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Abstract: Autism spectrum disorder is a complex neurodevelopmental disorder. The available
medical treatment options for autism spectrum disorder are very limited. While the etiology and
pathophysiology of autism spectrum disorder are still not fully understood, recent studies have
suggested that wide alterations in the GABAergic, glutamatergic, cholinergic, and serotonergic
systems play a key role in its development and progression. Histamine neurotransmission is known
to have complex interactions with other neurotransmitters that fit perfectly into the complex etiology
of this disease. Multitarget-directed compounds with an affinity for the histamine H3 receptor indicate
an interesting profile of activity against autism spectrum disorder in animal models. Here, we present
the results of our research on the properties of (4-piperazin-1-ylbutyl)guanidine derivatives acting on
histamine H3 receptors as potential multitarget ligands. Through the virtual screening approach, we
identified promising ligands among 32 non-imidazole histamine H3 receptor antagonists/inverse
agonists with potential additional activity against the dopamine D2 receptor and/or cholinesterases.
The virtual screening protocol integrated predictions from SwissTargetPrediction, SEA, and PPB2
tools, along with molecular docking simulations conducted using GOLD 5.3 and Glide 7.5 software.
Among the selected ligands, compounds 25 and 30 blocked radioligand binding to the D2 receptor at
over 50% at a screening concentration of 1 µM. Further experiments allowed us to determine the pKi

value at the D2 receptor of 6.22 and 6.12 for compounds 25 and 30, respectively. Our findings suggest
that some of the tested compounds could be promising multitarget-directed ligands for the further
research and development of more effective treatments for autism spectrum disorder.

Keywords: autism spectrum disorder; virtual screening; histamine H3 receptor; multitarget-directed
ligands; dopamine receptors; cholinesterases

1. Introduction

Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder that
affects communication, social interaction, and behavior [1]. According to the Centers for
Disease Control (CDC) in 2020, 1 in 36 children has been identified with ASD in the United
States alone [2]. The global prevalence of ASD is progressively rising year after year [3].
ASD can significantly affect a person’s life, leading to social and communication difficulties.
The available treatment options for ASD appear to be very limited. While some behavioral
therapies have shown promise in improving the outcomes for individuals with ASD, there
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are still unmet needs, particularly for severe forms of ASD, which require more intensive
interventions [4]. Therapy mainly focuses on managing the associated symptoms, so there
is a need to develop remedies that target the underlying symptomatic neurobiological and
behavioral mechanisms of ASD [4,5].

ASD is a heterogeneous disorder with a complex etiology involving genetic and envi-
ronmental factors leading to structural and functional abnormalities in the brain, alterations
in neurotransmitter systems, and immune dysfunctions [5–7]. However, actual research
sheds some light on the pathophysiology of ASD. The most studied neurotransmitter
systems in ASD are the GABAergic and glutamatergic systems, which are involved in the
regulation of neuronal excitability. Excitatory/inhibitory imbalance in ASD was observed
in key brain regions such as the neocortex, hippocampus, amygdala, and cerebellum [8–11].
This mainly leads to a reduction in the levels of GABA released and amount of GABA
receptors with co-occurring increased levels of glutamate and reduced activity of gluta-
mate transporters.

The complexity of the factors contributing to ASD mirrors the complexity in the
interactions between different neurotransmitter systems [12]. In the case of the GABA and
glutamatergic systems [8,13,14], there are many premises linking their neurotransmission
with the histamine, dopamine, or cholinergic systems [15–19].

The brain histaminergic system controls many essential physiological functions, and
its dysfunction is related to several neuropsychiatric disorders [20–22]. Histamine works
by binding to four histamine receptor subtypes, including the H3 receptors, which regulate
histamine synthesis and release by a negative feedback mechanism. These Gi/o-coupled
inhibitory receptors, predominantly expressed in the brain, also control the release of other
neurotransmitters in the CNS [23]. Therefore, histamine H3 receptor (H3R) antagonists
are considered for use in treating various brain disorders, including Alzheimer’s disease,
schizophrenia, and narcolepsy. It was observed that prenatal exposure to valproic acid (one
of the anticonvulsants) in zebrafish was associated with development of autism spectrum
disorder (ASD)-like symptoms, involving impaired sociability and stereotypies. These
studies also revealed decreased levels of H3R and histidine decarboxylase and a decreased
number of histaminergic neurons [24]. H3R antagonists have been found to improve
behavioral deficiencies in animal models of schizophrenia and ASD [20,25,26]. Famotidine,
a histamine H2 receptor antagonist, has been suggested as a possible treatment for children
with ASD because it alleviates sociability deficits [27,28]. Ciproxifan, a first-generation H3R
antagonist, has been shown to attenuate impaired sociability and stereotypies in an animal
model of ASD [29]. Similar results were obtained by subchronic treatment with the potent
and selective H3R antagonist DL77 in a prenatal valproic acid-induced mouse model of
autism [30].

