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Abstract: Alzheimer’s disease (AD) involves a complex pathophysiology with multiple intercon-
nected subpathologies, including protein aggregation, impaired neurotransmission, oxidative stress,
and microglia-mediated neuroinflammation. Current treatments, which generally target a single
subpathology, have failed to modify the disease’s progression, providing only temporary symptom
relief. Multi-target drugs (MTDs) address several subpathologies, including impaired aggregation
of pathological proteins. In this review, we cover hybrid molecules published between 2014 and
2024. We offer an overview of the strategies employed in drug design and approaches that have led
to notable improvements and reduced hepatotoxicity. Our aim is to offer insights into the potential
development of new Alzheimer’s disease drugs. This overview highlights the potential of multi-
target drugs featuring heterocycles with N-benzylpiperidine fragments and natural compounds in
improving Alzheimer’s disease treatment.

Keywords: Alzheimer’s disease; antioxidation; beta-amyloid; benzylpiperidine hybrids; cholinergic;
donepezil analogs; multi-target drugs; melatonin; tau hyperphosphorylation; neuroinflammation;
natural molecules

1. Introduction

In recent years, there has been a growing interest in the multi-target and polyphar-
macologic approach to treating various diseases, including Alzheimer’s disease (AD), to
develop new, more effective, and selective drugs that have fewer side effects and can
address the emergence of drug resistance. Combining two or more drugs in clinical prac-
tice has shown promising therapeutic outcomes [1,2]. Additionally, co-formulations are
used and, more notably, hybrid or chimeric molecules that can target multiple pathways
involved in Alzheimer’s disease have been developed. As of 2024, around 55 million
people worldwide are living with Alzheimer’s and other forms of dementia—a number
expected to rise to 139 million by 2050 due to aging populations [2]. This alarming increase
highlights the urgent need for effective treatments to manage and potentially slow the
disease’s progression. Currently, 156 clinical trials are exploring brain changes, such as tau
protein accumulation and inflammation, as potential therapeutic targets for Alzheimer’s
disease. Current treatment options, such as aducanumab, lecanemab, and donanemab,
which target beta-amyloid plaques, represent significant advances but come with limita-
tions. Aducanumab is being discontinued, while lecanemab and donanemab have shown
moderate benefits in the early stages of Alzheimer’s, which includes the mild cognitive
impairment (MCI) or mild dementia stage of the disease [3]. However, these drugs require
intravenous infusions and careful monitoring for amyloid-related imaging abnormalities
(ARIAs), a serious potential side effect. While drugs like aducanumab, lecanemab, and
donanemab offer hope, they are part of a broader and evolving landscape of Alzheimer’s
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research [4]. The majority of Alzheimer’s drugs, including donepezil, rivastigmine, galan-
tamine, memantine, and a memantine-donepezil combination, focus on treating cognitive
symptoms without altering disease progression [5]. These medications can cause side
effects like nausea, diarrhea, dizziness, headaches, and, in some cases, mood swings or
behavioral changes [6]. Additionally, cholinesterase inhibitors may interact with other
medications that affect heart rate or blood pressure, necessitating careful management [7,8].
Given the rising prevalence of Alzheimer’s, there is an increasing need for treatments that
can effectively manage the disease while minimizing side effects. Multi-target drugs offer a
promising approach by addressing the complex and multifaceted nature of Alzheimer’s [9].
These drugs, which can target multiple mechanisms involved in the disease, have the
potential to provide more effective and comprehensive treatment options. In medicinal
chemistry, particularly for diseases like Alzheimer’s, advancements in conjugate chemistry
methods present a promising pathway for enhancing drug quality [10]. By linking known
pharmacophores to create new molecules with improved properties, researchers can poten-
tially develop more potent and diverse treatment options, better equipped to address the
challenges of Alzheimer’s and other complex diseases.

