are reported in Table 2.

Table 2. Binding energies and affinities of the four tested Au complexes to iNOS.

Complexes Binding Energy (Kcal/mol) Ki (µM)

(R)-AuL1 −3.7 7.41
(S)-AuL1 −2.48 7.65
(R)-AuL2 −0.689 8.41
(S)-AuL2 −1.32 8.02
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Figure 4. The three-dimensional structure of iNOS (light blue ribbons) in complex with the binding
site highlighted by the superposed docked complexes (A). (B–E) illustrate the different binding
modes of complexes (R)Au-L1 (orange sticks), (S)-Au-L1 (violet sticks), (R)Au-L2 (green sticks) and
(S)Au-L2 (yellow sticks), respectively, and in proximity of the heme moiety. Due to the complexity
of the binding site, only some of the residues involved in protein–ligand interactions are drawn as
sticks and properly labeled.

2.3. Anticancer Activity

In the last decade, remarkable results have been obtained in the development of gold–
and silver–NHC complexes as anticancer agents, which have been proved to elicit potent
and selective anticancer activity and modulate important molecular targets involved in
cancer onset and progression [1,30]. However, chirality in organometallic anticancer com-
plexes was investigated mostly for those containing platinum [31], whereas less is known
about the gold– and silver–based chiral NHC complexes, even though the obtainment of
enantiopure NHC transition metals complexes represents an evolving field in medicinal



Molecules 2024, 29, 5262 8 of 18

organometallic chemistry [20]. Conversely, the chiral NHC–gold complexes have found
interesting applications in catalysis, as reported in many studies [32]. Considering the
strict relationships between cancer and chronic inflammation, and the above-discussed
anti-inflammatory properties of the gold enantiopure complexes, they were also tested
to evaluate their anticancer properties using two different breast cancer cell lines: the
ER-positive MCF-7 and the triple-negative MDA MB-231 cells. The human mammary
epithelial cell line MCF-10A was adopted for testing the potential cytotoxicity. These
cells were chosen because our research group previously published the anticancer abil-
ity of these complexes, as racemic mixture, and studied some of the related molecular
mechanisms [13,14]. Thus, herein, we would like to investigate whether the enantiopure
complexes could exert a different activity with respect to the racemate. IC50 values were
calculated for all the complexes and pro-ligands, basing on the viability assays, as detailed
in experimental sections and presented in Table 3. Regarding the complexes with the L1
chiral ligands, it can be noticed that both of the AuL1 enantiomers impacted the cells’
viability in a similar manner, without any significant difference, with the IC50 values being
rather close to each other, both in the MCF-7 and MDA-MB.231 cells. Similarly, their
cytotoxicity toward the normal breast cells was comparable ((R)-AuL1and (S)-AuL1 IC50
values of 52.9 ± 2.2 and 64.5 ± 3.2 µM, respectively). A difference, instead, was obtained
for the AgL1 complexes, where the R enantiomer was the most active in both the breast
cancer cell lines. A similar trend was recorded against the normal breast cells. Thus,
(R)-AgL1 was able to selectively decrease the viability of the two breast cancer cell lines.
As expected, none of the enantiopure P1 pro-ligands exerted cytotoxicity toward all the
cell lines tested, at least above a concentration of 200 µM. Next, the gold L2 complexes (R
and S), namely (R)-AuL2 and (S)-AuL2, were found to be very active against both cancer
cell lines, but the R enantiomer was the most active and selective. Moreover, it did not
impact the normal breast cell line viability, with the IC50 values being about 19- and 38-fold
higher than those calculated for MCF-7 and MDA-MB-231 cells. Conversely, (S)-AuL2
demonstrated a lower anticancer activity and selectivity; indeed, the IC50 value toward
the normal MCF-10A was found only 1.5-fold higher with respect to those of the breast
cancer cells. Regarding the (R)-AgL2, it was found to exert a fair anticancer activity against
both cell lines with a considerable selectivity. (S)-AgL2 decreased the viability of MCF-7
cells better than the R enantiomer, with an IC50 of 4.0 ± 0.5 µM, but was found inactive
against the MDA-MB-231 cells. Furthermore, both AgL2 enantiomers are not cytotoxic.
Finally, none of the pro-ligands (R)- and (S)-P2 exerted any effect. Overall, the obtained
outcomes strongly suggest that, for almost all of the studied complexes, the configuration
is determinant for the in vitro breast anticancer activity and the selectivity over the normal
cells. It should be highlighted that (R)-AuL2 was demonstrated to also possess the best
activity in inhibiting the NO production, a feature that, together with the best anticancer
activity, makes this complex particularly promising under a pharmacological point of view.

Table 3. IC50 values (µM) of the enantiopure complexes and pro-ligands against breast cancer (MCF-7,
MDA-MB-231) and normal (MCF-10A) cell lines. Values are the mean ± standard deviation of three
different experiments, performed in triplicate.