The dopamine system is associated with reward processing and its disruption has
been implicated in neuropsychiatric disorders, including ADHD and ASD [31–33]. Recent
studies have reported reduced dopaminergic signaling in ASD patients, highlighting
reward-processing deficits for both social and nonsocial rewards [34,35]. Another clinical
study showed reduced dopamine levels in the medial prefrontal cortex of medication-
free ASD patients, which suggests an aberrant function of the dopaminergic systems in
ASD [36]. In a BTBR (Black and Tan Brachyury) mice model, significant reductions in both
pre- and postsynaptic dopamine D2 receptors (D2R) and adenosine A2A receptor functions
were observed [37]. Similar to H3R, D2R is a Gi/o-coupled inhibitory receptor and, as an
autoreceptor, it regulates the levels of dopamine in the synaptic cleft [38]. Research has
demonstrated that the utilization of D2 antagonists enhances dopamine availability in the
prefrontal cortex and striatum of BTBR mice, thereby contributing to the mitigation of
autistic behavior [39]. One study revealed that specific single-nucleotide polymorphisms
(SNPs) within the dopamine receptor D2 gene are significantly correlated with a heightened
risk of ASD in children [40]. Another study found an increase in D3 receptor mRNA levels
in the basal ganglia of individuals with ASD. This disruption is believed to contribute to
the motor dysfunctions and stereotypies observed in ASD [41].
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Although atypical neuroleptics, risperidone and aripiprazole, are the only drugs with
consistent clinical efficacy in ASD, their effects on the core symptoms of ASD are still being
studied [42,43]. The use of typical neuroleptics in the treatment of autism spectrum disorder
is limited to managing severe behavioral problems with haloperidol [44]. Since autistic-like
behavior arises from dopaminergic dysfunction, the study of dopaminergic dysfunction
is vital for the neurodevelopmental disorder. Studies have indicated the presence of an
H3R-D2R complex in the spiny projection neurons of the striatum. Notably, the activation
of H3Rs using specific agonists has been shown to effectively counteract locomotor activity
induced by D2R agonists, thus highlighting a direct interaction between these receptors [45].

In addition to histaminergic and dopaminergic systems, dysfunction in the cholinergic
system is observed in both humans and animal models of ASD [16]. There are abnormalities
in the number and structure of neurons in a basal forebrain cholinergic nucleus of ASD
patients, as well as reduced levels of choline and muscarinic receptors in several brain
regions. Therefore, it can be assumed that the cholinergic system plays a role in controlling
ASD-related behaviors, such as attention, cognitive flexibility, social interaction, and stereo-
typical behaviors. Acetyl- and butyrylcholinesterases play a key role in signal termination
within this system. Inhibiting AChE has emerged as a potential therapeutic strategy for
managing cognitive-related symptoms [46]. Clinical studies exploring AChE inhibitors
like donepezil have shown improvements in specific behaviors, such as reduced irritability
or enhanced communication [47]. Similar to the interaction between H3R and D2Rs, the
inhibition of acetylcholine release has been observed in cholinergic neurons following H3R
activation [48].

Due to such a multifaceted pathomechanism, the potential therapy for ASD seems to
be an ideal opportunity for the use of multitarget-directed ligands. Current approaches
for neuropsychiatric disorders include both the polypharmacology of targeted receptors as
well as the designing of one multitarget compound with activity against more than one
biological target [49,50]. The first multitarget-directed ligands (MTDLs) combining activity
on H3 receptors with affinity at the dopamine D2 and D3 receptors have already been iden-
tified [39]. Test results for ST-2223 in mouse ASD models showed significant improvement
in repetitive and compulsive behaviors by reducing the increased percentage of marbles
buried in marble-burying behavior (MBB) [39]. Similar results were demonstrated by the
compound E100, which is a simultaneous acetylcholinesterase (AChE) inhibitor and H3R
antagonist [48,51]. The structures of these multitarget compounds are shown in Figure 1.
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Figure 1. Structures of ST-2223, acting as histamine H3, D2/D3 receptor antagonists, and E100, H3R
antagonist with acetylcholinesterase inhibitory activity.