2. Current Drugs for Treatments

As of now, eight drugs are commonly used to treat Alzheimer’s disease (Figure 1) [11].
These medications fall into three categories: cholinesterase inhibitors, NMDA receptor
antagonists, and those targeting and removing beta-amyloid plaques. Additionally, they
are classified as (a) medications for mild-to-moderate Alzheimer’s disease; (b) medications
for moderate-to-severe Alzheimer’s disease; and (c) medications to be used with caution in
people with Alzheimer’s disease.
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2.1. Treatments Focused on Slowing Alzheimer’s Progression: Aducanumab, Lecanemab,
and Donanemab

Aducanumab, lecanemab, and donanemab are FDA-approved drugs designed to
slow the progression of Alzheimer’s disease by targeting and removing beta-amyloid
plaques in the brain, a key factor believed to contribute to the condition (Figure 2) [3].
Aducanumab is a monoclonal antibody that targets these amyloid-beta plaques. Approved
by the FDA in June 2021, aducanumab has been the subject of significant controversy
regarding its effectiveness [12]. Although it is administered via intravenous infusion and
has the potential to slow Alzheimer’s progression, aducanumab is being discontinued
for resource reasons. However, it will remain available to existing patients until Novem-
ber 2024 [13]. Lecanemab is another monoclonal antibody targeting amyloid-beta. Ap-
proved by the FDA in 2023, lecanemab has shown moderate benefits in the early stages of
Alzheimer’s, particularly in individuals with mild cognitive impairment [14]. Like adu-
canumab, lecanemab is given intravenously and carries the risk of amyloid-related imaging
abnormalities (ARIAs), temporary brain swelling that requires careful monitoring [15].
Aducanumab and lecanemab present promising options for slowing the progression of
Alzheimer’s disease, yet ongoing research is crucial for developing more comprehensive
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treatments and potentially altering the disease’s course. Donanemab is an investigational
monoclonal antibody that targets amyloid-beta plaques in the brain, which are associated
with Alzheimer’s disease (AD). It has shown potential for slowing cognitive decline in
patients with early-stage AD, particularly those with lower levels of tau protein, which is
linked to disease severity. Donanemab’s mechanism involves binding to a modified form of
amyloid, promoting plaque clearance and potentially altering the course of the disease [3].
While these drugs mark significant advancements in Alzheimer’s therapy, they are not
cures and may not be effective for all patients. Early diagnosis remains vital for selecting
the most appropriate treatment and managing potential risks, such as amyloid-related
imaging abnormalities (ARIAs), effectively.
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Figure 2. Current anti-AD drugs approved by FDA/China. Aducanumab, lecanemab, and do-
nanemab are monoclonal antibodies that target amyloid-beta plaques.

2.2. Treatments to Address Cognitive and Behavioral Symptoms—Donepezil, Rivastigmine,
Galantamine, Memantine, and a Memantine-Donepezil Combo

Five of the eight approved Alzheimer’s drugs—donepezil, rivastigmine, galantamine,
memantine, and the memantine-donepezil combination—target cognitive symptoms with-
out affecting disease progression (Figure 2) [16]. Donepezil, rivastigmine, and galan-
tamine are cholinesterase inhibitors that enhance acetylcholine levels, while memantine
is an NMDA receptor antagonist that regulates glutamate activity. These medications
can cause side effects like headache and nausea [17]. Memantine, approved in 2003 for
moderate-to-severe Alzheimer’s disease, is a noncompetitive NMDA receptor antagonist
that improves neural signaling and prevents excessive calcium entry into neurons, of-
fering neuroprotection [18]. Clinical studies show it has minimal liver side effects, even
when combined with cholinesterase inhibitors. In 2014, the FDA approved a memantine-
donepezil combination, which has shown superior results in enhancing cognitive function
and overall patient condition compared to donepezil alone [19].

Brexpiprazole is an atypical antipsychotic used to treat major depressive disorder
(MDD), schizophrenia, and agitation associated with Alzheimer’s disease dementia. It
acts as a serotonin-dopamine activity modulator (SDAM), though its exact mechanism
is unclear.