IC50 (µM)

MCF-7 MDA-MB-231 MCF-10A

(R)-AuL1 16.0 ± 0.8 15.3 ± 4.5 52.9 ± 2.2
(S)-AuL1 14.6 ± 1.0 22.6 ± 0.4 64.5 ± 3.2
(R)-AgL1 14.5 ± 1.2 9.2 ± 0.5 54.8 ± 2.1
(S)-AgL1 69.8 ± 2.1 >200 >200

(R)-P1 >200 >200 >200
(S)-P1 >200 >200 >200

(R)-AuL2 2.2 ± 0.2 1.2 ± 0.2 38.0 ± 2.2
(S)-AuL2 10.0 ± 0.5 11.5 ± 0.4 17.2 ± 1.6
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Table 3. Cont.

IC50 (µM)

MCF-7 MDA-MB-231 MCF-10A

(R)-AgL2 18.4 ± 0.9 6.7 ± 0.7 69.2 ± 2.7
(S)-AgL2 4.0 ± 0.5 >200 >200

(R)-P2 >200 >200 >200
(S)-P2 >200 >200 >200

2.4. Antibacterial Activity

The new synthesized complexes were also investigated for their potential antibacterial
activity. Two different bacterial strains were employed, namely the gram-negative Es-
cherichia coli and the gram-positive Staphylococcus aureus. All experiments were performed
in triplicate. The obtained results, in terms of minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC), expressed as µg/mL, are shown in Table 4.
Both strains were sensitive to ampicillin; conversely, no inhibition of bacterial growth
was observed by DMSO (vehicle) treatment. Our data evidenced that some complexes
present a fair antibacterial activity in both bacterial strains, with the R enantiomer being
the most active. Particularly, (R)-AuL1 and (R)-AgL1 showed a MIC of 25 µg/mL against
S. aureus and E. coli, respectively. As for the L2 series, the complex that had the best MIC
was (R)-AgL2 (50 µg/mL against E. coli). As expected, the NHC–silver-based complexes
had the higher antibacterial activity, in particular both the R enantiomers. As an exception,
(R)-AuL1 was found particularly active toward S. aureus. Concerning the determination of
the lowest concentration capable of completely killing the two strains of bacteria (MBC),
our data showed that all complexes exhibited a MBC equal to or greater than 100 µg/mL.
Overall, these data indicate that the synthesized enantiopure complexes possess different
biological properties that could act synergistically.

Table 4. MIC and MBC values (expressed as µg/mL) of the new synthesized NHC–gold and –silver
complexes and pro-ligands.

M.I.C. [µg/mL] [a]/M.B.C. [µg/mL] [b]

E. coli [c] S. aureus [c]

(R)-AuL1 75/>150 25/>150
(S)-AuL1 75/>150 75/>150
(R)-AgL1 25/>100 75/>150
(S)-AgL1 75/>200 50/>100

(R)-P1 100/>200 75/>150
(S)-P1 100/>200 75/>150

(R)-AuL2 75/>150 75/>100
(S)-AuL2 100/>200 75/>100
(R)-AgL2 50/>100 75 />150
(S)-AgL2 75/>200 75/>200

(R)-P2 75/>200 75/>150
(S)-P2 75/>150 75/>200

[a] Minimum inhibitory concentration, [b] minimum bactericidal concentration, [c] ampicillin-sensitive.

3. Materials and Methods
3.1. Chemistry
3.1.1. General Methods

All reagents were purchased from Merck Italy (Milan, Italy) and TCI Chemicals
(Zwijndrecht, Belgium) and used without purification unless otherwise mentioned.

All solvents were bought by Carlo Erba Reagents srl (Milano, Italy) or Merck Italy
(Milan, Italy) and were distilled over appropriate drying agents under nitrogen before
use. The synthesis of the metallic complexes was carried out under a nitrogen atmosphere
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by using Schlenk techniques in the dark. The glassware used was dried in an oven at
120 ◦C overnight. Deuterated solvents were dried on molecular sieves. 1H and 13C nuclear
magnetic resonance spectra (NMR) were acquired on a Bruker Avance 250 spectrometer
(Billerica, MA, USA, 250 MHz for 1H; 62.5 MHz for 13C) 300 spectrometer (300 MHz for
1H; 75 MHz for 13C) and a Bruker Avance 400 spectrometer (400 MHz for 1H; 100 MHz for
13C) operating at 298 K. NMR samples were prepared by dissolving about 10 mg of the
compound in 0.5 mL of deuterated solvent (Eurisotop Cambridge Isotope Laboratories,
Cambridge, UK). The chemical shifts of 1H-NMR and 13C-NMR spectra are referenced using
the residual proton impurities of the deuterated solvents. 1H-NMR were reported relative
to DMSO-d6 δ 2.50 ppm; 13C-NMR were reported relative to DMSO-d6 δ 39.52 ppm. The
spectra multiplicities are indicated as follows: singlet (s), doublet (d), triplet (t), multiplet
(m), broad (br) and overlapped (o). Coupling constants (J) are quoted in Hertz. ESI-MS
measurements of organic compounds were performed on a Waters Quattro Micro triple
quadrupole mass spectrometer (Milford, MA, USA) equipped with an electrospray ion
source. ESI-FT-ICR measurements of complexes were performed on a Bruker Solaris XR
instrument. Optical rotations were measured on a digital polarimeter (JASCO P-2000,
Hachioji City, Japan) at a concentration of C = 0.50. A sodium lamp (λ = 589 nm) was used
as a light source.