Inspired by these findings, we attempted to uncover MTDLs with potential application in
ASD in a group of 32 non-imidazole guanidine-based H3R antagonists/inverse agonists [52,53].
This series of N-substituted-N-[ω-(ω-phenoxyalkylpiperazin-1-yl)alkyl]guanidine derivatives
was inspired by the structures of known histamine receptor ligands: impromidine and
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JB 98064 [54,55]. While the activity against H3R for the compounds has been established
in previous studies, their capability to function as MTDL compounds has yet to be de-
termined. The general structure of the tested compounds is shown in Figure 2. The
detailed structures of the compounds are summarized in Table S1, which is included in the
Supplementary Materials.
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X and Y are either CH or N atoms; n ranges from 2 to 6 carbon atoms.

Taking into account earlier findings regarding the use of H3R-based MTDLs to mitigate
autistic-like behaviors in mice, our primary emphasis was on the exploration of compounds
with potential affinity for D2R. We also acknowledged the potential of inhibiting acetyl-
and butyrylcholinesterase (BChE) with simultaneous H3R antagonism in regulating ASD-
related behaviors, which led us to examine the inhibitory activity of selected compounds
against these enzymes. Our choice was to utilize a virtual screening protocol to identify
compounds that display the expected activity spectrum. The adapted protocol combined
tools that consider the ligand’s structure to predict its potential biological targets with
molecular docking, a technique that assesses the binding of ligands to the biological
targets based on their structure. Following the virtual screening results, we chose the most
promising compounds. Their activities against D2R and cholinesterases were assessed
through suitable in vitro experiments.

2. Results and Discussion

We started with a computer-aided analysis of the compounds, assessing their potential
activity. This analysis was based on three known biological target prediction models:
SwissTargetPrediction [56], SEA [57], and PPB2 [58]. Each of them uses a different algorithm
that assigns probable biological activity to compounds based on their structure. Both SEA
and PPB2 predictors identified H3R, D2R, and cholinesterase activities among the 15 most
plausible biological targets for the analyzed compounds. Interestingly, in many cases,
affinity at the D2R was indicated to be more likely than that at the H3R. On the other
hand, both predictors indicated a low probability of affinity of the tested ligands towards
AChE or BChE. SwissTargetPredictor turned out to be much more restrictive. Only 11 of
the tested compounds were indicated as potentially affine at the H3 histamine receptor,
7 compounds as affine at the D2R, and 3 against cholinesterases. To balance the indications
of all three predictors, the position of each biological target on generated lists of potential
biological targets was averaged; then, the obtained result was normalized so that it was
represented by a number in the range from 0 (lowest probability) to 1 (most likely activity).
Scores collected for selected compounds are presented in Table 1 (prediction results for all
compounds in Supplementary Materials, Table S2).

To complement the predictions, we performed molecular docking for all tested com-
pounds to H3R (homology model [59,60]), D2R (PDB: 7DFP), AChE (PDB: 6O4W), and
BChE (PDB: 4BDS). Using two molecular docking programs, Glide 7.5 [61] and GOLD
5.3 [62], the binding of the tested derivatives to the selected proteins was assessed using
the consensus score calculated as the average value of the normalized scores of individual
scoring functions. The values of the collected consensus scores are presented in Table 1.

Molecular docking results were characterized by a much smaller scatter of values
compared to those acquired from biological target predictors. A comparison of the obtained
binding modes for different biological targets revealed intriguing similarities in the key
binding elements of the ligands.
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Table 1. Affinities of compounds at H3R and predicted probability of affinities at D2R and cholinesterases
based on normalized scores obtained from biological target predictors and molecular docking results.