While effective as adjunct therapy for MDD and in treating schizophrenia in adults
and children 13+, it carries risks such as stroke and increased mortality in elderly dementia
patients. Common side effects include weight gain, drowsiness, akathisia, dizziness, and
nasopharyngitis. Due to these risks, non-pharmacological treatments should be prioritized.
Additionally, warnings include the potential for neuroleptic malignant syndrome, tardive
dyskinesia, seizures, metabolic changes, and compulsive behaviors.
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In 2019, sodium oligomannate (GV-971) received conditional approval in China to
improve cognitive function in mild-to-moderate Alzheimer’s disease (AD) by targeting the
brain–gut axis. Derived from marine algae, sodium oligomannate reshapes gut microbiota,
reducing neuroinflammation, amyloid-beta (Aβ) accumulation, and tau protein hyper-
phosphorylation. This novel approach highlights the gut–brain axis’s role in AD. Research
shows gut microbiota dysbiosis can trigger inflammation and contribute to AD progression.
Sodium oligomannate reduces gut-related inflammation, improving cognitive function.
While promising, further research is needed to confirm its long-term efficacy and safety.
Suvorexant, approved for insomnia, has shown effectiveness in managing sleep issues in
mild-to-moderate Alzheimer’s cases by inhibiting orexin, a neurotransmitter involved in
the sleep–wake cycle. However, it may cause side effects such as impaired alertness, motor
coordination issues, worsened depression, sleep behaviors like sleep-walking, and reduced
respiratory function.

3. Adjuvants of Multi-Target Drugs in Alzheimer’s

Multi-target drugs, or multi-target-directed ligands (MTDLs), offer several significant
advantages in the treatment of Alzheimer’s disease due to their ability to interact with
multiple biological targets simultaneously. Their advantages include the following:

Comprehensive disease modulation: These drugs offer a multi-targeted approach to
Alzheimer’s, addressing several pathological mechanisms such as amyloid-beta accumula-
tion, tau protein phosphorylation, neuroinflammation, and oxidative stress. By impacting
these interconnected pathways, they provide a more integrated and holistic strategy for
disease management, which may improve clinical outcomes and address the disease’s
complexity more effectively [20–24].

Improved efficacy: Multi-target drugs hold promise for increased effectiveness by
addressing several Alzheimer’s pathways simultaneously. For example, a drug designed to
inhibit amyloid-beta production and to reduce tau aggregation could more comprehensively
limit the buildup of pathological proteins, potentially slowing disease progression more
effectively than single-target treatments. This combined approach may help tackle the
disease’s multifactorial nature and improve clinical outcomes by reducing both amyloid
and tau pathology [25–30].

Reduction in disease progression: By simultaneously targeting multiple pathological
mechanisms, multi-target drugs have the potential to slow Alzheimer’s disease progression
more effectively than single-target treatments. This approach could help to reduce amyloid
and tau accumulation, control neuroinflammation, and counteract oxidative stress, leading
to improved overall outcomes and delaying the onset of severe symptoms. This broad-
based strategy addresses the interconnected nature of Alzheimer’s pathology, potentially
offering a more sustained impact on disease advancement and a better quality of life for
patients [27,28,31–36].

Lower risk of drug resistance: By targeting multiple pathways, multi-target drugs
can reduce the likelihood of Alzheimer’s disease developing resistance to treatment, a
crucial advantage in managing complex diseases. This approach not only tackles various
aspects of the disease but also lowers the chance that the brain’s pathology can adapt to
a single mechanism, thereby sustaining treatment efficacy over time. Multi-target drugs
offer a more robust approach to prevent compensatory mechanisms that might otherwise
undermine single-target therapies, enhancing long-term treatment success and improving
patient outcomes [37–40].

Enhanced patient compliance: A single multi-target drug addressing various
Alzheimer’s mechanisms can streamline treatment by reducing the need for multiple
medications, which may improve patient adherence. Simplifying complex treatment reg-
imens into one medication minimizes pill burden, lowers the risk of missed doses, and
reduces potential drug interactions. This can be particularly beneficial for Alzheimer’s
patients who may struggle with memory and organization, ultimately supporting more
consistent therapeutic outcomes and reducing caregiver burden [33,41–44].
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Potential for personalized therapy: Multi-target drugs offer the possibility of cus-
tomization based on each patient’s specific disease characteristics and progression. By
targeting specific pathways like amyloid-beta, tau, neuroinflammation, or oxidative stress,
these drugs can be tailored to align with individual biomarker profiles or genetic
predispositions [28,33,45–49].