3.1.2. Synthesis of Pro-Ligands, Imidazolium Salts (R)-P1, (S)-P1, (R)-P2, (S)-P2

Synthesis of the enantiopure imidazolium salts was performed according to literature
procedures [22,33], employing enantiopure (S)-(−)-styrene oxide or (R)-(+)-styrene oxide,
purchased by Merck Italy.

(S)- or (R)-P1

Imidazole (1.00 eq) was dissolved in dry acetonitrile (0.03 M), in a round-bottomed
flask equipped with a magnetic stirrer, under nitrogen atmosphere; (S)-(−)-styrene oxide or
(R)-(+)-styrene oxide (1.20 eq) were added, followed by K2CO3 (1.00 eq) then the reaction
mixture was stirred at reflux overnight. After 18 h, the mixture was brought to room
temperature and filtered to collect the white powders.

(S)-1-(2-hydroxy-2-phenylethyl)-1H-imidazole (white amorphous powder, 84%).
1H NMR (250 MHz, DMSO-d6, δ ppm): 7.48 (1H, br s, NCHN), 7.33 (5H, overlapping

signals, Ar-H), 7.11 (1H, br s, NCHCHN), 6.82 (1H, br s, NCHCHN), 5.71 (1H, br s, CHOH),
4.81 (1H, m, CHOH), 4.12 (1H, dd, Jsyn = 4.0 Hz, CHHCHOH), 4.02 (1H, dd, Janti = 7.7 Hz,
CHHCHOH).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 142.7 (Ar-C), 137.7 (NCHN), 128.1 (Ar-CH), 127.7
(Ar-CH), 127.3 (CH2NCHCHN), 126.0 (Ar-CH), 120.0 (CH2NCHCHN), 72.1 (CH2CHOH), 53.5
(CH2CHOH). ESI-MS (CH2Cl2): [M + H]+ calcd/found (m/z): [C11H12N2O]+ 188.09/189.13.

(R)-1-(2-hydroxy-2-phenylethyl)-1H-imidazole (white powder, 81%)
1H NMR (300 MHz, DMSO-d6, δ ppm): 7.48 (1H, br s, NCHN), 7.34 (5H, overlapping

signals, Ar-H), 7.11 (1H, br s, NCHCHN), 6.82 (1H, br s, NCHCHN), 5.70 (1H, br s, CHOH),
4.81 (1H, m, CHOH), 4.12 (1H, dd, Jsyn = 4.2 Hz, CHHCHOH), 4.02 (1H, dd, Janti = 7.9 Hz,
CHHCHOH).

13C NMR (75 MHz, DMSO-d6, δ ppm): 142.1 (Ar-C), 137.2 (NCHN), 127.5 (Ar-
CH), 127.1 (Ar-CH), 126.7 (CH2NCHCHN), 125.4 (Ar-CH), 119.5 (CH2NCHCHN), 71.5
(CH2CHOH), 52.9 (CH2CHOH).

ESI-MS (CH2Cl2): [M + H]+ calcd/found (m/z): [C11H12N2O]+ 188.09/189.06.
(S)- or (R)-1-(2-hydroxy-2-phenylethyl)-1H-imidazole (1.00 eq) were suspended in an-

hydrous acetonitrile (0.03 M) and brought to reflux for 10 min to allow complete dissolution.
Then, the mixture was brought to room temperature and iodomethane (7.00 eq) was added,
then it was allowed to stir for a further 5 h at a refluxing temperature. Imidazolinium salts
(S)- or (R)-P1 and P2 were collected as white powders after filtration.
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(S)-P1–(S)-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide (white amor-
phous solid, 64%)

1H NMR (250 MHz, DMSO-d6, δ ppm): 9.11 (1H, br s, NCHN), 7.70 (2H, br s,
NCHCHN), 7.39 (5H, overlapping signals, Ar-H), 5.95 (1H, br s, CHOH), 4.94 (1H, m,
CHOH), 4.43 (1H, m, CHHCHOH), 4.22 (1H, m, CHHCHOH), 3.88 (3H, br s, CH3).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 141.2 (Ar-C), 137.0 (NCHN), 128.1, 127.7,
127.3, 126.0, 123.0 (aromatic carbons + NCHCHN), 70.6 (CH2CHOH), 55.6 (CH2CHOH),
35.8 (NCH3).