pA2 * Target Predictors a Molecular Docking b

Cmp. H3R D2R AChE BChE D2R AChE BChE

6 7.84 0.60 0.13 0.00 0.47 0.48 0.67
7 7.39 0.53 0.07 0.00 0.50 0.50 0.73
8 7.59 0.60 0.07 0.00 0.53 0.55 0.68
16 7.28 0.27 0.13 0.07 0.44 0.73 0.44
17 8.21 0.53 0.13 0.05 0.53 0.73 0.51
18 7.98 0.40 0.07 0.07 0.67 0.72 0.73
22 7.80 0.60 0.00 0.00 0.69 0.70 0.85
25 7.90 0.80 0.40 0.27 0.70 0.75 0.55
27 7.30 0.20 0.00 0.00 0.58 0.74 0.59
28 7.97 0.53 0.00 0.00 0.60 0.78 0.65
29 8.10 0.47 0.13 0.07 0.65 0.73 0.55
30 7.99 0.27 0.00 0.00 0.88 0.39 0.64
31 5.78 0.53 0.00 0.00 0.48 0.79 0.56

a normalized mean position from three independent target predictors; b mean value of normalized docking score
from two independent molecular docking procedures; * the negative logarithm of the molar concentration of the
tested antagonist, which causes a twofold shift in the concentration–response curve for (R)-α-methylhistamine on
electrically contracting guinea pig jejunum [52].

The common pattern of interactions is particularly evident in the binding modes
obtained during docking to the H3R and D2R. The same placement of the N-benzyl-N’-[ω-
(piperazin-1-yl)alkyl]guanidine fragment in the binding sites of both receptors shows that
it can be a good leading element for the further design of multitarget H3R/D2R ligands. In
the case of the H3R, this fragment is responsible for the formation of salt bridges with the
key amino acids Asp3.32 and Glu5.46, as well as cation–π interactions with the aromatic
rings of Tyr4.57 and Trp3.28. Moreover, the phenoxy group of the ligand creates additional
interactions within the extracellular allosteric site, i.e., aromatic interactions with Tyr7.35
observed for compound 25 (Figure 3B) or hydrogen bond with Tyr2.64 in the case of
compound 16 (Figure 4B). The very similar conformation of the main fragment of the
compounds bound to the D2R ensures an analogous interaction with Asp3.32 and aromatic
interactions with Trp6.48, Phe6.52, and Tyr7.35 (Figure 3C).

Molecules 2024, 29, 5271 6 of 15 
 

 

 
Figure 3. Structure (A) and predicted conformations of compound 25, which was highly rated by 
target predictors and molecular docking, within binding sites of H3R (B) and D2R (C). 

When docking to cholinesterases, the differences resulting from the size of the active 
sites of both enzymes are clearly visible. The most common binding mode of the tested 
compounds to AChE was the arrangement in which the N-[ω-(piperazin-1-
yl)alkyl]guanidine fragment was located at the entrance to the enzyme gorge, 
participating in a salt bridge (guanidine—Glu292) and cation-π interactions with Tyr341, 
Tyr337, and Phe295 (Figure 4C). The long hydrophobic phenoxyalkyl substituent was 
extended along the enzyme active site, creating aromatic interactions with Trp86. Despite 
the promising values of the scoring function, such a binding mode would indicate 
significant exposure of the hydrophobic substituents at the guanidine core to the solvent 
surrounding the enzyme, which may explain the later experimental results. 

 
Figure 4. Structure of the strongest BChE inhibitor, compound 16 (A), and its binding mode to H3R 
(B), AChE (C), and BChE (D). 

Figure 3. Structure (A) and predicted conformations of compound 25, which was highly rated by
target predictors and molecular docking, within binding sites of H3R (B) and D2R (C).



Molecules 2024, 29, 5271 6 of 14

Molecules 2024, 29, 5271 6 of 15 
 

 

 
Figure 3. Structure (A) and predicted conformations of compound 25, which was highly rated by 
target predictors and molecular docking, within binding sites of H3R (B) and D2R (C). 

When docking to cholinesterases, the differences resulting from the size of the active 
sites of both enzymes are clearly visible. The most common binding mode of the tested 
compounds to AChE was the arrangement in which the N-[ω-(piperazin-1-
yl)alkyl]guanidine fragment was located at the entrance to the enzyme gorge, 
participating in a salt bridge (guanidine—Glu292) and cation-π interactions with Tyr341, 
Tyr337, and Phe295 (Figure 4C). The long hydrophobic phenoxyalkyl substituent was 
extended along the enzyme active site, creating aromatic interactions with Trp86. Despite 
the promising values of the scoring function, such a binding mode would indicate 
significant exposure of the hydrophobic substituents at the guanidine core to the solvent 
surrounding the enzyme, which may explain the later experimental results. 