Reduction in side effects: Administering a single multi-target drug may allow for lower
doses than those required with multiple single-target drugs, potentially reducing the overall
risk of adverse effects. By addressing several disease mechanisms within one compound,
patients may avoid the cumulative side effects that can arise from polypharmacy, particu-
larly in elderly populations who are more susceptible to drug interactions. This approach
not only improves the safety profile of Alzheimer’s treatments but also enhances patient
comfort and adherence, contributing to better therapeutic outcomes over time [50–54].

Streamlined drug development: Multi-target drugs can simplify therapeutic regimens,
potentially reducing both the complexity and cost of drug development and administration.
By combining mechanisms of action within a single compound, these drugs may streamline
clinical trial processes and reduce the need for separate studies on multiple single-target
drugs. This consolidation also has the potential to lower production and regulatory costs,
ultimately benefiting healthcare systems and patients alike. A unified multi-target approach
reduces the resource demand typical of developing multiple single-target drugs, potentially
accelerating time-to-market and enhancing access to effective Alzheimer’s treatments.

Potential for disease modification: Beyond merely managing symptoms, multi-target
drugs may have the potential to modify the underlying processes of Alzheimer’s disease.
By addressing multiple pathological mechanisms, such as amyloid-beta accumulation, tau
hyperphosphorylation, and neuroinflammation, these drugs can potentially lead to more
significant improvements in disease progression and enhance patient quality of life [50,55].

Innovative therapeutic strategies: The use of multi-target drugs in Alzheimer’s treat-
ment represents a groundbreaking approach that may lead to significant breakthroughs in
disease management and our understanding of the disease. By simultaneously addressing
various pathological mechanisms, these therapies offer a novel way to tackle the complexity
of Alzheimer’s [56,57].

In summary, as monotherapy for complex diseases becomes less effective due to
resistance and side effects, multi-target drug strategies are emerging as a promising al-
ternative. The concept of polypharmacology is gaining traction among researchers and
pharmaceutical companies, who are increasingly focused on developing these drugs. By
employing computational methods to screen protein networks and identify key interactions,
researchers can design multi-target drugs that may better address resistance. Choosing the
optimal combination of targets for both multi-target drugs and therapeutic combinations
remains challenging. It requires a thorough understanding of target–disease associations,
pathway–target–drug–disease interactions, and adverse event profiling. Additionally, the
selection process should consider whether modulating the chosen targets will result in
additive or synergistic effects. Additive effects occur when the targets are part of the same
pathway, while synergistic effects arise from targets in functionally complementary path-
ways. Both scenarios typically allow for lower doses and potentially better safety profiles
compared to single-target drugs. Consequently, the quest for multi-target medications is
likely to continue, potentially offering our best chance for developing effective treatments
against complex diseases such as Alzheimer’s disease.

The complexity of AD’s molecular pathogenesis necessitates a multifaceted treatment
approach. Multi-target drug design aligns well with this need, as it allows for simultaneous
intervention in various disease mechanisms, offering a potentially more effective and
comprehensive therapeutic strategy.

4. Therapeutic Strategies for Alzheimer’s Disease (AD)

As mentioned above, the pathogenesis of Alzheimer’s disease (AD) involves amyloid-
beta (Aβ) plaques, neurofibrillary tangles (NFTs), synapse loss, oxidative stress, and
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neuronal death. Initial research focused on acetylcholinesterase (AChE) and butyryl-
cholinesterase (BChE) enzymes, targeting dual inhibition for potential therapeutic
benefits [58–60]. Additionally, factors such as synapse loss, oxidative stress, and neu-
ronal death are also implicated and often occur alongside these primary markers [61–64].
The amyloid cascade involves Aβ peptide aggregation, disrupting cellular functions and in-
creasing neurotoxicity [65–70]. Other factors include the blood–brain barrier’s role [71–73]
in drug delivery, oxidative stress [58,74–77], neuroinflammation [78–81], and calcium sig-
naling disruptions [82–84].