ESI-MS (CH2Cl2): calcd/found (m/z), [C12H15N2O]+ 203.11/203.13.
Elemental analysis: Calculated for C12H14IN2O C, 43.79; H, 4.29; I, 38.55; N, 8.51; O,

4.86, Found C, 43.70; H, 4.43; I, 38.43; N, 8.40; O, 4.95.

(R)-P1–(R)-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide (white amor-
phous solid, 68%)

1H NMR (300 MHz, DMSO-d6, δ ppm): 9.07 (1H, br s, NCHN), 7.68 (2H, br s,
NCHCHN), 7.40–7.31 (5H, overlapping signals, Ar-H), 5.98 (1H, br s, CHOH), 4.92 (1H, m,
CHOH), 4.40–4.18 (2H, m, CH2CHOH), 3.87 (3H, br s, CH3).

13C NMR (75 MHz, DMSO-d6, δ ppm): 140.6 (Ar-C), 136.4 (NCHN), 127.8, 127.3, 126.4,
125.4, 122.5 (aromatic carbons + NCHCHN), 70.1 (CH2CHOH), 55.1 (CH2CHOH), 35.2
(NCH3).

ESI-MS (CH2Cl2): calcd/found (m/z), [C12H15N2O]+ 203.11/203.19.
Elemental analysis: Calculated for C12H14IN2O C, 43.79; H, 4.29; I, 38.55; N, 8.51; O,

4.86, Found C, 43.71; H, 4.40; I, 38.31; N, 8.28; O, 4.70.

(S)- or (R)-P2

4,5-Dichloroimidazole (1.00 eq) was dissolved in dry acetonitrile (0.03 M), in a round-
bottomed flask equipped with a magnetic stirrer, under a nitrogen atmosphere; (S)-(−)-
styrene oxide or (R)-(+)-styrene oxide (1.20 eq) was added, followed by K2CO3 (1.00 eq)
then the reaction mixture was stirred at reflux overnight. After 18 h, the mixture was
brought to room temperature and filtered to collect the white powders.

(S)-1-(2-hydroxy-2-phenylethyl)-4,5-dichloro-1H-imidazole
1H NMR (250 MHz, DMSO-d6, δ ppm): 7.69 (1H, br s, NCHN), 7.34 (5H, overlapping

signals, Ar-H), 5.88 (1H, br s, CHOH), 4.84 (1H, m, CHOH), 4.10–4.06 (2H, overlapping m,
CH2CHOH).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 141.8 (Ar-C), 136.8 (NCHN), 128.3, 127.7,
126.0, 123.8, 112.4 (aromatic carbons + NCClCClN), 70.8 (CH2CHOH), 52.7 (CH2CHOH).

ESI-MS (CH2Cl2): [M + H]+ calcd/found (m/z), [C11H11Cl2N2O]+ 257.02/258.06.

(R)-1-(2-hydroxy-2-phenylethyl)-4,5-dichloro-1H-imidazole
1H NMR (300 MHz, DMSO-d6, δ ppm): 7.70 (1H, br s, NCHN), 7.34 (5H, overlapping

signals, Ar-H), 4.84 (1H, m, CHOH), 4.14–4.06 (2H, overlapping m, CH2CHOH).
13C NMR (75 MHz, DMSO-d6, δ ppm): 141.9 (Ar-C), 136.7 (NCHN), 128.3, 127.5, 126.2,

123.9, 112.8 (aromatic carbons + NCClCClN), 71.2 (CH2CHOH), 51.5 (CH2CHOH).
ESI-MS (CH2Cl2): [M + H]+ calcd/found (m/z), [C11H11Cl2N2O]+ 257.02/258.09.
(S)- or (R)-1-(2-hydroxy-2-phenylethyl)-4,5-dichloro-1H-imidazole (1.00 eq) were sus-

pended in anhydrous acetonitrile (0.03 M), and brought to reflux for 10 min to allow com-
plete dissolution. Then, the mixture was brought to room temperature and iodomethane
(7.00 eq) was added, then it was allowed to stir for a further 5 h at a refluxing temperature.
Imidazolinium salts (S)- or (R)-P2 were collected as white powders after filtration.
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(S)-P2–(S)-4,5-dichloro-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide
(white amorphous solid, 43%)

1H NMR (250 MHz, DMSO-d6, δ ppm): 9.47 (1H, br s, NCHN), 7.40 (5H, overlap-
ping signals, Ar-H), 6.07 (1H, d, J 4.0 Hz, CHOH), 4.95 (1H, m, CHOH), 4.48–4.25 (2H,
overlapping m, CH2CHOH), 3.90 (3H, s, NCH3).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 140.4 (Ar-C), 137.2 (NCHN), 128.5, 128.1, 126.0,
118.7 (aromatic carbons + NCClCClN), 69.7 (CH2CHOH), 54.8 (CH2CHOH), 35.0 (NCH3).