 
Figure 4. Structure of the strongest BChE inhibitor, compound 16 (A), and its binding mode to H3R 
(B), AChE (C), and BChE (D). 
Figure 4. Structure of the strongest BChE inhibitor, compound 16 (A), and its binding mode to H3R
(B), AChE (C), and BChE (D).

When docking to cholinesterases, the differences resulting from the size of the active
sites of both enzymes are clearly visible. The most common binding mode of the tested com-
pounds to AChE was the arrangement in which the N-[ω-(piperazin-1-yl)alkyl]guanidine
fragment was located at the entrance to the enzyme gorge, participating in a salt bridge
(guanidine—Glu292) and cation-π interactions with Tyr341, Tyr337, and Phe295 (Figure 4C).
The long hydrophobic phenoxyalkyl substituent was extended along the enzyme active
site, creating aromatic interactions with Trp86. Despite the promising values of the scoring
function, such a binding mode would indicate significant exposure of the hydrophobic
substituents at the guanidine core to the solvent surrounding the enzyme, which may
explain the later experimental results.

The active site of BChE is much larger than that of the AChE, allowing almost the entire
molecule to fit inside it. In compound 16, the N-[1-adamantylmethyl]-N′-[4-(piperazin-1-
yl)butyl]guanidine fragment creates an ionic bond (charged nitrogen of piperazine) and
a salt bridge (guanidine moiety) with Asp70 and thus blocks the entrance to the active
site (Figure 4D). Guanidine is additionally engaged in hydrogen bonds with Pro285 in the
peripheral anionic site. The hydrophobic fragment of the ligand is located deeper within
the enzyme cavity, creating aromatic interactions with Phe329, additionally stabilized by
the H-bond with Ser198.

Considering the tested compounds as potential therapeutics in the fight against ASD,
the ability to penetrate the blood-brain barrier (BBB) is an essential feature. The inherent
physicochemical properties of guanidine-containing compounds often pose challenges for
their penetration through the BBB. Despite this, guanidines play a vital role in the development
of drugs that target the central nervous system. Numerous guanidine-based ligands have
been determined to effectively penetrate the BBB despite the potential limitations [63–65].
To assess N-[ω-(piperazin-1-yl)alkyl]guanidine derivatives as thoroughly as possible at
an early stage of the research, we used the SwissADME [66] service to determine their
physicochemical properties (http://www.swissadme.ch/, accessed on 29 October 2024).
As shown in Table 2, the most concerning properties are the relatively high LogP values
and the large number of rotatable bonds, which in some cases led to negative indications of

http://www.swissadme.ch/
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the BBB permeability predictor. Table S3 (Supplementary Materials) contains a complete
set of physicochemical properties calculated using SwissADME for all compounds.

Table 2. Physicochemical properties and BBB permeability (passive diffusion), predicted by the
SwissADME service.

Cmp. MW RB TPSA LogP BBB

6 375.6 14 77.61 2.59 No
7 389.6 15 77.61 2.95 No
8 403.6 16 77.61 3.31 Yes
16 537.8 17 68.82 5.35 No
17 479.7 17 68.82 4.37 Yes
18 493.7 17 68.82 4.65 Yes
22 514.2 17 68.82 4.89 Yes
25 546.7 18 65.58 6.61 No
27 504.7 17 81.12 4.43 No
28 547.7 19 63.62 5.60 No
29 479.7 18 63.62 4.55 Yes
30 628.7 18 112.70 4.62 No
31 466.7 18 24.94 6.17 No

MW—molecular weight [g/mol]; RB—num. of rotatable bonds; TPSA—topological polar surface area [Å2];
LogP—consensus LogPo/w for 5 calculation methods: iLOGP, XLOGP3, WLOGP, MLOGP, SILICOS-IT;
BBB—blood–brain barrier permeability according to the BOILED-Egg model [67].

Compounds 17, 22, and 24 (predicted by SwissADME as CNS+, CNS+, and CNS−,
respectively) have previously shown in vivo activity, suggesting their capability to cross
the BBB and influence the central nervous system [53]. Following subcutaneous injection,
there was a notable decrease in food consumption observed in rats. This behavior aligns
with the known effects of blocking H3R in the central nervous system, and the decrease
in consumption was similar to that observed with ciproxifan, a widely studied H3R an-
tagonist/inverse agonist known to cross the blood-brain barrier. Although SwissADME
predictions on the physicochemical and pharmacokinetic properties are useful for ligand
optimizing, it is important to consider further factors, such as active transport mechanisms,
which might influence in vivo activity.