Given the multifactorial nature of AD, single-target treatments have shown limited
success, underscoring the need for hybrid multi-target compounds. These hybrids are
designed to address multiple AD pathways, such as reducing Aβ aggregation, inhibiting tau
hyperphosphorylation, enhancing antioxidant defenses, and modulating neurotransmitter
systems. By targeting various mechanisms, they offer a more comprehensive treatment
approach with potentially improved therapeutic outcomes [85,86], as presented in Figure 3.
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5. Novel Donepezil-Based Hybrids with a Focus on N-Benzylpiperidine Derivatives for
Targeting AD (2014–2024)

Heterocyclic compounds are key in multi-target-directed ligands’ (MTDLs’) devel-
opment, requiring precise chemical synthesis to ensure efficacy and safety. The goal is
to better address the complex nature of neurodegenerative diseases, potentially offering
advantages over single-target therapies. Here, we examine advancements in donepezil-
based hybrids, focusing on the design, synthesis, and evaluation of N-benzylpiperidine
derivatives for Alzheimer’s disease treatment over the past decade. The piperidine moiety
can interact with various biological targets, making it a valuable scaffold in medicinal
chemistry. N-Benzyl substitution increases lipophilicity, enhancing membrane penetra-
tion and bioavailability. The nitrogen atom in the piperidine ring adds electron density,
influencing binding affinity to neuropharmacological receptors and enzymes. Additionally,
the structure allows conformational flexibility, enabling optimal interactions with target
proteins. This versatility aids in designing new derivatives with improved efficacy and
selectivity while reducing side effects. The nitrogen atom can also participate in hydrogen
bonding, further enhancing binding affinity to specific targets. This review also highlights
the potential of various natural compounds as multi-targeted therapies for Alzheimer’s
disease (AD), addressing multiple disease pathways.

Acetylcholinesterase inhibitors (AChEIs) enhance cholinergic neurotransmission in
the brain by increasing endogenous acetylcholine levels. One of the most effective and
well-known FDA-approved AChEIs is donepezil (DP) (Figure 4) (2-((1-benzylpiperidin-
4-yl)methyl)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one), which features a dimethoxy in-
danone structure connected to N-benzylpiperidine [87] via a methylene linker. DP not
only inhibits AChE but also exhibits anti-amyloid-beta (Aβ) aggregation, antioxidant,
and metal-chelating activities. Modifying the dimethoxy indanone or N-benzylpiperidine
with different heterocyclic scaffolds has led to the development of new donepezil hy-
brids, each showing distinct inhibitory properties [87–89]. We emphasize the role of the
N-benzylpiperidine (N-BP) motif in drug discovery efforts due to its structural flexibility
and three-dimensional configuration. Medicinal chemists often employ the N-BP motif as a
versatile element to refine both the therapeutic efficacy and physicochemical properties of
drug candidates. It plays a key role in forming cation–π interactions with target proteins
and serves as a foundation for optimizing stereochemistry, which can influence both po-
tency and toxicity. This motif is present in many approved drugs as well as compounds
in clinical or preclinical development (Table 1). In addition to its use in AChE inhibitors,
the N-BP motif has been incorporated into multi-target-directed ligands (MTDLs) aimed at
addressing several pathological mechanisms of Alzheimer’s simultaneously. By combining
the N-BP motif with other pharmacophores, researchers design molecules that can not
only inhibit AChE but also interact with other targets, such as β-amyloid plaques and tau
tangles, which are hallmarks of Alzheimer’s disease [87].