ESI-MS (CH2Cl2): calcd/found (m/z), [C12H13Cl2N2O]+ 271.03/271.09.
Elemental analysis: Calculated for C12H12Cl2IN2O C, 36.21; H, 3.04; Cl, 17.81; I, 31.88;

N, 7.04; O, 4.02, Found C, 36.09; H, 3.07; Cl, 17.93; I, 31.75; N, 7.15; O, 4.11.

(R)-P2–(R)-4,5-dichloro-1-(2-hydroxy-2-phenylethyl)-3-methyl-1H-imidazol-3-ium iodide
(white amorphous solid, 69%)

1H NMR (300 MHz, DMSO-d6, δ ppm): 9.50 (1H, br s, NCHN), 7.40 (5H, overlapping
signals, Ar-H), 6.06 (1H, br s, CHOH), 5.00 (1H, m, CHOH), 4.49–4.27 (2H, overlapping m,
CH2CHOH), 3.91 (3H, s, NCH3).

13C NMR (75 MHz, DMSO-d6, δ ppm): 141.2 (Ar-C), 137.1 (NCHN), 127.5, 126.8, 125.2,
119.5 (aromatic carbons + NCClCClN), 71.5 (CH2CHOH), 53.0 (CH2CHOH), 34.4 (NCH3).

ESI-MS (CH2Cl2): calcd/found (m/z), [C12H13Cl2N2O]+ 271.03/271.08.
Elemental analysis: Calculated for C12H12Cl2IN2O C, 36.21; H, 3.04; Cl, 17.81; I, 31.88;

N, 7.04; O, 4.02, Found C, 36.28; H, 3.13; Cl, 17.74; I, 31.70; N, 7.15; O, 4.14.

3.1.3. Synthesis of Silver(I) Complexes (R)-AgL1, (S)-AgL1, (R)-AgL2, (S)-AgL2

Pro-ligands P1/P2 (1.00 eq) were dissolved in dry dichloromethane (0.03 M), under
stirring in a nitrogen atmosphere. AgNO3 (1.00 eq) was added, and the mixture was left
to stir at room temperature for 2 h, then K2CO3 (2.00 eq) was added. The reaction was
stirred overnight, then filtered on a Celite plug. The solution was dried under vacuum,
and the resulting powder was washed with hexane (3·10 mL) to gain the silver complexes
(R)-AgL1, (S)-AgL1, (R)-AgL2, (S)-AgL2 as amorphous, off-white powders.

(S)-AgL1–(1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)silver(I)
iodide (off-white powder, 80%)

1H NMR (250 MHz, DMSO-d6, δ ppm): 7.68 (2H, br s, NCHCHN), 7.41–7.30 (5H,
overlapping signals, Ar-H), 5.83 (1H, br s, CHOH), 4.94 (1H, m, CHOH), 4.43–4.16 (2H,
overlapping signals, CH2CHOH), 3.87 (3H, br s, CH3).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 181.1 (NCN), 142.2 (Ar-C), 128.4, 127.7, 127.5,
126.0, 122.8 (aromatic carbons + NCHCHN), 72.3 (CH2CHOH), 58.1 (CH2CHOH), 30.7
(NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H28AgN4O2]+ 511.12/511.15.
Elemental analysis: Calculated for C12H15AgIN2O C, 32.90; H, 3.45; Ag, 24.63; I, 28.97;

N, 6.40; O, 3.65, Found C, 32.80; H, 3.37; Ag, 24.72; I, 28.85; N, 6.25; O, 3.58.

(R)-AgL1–(1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)silver(I)
iodide (off-white powder, 82%)

1H NMR (300 MHz, DMSO-d6, δ ppm): 7.32 (5H, overlapping signals, Ar-H), 7.22
(1H, br, CH3NCHCHN), 6.96 (1H, br, CH3NCHCHN), 4.85 (1H, m, CHOH), 4.53–4.30 (2H,
overlapping signals, CH2CHOH), 3.80 (3H, s, CH3).

13C NMR (75 MHz, DMSO-d6, δ ppm): 180.3 (NCN), 137.0 (Ar-C), 128.7, 128.6,
127.3, 122.8, 122.2 (aromatic carbons + NCHCHN), 76.7 (CH2CHOH), 56.1(CH2CHOH),
31.9 (NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H28AgN4O2]+ 511.12/511.15 (attributed to
the biscarbenic species).