Based on the results of the in silico screening, we selected 5 ligands with probable
activity at the D2R and 11 which may be potential cholinesterase inhibitors for experimen-
tal evaluation.

At the screening concentrations of 1 µM and 100 nM, two compounds (25 and 30)
exhibited a notable inhibition of [3H]methylspiperone binding at human D2R expressed on
HEK-293 cells, with a reduction of over 50% at the 1 µM concentration. The remaining three
compounds showed a moderate level of affinity, with inhibition percentages ranging from
31.8% to 45.6% at the same concentration. For the two most active compounds, radioligand
displacement assays were also carried out on Chinese hamster ovary (CHO) cells expressing
human D2sR or D3R. The experimental outcomes corroborated the comparable affinity
of compounds 25 and 30 to the D2 dopamine receptor (pKi = 6.22 and 6.12, respectively).
Moreover, compound 30 revealed a greater selectivity for the D2 over the D3 receptor.
Detailed information on the activity of the tested compounds towards the D2R is compiled
in Table 3.

We also evaluated the inhibitory potency of the selected compounds against electric eel
AChE (eeAChE) and equine serum BChE (esBChE) using Ellman’s test protocol at a screening
concentration of 10 µM. For the most potent compounds that displayed at least 50%
enzyme inhibition, we determined their IC50 values. Table 4 summarizes the activity of the
compounds selected from the virtual screening against acetyl- and butyrylcholinesterase.
The activity levels for all tested compounds against AChE were found to be low, while
seven compounds showed a moderate ability to inhibit BChE.
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Table 3. Results of radioligand binding assay at human dopamine D2 and D3 receptor subtypes.

D2R %inh. (1 µM) a D2R %inh. (100 nM) a D2sR pKi ± SEM b D3R pKi ± SEM b

18 45.6 10.1 nd nd
22 32.0 −1.0 nd nd
25 53.2 11.7 6.22 ± 0.07 5.91 ± 0.03
29 31.8 6.3 nd nd
30 54.5 17.2 6.12 ± 0.09 4.84 ± 0.06

AY23028 nd nd 9.14 a 8.64 c

a Human D2 receptor binding assay with antagonist radioligand [3H]methylspiperone using HEK293 cell line
expressed as percent specific binding inhibition of control; b displacement assay using membrane suspension
of CHO cell line expressing human D2s and CHO cell line expressing human D3 with [3H]spiperone; nd, not
determined. c Literature data [68].

Table 4. Inhibition of eeAChE and esBChE by selected compounds.

eeAChE %inh. (10
µM) a

eeAChE IC50 [µM] b

(pIC50)
esBChE %inh. (10

µM) a
esBChE IC50 [µM] c

(pIC50)

6 11.2 ± 5.1 nd 28.4 ± 1.4 nd
7 13.2 ± 4.7 nd 29.0 ± 3.7 nd
8 13.5 ± 5.9 nd 35.4 ± 4.2 nd
16 22.1 ± 2.9 nd 79.9 ± 1.8 3.47 ± 0.11 (5.46)
17 17.9 ± 3.4 nd 66.0 ± 1.4 6.37 ± 0.27 (5.20)
18 18.2 ± 5.3 nd 79.1 ± 0.9 3.71 ± 0.11 (5.43)
22 26.9 ± 2.2 nd 80.6 ± 1.2 3.53 ± 0.13 (5.45)
27 13.8 ± 6.9 nd 71.5 ± 1.8 4.75 ± 0.16 (5.32)
28 16.4 ± 8.1 nd 76.7 ± 1.3 3.87 ± 0.13 (5.41)
29 23.3 ± 3.5 nd 76.3 ± 2.0 4.00 ± 0.14 (5.40)
31 6.3 ± 2.3 nd 20.6 ± 0.5 nd

Tacrine - 0.024 ± 0.001 (7.62) - 0.015 ± 0.001 (7.82)
a mean value ± standard deviation (SD) of three independent experiments; b IC50 mean value ± standard error of
the mean (SEM) of triplicate independent experiments on electric eel AChE; c IC50 mean value ± standard error of
the mean (SEM) of triplicate independent experiments on BChE from equine serum; nd, not determined.