Molecules 2024, 29, x FOR PEER REVIEW 8 of 30 
 

 

interactions with target proteins. This versatility aids in designing new derivatives with 
improved efficacy and selectivity while reducing side effects. The nitrogen atom can also 
participate in hydrogen bonding, further enhancing binding affinity to specific targets. 
This review also highlights the potential of various natural compounds as multi-targeted 
therapies for Alzheimer’s disease (AD), addressing multiple disease pathways. 

Acetylcholinesterase inhibitors (AChEIs) enhance cholinergic neurotransmission in 
the brain by increasing endogenous acetylcholine levels. One of the most effective and 
well-known FDA-approved AChEIs is donepezil (DP) (Figure 4) 
(2-((1-benzylpiperidin-4-yl)methyl)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one), which 
features a dimethoxy indanone structure connected to N-benzylpiperidine [87] via a 
methylene linker. DP not only inhibits AChE but also exhibits anti-amyloid-beta (Aβ) 
aggregation, antioxidant, and metal-chelating activities. Modifying the dimethoxy in-
danone or N-benzylpiperidine with different heterocyclic scaffolds has led to the devel-
opment of new donepezil hybrids, each showing distinct inhibitory properties [87–89]. 
We emphasize the role of the N-benzylpiperidine (N-BP) motif in drug discovery efforts 
due to its structural flexibility and three-dimensional configuration. Medicinal chemists 
often employ the N-BP motif as a versatile element to refine both the therapeutic efficacy 
and physicochemical properties of drug candidates. It plays a key role in forming cation–
π interactions with target proteins and serves as a foundation for optimizing stereo-
chemistry, which can influence both potency and toxicity. This motif is present in many 
approved drugs as well as compounds in clinical or preclinical development (Table 1). In 
addition to its use in AChE inhibitors, the N-BP motif has been incorporated into mul-
ti-target-directed ligands (MTDLs) aimed at addressing several pathological mechanisms 
of Alzheimer’s simultaneously. By combining the N-BP motif with other pharmaco-
phores, researchers design molecules that can not only inhibit AChE but also interact 
with other targets, such as β-amyloid plaques and tau tangles, which are hallmarks of 
Alzheimer’s disease [87]. 

 
Figure 4. Donepezil possesses a chemical structure characterized by a bicyclic system that includes 
an indanone (or indole-like) ring connected to the N-benzylpiperidine ring, playing a crucial role in 
its pharmacological activity. 

O

O

O

N

Figure 4. Donepezil possesses a chemical structure characterized by a bicyclic system that includes
an indanone (or indole-like) ring connected to the N-benzylpiperidine ring, playing a crucial role in
its pharmacological activity.



Molecules 2024, 29, 5314 8 of 30

Table 1. Novel donepezil-based hybrids—activities (NT—not tested).

Hybrid Compound

AChE Inhibitor,
IC50 µM
BchE Inhibitor,
IC50 µM

β-Amyloid
Antiaggregation

Antioxidant
Potential

BBB
Permeability Other Activities Experimental

Studies References

Indole-piperidine amides
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Table 1. Cont.

Hybrid Compound

AChE Inhibitor,
IC50 µM
BchE Inhibitor,
IC50 µM

β-Amyloid
Antiaggregation

Antioxidant
Potential

BBB
Permeability Other Activities Experimental

Studies References
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hybrids

Molecules 2024, 29, x FOR PEER REVIEW 12 of 30 
 

 

selective MAO-B: 
(IC50 = 0.18 μM). 

N-benzylpiperidine carbox-
amide derivatives 

 
(12) 

AchE:  
IC50: 5.94 ± 1.08 μM 

NT NT yes NT in vitro  [102]  

N-benzylpiperidine analogs 

 
(13) 

AchE:  
(IC50: 1. 0.11 ± 0.02) 
BchE:  
(IC50 = 3.0 ± 0.06) 
hBACE-1:  
(IC50 = 0.22 ± 0.02) 
hAChE SI = 28.2 

yes yes yes 

-Devoid of neurotoxicity to-
wards SH-SY5Y neuroblasto-
ma cell lines;  
-Amelioration of scopolamine- 
and Aβ-induced cognitive 
impairment in AD rat models. 