Elemental analysis: Calculated for C12H15AgIN2O C, 32.90; H, 3.45; Ag, 24.63; I, 28.97;
N, 6.40; O, 3.65, Found C, 32.88; H, 3.39; Ag, 24.74; I, 28.83; N, 6.27; O, 3.59.
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(S)-AgL2–(4,5-dichloro-1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-
yl)silver(I) iodide (off-white powder, 41%)

1H NMR (250 MHz, DMSO-d6, δ ppm): 7.46–7.23 (5H, overlapping signals, Ar-H), 5.91
(1H, d, CHOH), 5.00 (1H, m, CHOH), 4.47–4.28 (2H, overlapping m, CH2CHOH), 3.84 (3H,
s, NCH3).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 181.2 (NCN), 140.4 (Ar-C), 128.5, 128.2, 126.3,
118.7 (aromatic carbons + NCClCClN), 69.8 (CH2CHOH), 55.1 (CH2CHOH), 37.6 (NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H24AgCl4N4O2]+ 646.96/646.91 (attributed
to the biscarbenic species).

Elemental analysis: Calculated for C12H13AgCl2IN2O C, 28.43; H, 2.59; Ag, 21.28; Cl,
13.99; I, 25.03; N, 5.53; O, 3.16, Found C, 28.39; H, 2.47; Ag, 21.18; Cl, 13.97; I, 25.21; N, 5.48;
O, 3.15.

(R)-AgL2–(4,5-dichloro-1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-
yl)silver(I) iodide (white powder, 48%)

1H NMR (300 MHz, DMSO-d6, δ ppm): 7.36 (5H, overlapping signals, Ar-H), 5.86 (1H,
br, CHOH), 4.74–4.68 (1H, m, CHOH), 4.34–4.17 (2H, overlapping m, CH2CHOH), 3.80 (3H,
s, NCH3).

13C NMR (75 MHz, DMSO-d6, δ ppm): 180.3 (NCN), 137.0 (Ar-C), 128.7, 128.6,
127.3, 122.8, 122.2 (aromatic carbons + NCHCHN), 76.7 (CH2CHOH), 56.1 (CH2CHOH),
38.3 (NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H24AgCl4N4O2]+ 646.96/646.98 (attributed
to the biscarbenic species).

Elemental analysis: Calculated for C12H13AgCl2IN2O C, 28.43; H, 2.59; Ag, 21.28; Cl,
13.99; I, 25.03; N, 5.53; O, 3.16, Found C, 28.37; H, 2.45; Ag, 21.15; Cl, 13.94; I, 25.23; N, 5.44;
O, 3.15.

3.1.4. Synthesis of Gold(I) Complexes (R)-AuL1, (S)-AuL1, (R)-AuL2, (S)-AuL2

Silver complexes (R)-AgL1, (S)-AgL1, (R)-AgL2, (S)-AgL2 (1.00 eq) were dissolved
in dry dichloromethane (0.03 M), under stirring in a nitrogen atmosphere. (CH3)2SAuCl
(1.00 eq) was then added, and the mixture was stirred at room temperature overnight.
Filtration on a Celite plug, followed by washing with hexane (3·10 mL) gave the desired
gold(I) complexes as yellow powders.

(S)-AuL1–(1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)gold(I)
chloride (yellow powder, 52%)

1H NMR (250 MHz, DMSO-d6, δ ppm): 7.56–7.22 (7H, overlapping signals, NCHCHN
and Ar-H), 5.83 (1H, br s, CHOH), 5.08 (1H, m, CHOH), 4.40–4.11 (2H, overlapping signals,
CH2CHOH), 3.74 (3H, br s, CH3).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 168.9 (NCN), 142.2 (Ar-C), 128.4, 127.6, 127.4,
126.0, 121.9 (aromatic carbons + NCHCHN), 72.6 (CH2CHOH), 57.7 (CH2CHOH), 37.8
(NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H28AuN4O2]+ 601.18/601.19 (attributed to
the biscarbenic species).

Elemental analysis: Calculated for C12H15AuClN2O C, 33.08; H, 3.47; Au, 45.21; Cl,
8.14; N, 6.43; O, 3.67, Found C, 33.11; H, 3.45; Au, 45.18; Cl, 8.17; N, 6.37; O, 3.63.

(R)-AuL1–(1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-yl)gold(I)
chloride (off-white powder, 55%)

1H NMR (300 MHz, DMSO-d6, δ ppm): 7.42–7.20 (7H, overlapping signals, NCHCHN
and Ar-H), 4.67 (1H, m, CHOH), 4.29 (2H, overlapping signals, CH2CHOH), 3.77 (3H,
s, CH3).