3. Methods
3.1. Computer-Aided Evaluation of Ligands

To identify compounds with potential activity towards the desired biological targets—
dopamine D2 receptor (D2R), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE)—a
two-step evaluation was performed. Both a ligand-based assessment with biological target
predictors and an analysis of ligand interaction with biological targets were applied.

To predict the protein targets with the highest likelihood for each ligand, the assessment
initially employed the SwissTargetPrediction (STP) (http://www.swisstargetprediction.ch/,
accessed on 29 October 2024), SEA (https://sea.bkslab.org/, accessed on 29 October 2024),
and PPB2 tools (https://ppb2.gdb.tools/, accessed on 29 October 2024). The SMILES code
corresponding to the neutral forms of the ligands were used as an input. A ranked list of
potential biological targets was generated by each predictor. In order to address the variability
in the number of biological targets identified by different predictors and different scales, and
to prioritize high-probability targets, only the initial 15 designated proteins (referred to as
“top 15”) were taken into consideration. The position of the indicated activity towards the
D2R, AChE, and BChE among the top 15 was recorded for each ligand. To achieve an equal
participation of each predictor in the final assessment of potential activity, we computed the
average position of a specific biological target on the ranking list for each ligand. Positions
beyond the top 15 were assigned a consistent value of 16 in order to factor them into the
average. In order to simplify the comparison of the averaged ranking with other results, min-
max normalization was utilized according to Equation (1). This ensured that the averaged
poses were assigned values ranging from 0 to 1. A value of 0 represented the biological target
ranked the last among the top 15 in all predictors, while a value of 1 specified the biological
target identified as the most likely by all predictors.

y = (x − minrank )/(maxrank − minrank ) (1)

http://www.swisstargetprediction.ch/
https://sea.bkslab.org/
https://ppb2.gdb.tools/
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where x—average position of biological target on SwissTargetPrediction, SEA, and PPB2
ranking lists, minrank—16, and maxrank—1.

The molecular docking of ligands to the binding sites of the dopamine D2R, AChE,
and BChE constituted the second component of the assessment. The docking process
involved the utilization of two distinct programs: Glide (Maestro, Schrödinger, LLC, New
York, NY, USA) and GOLD (CCDC, Cambridge, UK). The LigPrep 4.2 tool was used to
prepare all ligands, assigning them appropriate partial charges for pH 7.4 and generating
potential stereoisomers and tautomers. The D2R (PDB: 7DFP), AChE (PDB: 6O4W), and
BChE (PDB: 4BDS) complexes were obtained from the PDB database. Additionally, docking
experiments were conducted with H3R to provide a more comprehensive characterization
of the multitarget ligands. As there were no experimental structures accessible at the time
of the computational experiments, a homology model that had been previously published
was utilized [59,60]. Depending on the program, a different protocol was employed to
prepare proteins for docking. The Hermes 1.7 tool was used to prepare each complex for
docking with the GOLD program. The water molecules and ligands were extracted from
each protein, hydrogen atoms were added, and histidine protonation at HE2 positions was
confirmed. The docking sites were determined by considering all amino acids surrounding
the co-crystallized ligand atoms within a given radius. The individual values for each
protein were as follows: D2R—10 Å radius from spiperone (SIP), AChE—10 Å radius
from donepezil (DOP), and BChE—12 Å radius from tacrine (THA) and 22 Å from the
carbon alpha (CA) atom of Asp3.32 from H3R homology model. Docking to D2R and H3R
involved the use of the GoldScore evaluation function, whereas ChemScore was employed
for acetylcholinesterase and butyrylcholinesterase. Ten docking results were obtained for
each ligand. When docking with the Glide program, proteins were prepared using the
Protein Preparation Wizard 5.7 tool. This involved adding any missing hydrogen atoms,
rebuilding disulfide bridges, removing water molecules, and assigning appropriate charges
for a pH of 7.4. A grid was created for each protein, with the center positioned at the
centroid of the ligand or, in the case of the histamine H3R, at the CA site, specifically
the Asp3.32 atom. All grids were sized to dock ligands of 25 Å or smaller. During
docking, the XP protocol was used and the 10 best poses were collected for each ligand.
Following the assessment, all findings were gathered and standardized using the min-
max technique for each individual biological target according to Equation (2). Table 5
summarizes the minimum and maximum docking scores achieved for each target and
both docking programs. The consensus score was calculated by averaging the normalized
values of the best ligand poses obtained in both docking runs.

y = (x − minds)/(maxds − minds ) (2)

where x—docking score of ligand top scored pose, minds—the lowest docking score among
all generated poses, and maxds—the highest docking score among all generated poses.