in vitro and in vi-
vo  

[103] 

Donepezil and curcumin hy-
brids 

 
(14) 

AchE:  
IC50 = 187 nM  
highest selectivity for 
BuChE over AChE 
(66.3) 

yes yes yes NT in vitro and in sil-
ico  

[104] 

Donepezil analogs 

 
(15) and (16) 

hAChE:  
(IC50 = 0.058 ± 0.033) 
BuChE:  
(IC50 = 4.740 ± 0.750) 
hAChE:  
(IC50 = 0.043 ± 0.007 
BuChE: 
(IC50 = 5.734 ± 0.130 

NT NT NT 
-Did not influence the cell via-
bility in SH-SY5Y neuroblas-
toma cells. 

in vitro  [105]  

Masitinib  no yes no yes -Multi-kinase inhibitor with in vitro and in vi- [106,107] 

N

O

NH
N

N

O

N

NH

F

F

F

O
O

N

OH

O

N
OO

O

N
OO

(14)

AchE:
IC50 = 187 nM
highest selectivity for
BuChE over AChE (66.3)

yes yes yes NT in vitro and in
silico [104]

Donepezil analogs

Molecules 2024, 29, x FOR PEER REVIEW 12 of 30 
 

 

selective MAO-B: 
(IC50 = 0.18 μM). 

N-benzylpiperidine carbox-
amide derivatives 

 
(12) 

AchE:  
IC50: 5.94 ± 1.08 μM 

NT NT yes NT in vitro  [102]  

N-benzylpiperidine analogs 

 
(13) 

AchE:  
(IC50: 1. 0.11 ± 0.02) 
BchE:  
(IC50 = 3.0 ± 0.06) 
hBACE-1:  
(IC50 = 0.22 ± 0.02) 
hAChE SI = 28.2 

yes yes yes 

-Devoid of neurotoxicity to-
wards SH-SY5Y neuroblasto-
ma cell lines;  
-Amelioration of scopolamine- 
and Aβ-induced cognitive 
impairment in AD rat models. 

in vitro and in vi-
vo  

[103] 

Donepezil and curcumin hy-
brids 

 
(14) 

AchE:  
IC50 = 187 nM  
highest selectivity for 
BuChE over AChE 
(66.3) 

yes yes yes NT in vitro and in sil-
ico  

[104] 

Donepezil analogs 

 
(15) and (16) 

hAChE:  
(IC50 = 0.058 ± 0.033) 
BuChE:  
(IC50 = 4.740 ± 0.750) 
hAChE:  
(IC50 = 0.043 ± 0.007 
BuChE: 
(IC50 = 5.734 ± 0.130 

NT NT NT 
-Did not influence the cell via-
bility in SH-SY5Y neuroblas-
toma cells. 

in vitro  [105]  

Masitinib  no yes no yes -Multi-kinase inhibitor with in vitro and in vi- [106,107] 

N

O

NH
N

N

O

N

NH

F

F

F

O
O

N

OH

O

N
OO

O

N
OO

(15) and (16)

hAChE:
(IC50 = 0.058 ± 0.033)
BuChE:
(IC50 = 4.740 ± 0.750)
hAChE:
(IC50 = 0.043 ± 0.007
BuChE:
(IC50 = 5.734 ± 0.130

NT NT NT -Did not influence the cell viability
in SH-SY5Y neuroblastoma cells. in vitro [105]

Masitinib
Clinical trial—Phase 3 study is
ongoing.
NCT01872598,
NCT05564169

Molecules 2024, 29, x FOR PEER REVIEW 13 of 30 
 

 

Clinical trial—Phase 3 study is 
ongoing. 
NCT01872598, 
NCT05564169 

 
(17) 

additional FGF receptor inhi-
bition; characterized as syn-
aptoprotective agent—tau 
protein signaling pathway;  
-Prevention of synaptic dam-
age; 
-Significantly improved cogni-
tion in Phase 3 study. 

vo 

Dasatinib 
plus quercetin 
Clinical trial—Phase 1/2 study 
NCT04063124, NCT04785300, 