13C NMR (75 MHz, DMSO-d6, δ ppm): 171.8 (NCN), 140.9 (Ar-C), 129.3, 128.9,
126.5, 122.8, 121.7 (aromatic carbons + NCHCHN), 74.5 (CH2CHOH), 58.5 (CH2CHOH),
38.8 (NCH3).
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ESI-MS (CH3CN): calcd/found (m/z), [C24H28AuN4O2]+ 601.18/601.11 (attributed to
the biscarbenic species).

Elemental analysis: Calculated for C12H15AuClN2O C, 33.08; H, 3.47; Au, 45.21; Cl,
8.14; N, 6.43; O, 3.67, Found C, 33.13; H, 3.43; Au, 45.15; Cl, 8.12; N, 6.39; O, 3.67.

(S)-AuL2–(4,5-dichloro-1-((S)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-
yl)gold(I) chloride (yellow powder, 56%)

1H NMR (250 MHz, DMSO-d6, δ ppm): 7.39–7.31 (5H, overlapping signals, Ar-H), 6.11
(1H, d, CHOH), 5.13 (1H, m, CHOH), 4.55–4.28 (2H, overlapping m, CH2CHOH), 3.85 (3H,
s, NCH3).

13C NMR (62.5 MHz, DMSO-d6, δ ppm): 170.2 (NCN), 141.2 (Ar-C), 128.2, 128.1, 126.1,
116.4 (aromatic carbons + NCClCClN), 72.1 (CH2CHOH), 56.5 (CH2CHOH), 37.1 (NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H24AuCl4N4O2]+ 737.03/737.08 (attributed
to the biscarbenic species).

Elemental analysis: Calculated for C12H13AuCl3N2O C, 28.57; H, 2.60; Au, 39.04; Cl,
21.08; N, 5.55; O, 3.17, Found C, 28.55; H, 2.68; Au, 39.08; Cl, 21.03; N, 5.52; O, 3.11.

(R)-AuL2–(4,5-dichloro-1-((R)-2-hydroxy-2-phenylethyl)-3-methyl-2,3-dihydro-1H-imidazol-2-
yl)gold(I) chloride (yellow powder, 52%)

1H NMR (300 MHz, DMSO-d6, δ ppm): 7.37–7.22 (5H, overlapping signals, Ar-H), 4.90
(1H, m, CHOH), 4.35–4.19 (2H, overlapping m, CH2CHOH), 3.80 (3H, s, NCH3).

13C NMR (100 MHz, DMSO-d6, δ ppm): 171.3 (NCN), 141.2 (Ar-C), 128.9, 128.8, 127.9,
125.8 (aromatic carbons + NCClCClN), 76.5 (CH2CHOH), 56.6 (CH2CHOH), 37.4 (NCH3).

ESI-MS (CH3CN): calcd/found (m/z), [C24H24AuCl4N4O2]+ 737.03/737.10 (attributed
to the biscarbenic species).

Elemental analysis: Calculated for C12H13AuCl3N2O C, 28.57; H, 2.60; Au, 39.04; Cl,
21.08; N, 5.55; O, 3.17, Found C, 28.53; H, 2.61; Au, 39.11; Cl, 21.09; N, 5.50; O, 3.15.

3.2. Biology
3.2.1. Cells Culture

All cell lines used for the reported studies were purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). Human breast cancer cells MCF-7 and
MDA-MB-231 were maintained in Dulbecco’s Modified Eagle Medium/Nutrient Mixture
F12 Ham (DMEM/F12) supplemented with 5% fetal bovine serum (FBS), 1% L-glutamine
and 100 units/mL of penicillin/streptomycin. Human mammary epithelial cells MCF-
10A were cultured in DMEM/F12 medium, supplemented with 5% horse serum (HS),
100 units/mL of penicillin/streptomycin, 0.5 mg/mL hydrocortisone, 0.02 µg/mL human
epidermal growth factor (EGF), 10 µg/mL insulin and 0.1 mg/mL cholera enterotoxin [34].
The murine macrophages RAW 264.7 were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) high glucose (4.5 g/L), added with 10% fetal bovine serum (FBS), 1% L-glutamine
and 100 units/mL of penicillin/streptomycin. Cells were maintained at 37 ◦C, in a humidi-
fied atmosphere containing 5% CO2.

3.2.2. MTT Assay

Cell viability was determined using the 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium
bromide assay (MTT, Sigma-Aldrich, Milan, Italy), as in [35]. Cells were treated for 72 h
(anticancer activity) or 24 h (anti-inflammatory activity) at different concentrations and the
IC50 values were obtained using GraphPad Prism 9 software (GraphPad Software, La Jolla,
CA, USA).