Table 5. Min and max docking scores for each target and program.

GOLD (minds/maxds) Glide * (minds/maxds)

D2R 64.98/91.72 −4.14/−11.14
AChE 35.63/52.45 −2.46/−11.74
BChE 67.71/100.89 −3.36/−11.33

* Due to the inverse scale with negative values used in Glide score, absolute values were used for calculations.

The predictor score values (normalized means) were used as an initial indicator
of whether the compounds could interact with D2R, AChE, or BChE. Further, the pre-
selection of ligands was based on docking simulations and the following cutoffs for
means of normalized scoring function values: D2R—mean D2R docking score ≥ 0.6 and
cholinesterases—mean AChE docking score ≥ 0.48. As we could test more compounds
against cholinesterases than toward D2R, we finally chose 5 compounds for the D2R assay
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and 11 compounds for Ellman’s assay, based on the established cutoffs, consistency of
binding poses, and immediate availability for testing.

3.2. Inhibition of Electric eel AChE and Equine Serum BChE

To assess the cholinesterase inhibitory activities of the target compounds, a modified
Ellman’s method [69] was employed, which had been adapted for 96-well microplates as
previously described [70]. The percentage of enzyme inhibition was determined using a
screening concentration of 10 µM. Compounds demonstrating a minimum of 50% inhibition
underwent additional testing to determine IC50 values, utilizing absorbance data derived
from six different inhibitor concentrations. All experiments were performed in triplicate
and tacrine was used as a reference compound.

3.3. In Vitro Screening Against Human D2 Receptor

The initial in vitro screening with estimation of % inhibition of the binding of [3H]methyl-
spiperone for D2R was determined as described previously [71]. The experiments were
commercially performed by Eurofins Cerep (Celle-Lévescault, France), using their own
cell lines. Human recombinant dopamine D2R expressed in HEK-293 cells was used in
modified Tris-HCl buffer pH 7.4. A 20 µg aliquot was incubated with 0.3 nM [3H]methyl-
spiperone for 60 min at 25 ◦C. Non-specific binding was estimated in the presence of 10 µM
butaclamol. Receptor proteins were filtered and washed; the filters were then counted to
determine whether [3H]methyl-spiperone specifically bound. Five compounds were tested
at 1 µM and 100 nM concentrations. Compound binding was calculated as a % inhibition
of the binding of a [3H]methyl-spiperone.

3.4. In Vitro Human D2 and D3 Receptor Radioligand Displacement Assay

Radioligand binding studies of the new compounds 25 and 30 were performed on
membrane fractions of CHO-K1 cells stably expressing human D2shortR or D3R, as described
previously [72]. The cell lines came from the laboratory of Prof. Stark. [3H]spiperone
(0.2 nM) served as the radioligand, non-specific binding was determined with 10 µM
haloperidol, and inhibition constant (Ki) values were derived using the Cheng–Prusoff
equation (Equation (3)):

Ki = IC50/
(

1 +
L

Kd

)
(3)

where L—concentration of [3H]spiperone, IC50—values determined by nonlinear regres-
sion, and Kd—dissociation constant

4. Conclusions

In summary, we report the identification of novel multitarget-directed ligands from
the group of (ω-piperazin-1-ylalkyl)guanidine derivatives through virtual screening. Com-
pounds 25 and 30 (Figure 5), which have demonstrated significant activity towards H3R
(pA2 = 7.90 and 7.99, respectively [53]) in previous studies, also exhibited notable binding
ability to the D2R, displacing over 50% of the radioligand at a screening concentration of 1
µM. Additional tests revealed more selective binding of compound 30 to D2R (pKi = 6.12)
over D3R (pKi = 4.84) receptors than that of compound 25. These compounds might serve
as a promising starting point for the rational development of new multifunctional ligands,
offering potential for the introduction of a new and effective therapy for ASD.
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