3.2.3. Anti-Inflammatory Activity

Anti-inflammatory activity was tested adopting the Griess assay on RAW 264.7 murine
macrophages, by measuring NO production, as reported by [36]. Specifically, RAW
264.7 cells were plated on 48 multi-wells and treated with the tested molecules at the
indicated concentrations; lipopolysaccharide (LPS, Sigma Aldrich, Milan, Italy), at a final



Molecules 2024, 29, 5262 15 of 18

concentration of 1 µg/mL, was used to induce inflammation and stimulate NO production.
After 24 h, the cell medium and Griess reagent were mixed at a 1:1 ratio and left under
agitation for 30 min, at room temperature. Then, absorbance was measured at 540 nm,
using a multiplate reader. The absorbance obtained allowed to assess the percentage of
NO production compared with the positive control, in which the cells have been treated
with LPS.

3.2.4. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration
(MBC) Determination

The bacterial strains used for MIC and MBC value determinations expressed as µg/mL
by the broth dilution method, according to CLSI guidelines, were the following: Gram-
negative: Escherichia coli (ATCC® 25922TM); Gram-positive: Staphylococcus aureus (ATCC®

23235TM). The MIC represents the lowest concentration of compound able to inhibit the
visible microbial growth, expressed in µg/mL, whereas the MBC is the lowest concentration
of a given compound that can completely kill the bacteria [30]. Bacteria were grown
overnight in LB medium (2%), diluted at a density of 4000 colony forming units (CFUs/mL),
plated in the 96-well microplates to obtain a total inoculum load of ca. 105 cells/well and
then treated with increasing concentrations of the tested complexes (1, 5, 10, 20, 50, 100,
200 µg/mL). Successively, after incubation at 37 ◦C overnight, the bacterial growth was
monitored at a wavelength of 600 nm using a Multiskan spectrophotometer (Multiskan
Ex Microplate model; Thermo Scientific, Nyon, Switzerland). MIC or MBC values were
obtained by comparing cell density with a positive control (bacterial cells grown in LB
medium were added with only the vehicle, DMSO). The results were representative of three
independent experiments performed in triplicate and ampicillin (Sigma Aldrich A9393)
was used as the control for strain sensitivity.

3.3. Docking

We utilized the three-dimensional structure of human iNOS determined by X-ray
crystallography [29] [PDB code 4UX6]. The molecular structures of the four complexes
((R)-AuL1, (S)-AuL1, (R)-AuL2 and (S)-AuL2) were constructed and the energy minimized
using the program MarvinSketch (ChemAxon Ltd., Budapest, Hungary). To assess the
potential binding modes of these four small molecules to human iNOS and their respective
binding energies, we employed the software suite Autodock v.4.2.2 [37]. The protocol
that we used was adapted from previous studies conducted by our group, which relied
on a “blind docking” strategy in all simulations. This approach involved docking the
compounds to their receptor without prior knowledge of the binding site. We used the
program’s default settings for each run. Protein and ligand preparations were carried out
using the ADT graphical interface [38]. Ligands were treated as fully flexible, while the
protein target was kept rigid to reduce computational time. Results were analyzed via
cluster analysis based on root-mean-square deviation (RMSD) values of each pose relative
to the initial geometry. The lowest energy conformation of the most populated cluster
was deemed the best candidate. In cases where two or more clusters were nearly equally
populated with similar energy distributions, the corresponding ligands were considered
suboptimal. Binding modes from our simulations were ranked by binding energy values
and subsequently clustered with a 2.0 Å RMSD cutoff. Structural analysis of the lowest
energy solutions of each cluster helped identify the putative protein binding site. Ligand
binding mode illustrations were created using Chimera 1.17 [39].

3.4. Statistical Analysis

Data were analyzed for statistical significance using one-way ANOVA followed by
Dunnett’s test, performed by GraphPad Prism 9. Standard deviations (SD) are shown.
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4. Conclusions

Chirality is a characteristic of many biologically active molecules and it is well known
that enantiomers can show different or opposite pharmacological properties, sometimes
even being responsible for possible toxic effects. Therefore, the knowledge of the biolog-
ical and toxicological properties of each enantiomer is desirable and often necessary in
the field of medicinal chemistry. In this study, a series of enantiopure NHC–silver and
–gold complexes have been synthetized, characterized and evaluated for their biological
properties. First, the identified eutomers possess good anti-inflammatory activity, mea-
sured as NO production inhibition in LPS-stimulated RAW 264.7 macrophages. In silico
simulations suggested some insights for the observed different activity exerted by an enan-
tiomer. Furthermore, the anticancer and antibacterial activities were evaluated, providing
an added value to these. In conclusion, in this work the enantiopure NHC–silver and
–gold complexes are presented as valid therapeutic options especially for the treatment of
inflammation and cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29225262/s1, Figure S1: Circular dichroism (CD) spectra
of (A) (R)-AuL1 and (B) (S)-AuL1 (solvent: acetonitrile).
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