 
(18) 

no yes yes yes 
Senolytic for ephrins, PI3Kδ, 
p21, BCL-xL, and plasmino-
gen-activator inhibitor 2 

in vitro and in vi-
vo 

[108–110] 

 

N S
N

NH

O

NH NH

N

Cl

NH

O S

N

NH

N N

N
N

OH

(17)

no yes no yes

-Multi-kinase inhibitor with
additional FGF receptor inhibition;
characterized as synaptoprotective
agent—tau protein
signaling pathway;
-Prevention of synaptic damage;
-Significantly improved cognition in
Phase 3 study.

in vitro and
in vivo [106,107]



Molecules 2024, 29, 5314 13 of 30

Table 1. Cont.

Hybrid Compound

AChE Inhibitor,
IC50 µM
BchE Inhibitor,
IC50 µM

β-Amyloid
Antiaggregation

Antioxidant
Potential

BBB
Permeability Other Activities Experimental
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Here, we focus mainly on well-established and incipient AD therapeutic targets, AChE,
BuChE, MAOs, β-amyloid deposition, 5-HT4, and serotonin transporter, intending to shed
light on new insights in AD multi-target therapy.

Banoo, R et al. (2024) [90] report the synthesis and biological evaluation of indole-
piperidine amides as multi-target-directed ligands (MTDLs) for AD, identifying 5,6-
dimethoxy-indole N-(2-(1-benzylpiperidine) carboxamide (1) as a dual AChE/BACE-1
(β-secretase) inhibitor (Table 1). Compound (1) (Table 1) is a mixed-type inhibitor with
Ki values of 0.26 and 0.46 µM, respectively, and demonstrates excellent BBB permeability
in the PAMPA assay. These in vitro results suggest that this compound warrants further
investigation in animal models for in vivo efficacy. Molecular dynamics simulations also
revealed that AChE and BACE-1 undergo minor conformational changes when binding to
compound (1) (Table 1).

A series of indanone/benzofuranone and piperidine hybrids was designed and syn-
thesized by Zeng, Q. et al. (2024) [91] based on the neuroprotective effects of butylphthalide
and donepezil hybrids to improve the bioavailability and therapeutic efficacy of natural
phthalide analogs. Most indanone derivatives with 1-methylpiperidine (2) (Table 1) in
the tail segment showed stronger neuroprotective effects in an oxygen-glucose depriva-
tion/reoxygenation (OGD/R)-induced neuronal injury model compared to benzofuranones.
Among them, compound (2) (Table 1) displayed significant neuroprotection without cyto-
toxicity and excellent BBB permeability. In vivo studies showed that compound (2) reduced
ischemia-reperfusion injury, lowering infarct volume to 18.45% at 40 mg/kg, outperforming
edaravone at 20 mg/kg, suggesting its therapeutic potential for neurological disorders.

Zhai, J. (2024) [92] developed a dual-target inhibitor by combining the chemical struc-
tures of baicalein and donepezil (Table 1). The modification of baicalein into arylcoumarin
led to the synthesis of three structural compounds, with compound (3b) showing the
strongest AChE inhibition (IC50 = 0.05 ± 0.02µM), outperforming both donepezil and
baicalein. Compound (3b) also effectively inhibits Aβ1-42 aggregation, protects nerve
cells, and penetrates the blood–brain barrier. In a zebrafish behavioral test, it alleviated
movement retardation caused by AlCl3, making it a promising multifunctional agent for
treating and managing AD symptoms.

In a study by Mohammadi-Farani, A. (2024) [93], a new series of benzamide deriva-
tives was designed, synthesized, and characterized. Acetylcholinesterase inhibition was
evaluated using Ellman’s method, and results were compared to donepezil (Table 1). Com-
pound (4) was the most potent (IC50 = 0.14 ± 0.03 nM), surpassing donepezil. Molecular
docking showed that (4) bound to AChE’s active site via a hydrogen bond with Trp279.
This compound shows promise as a lead candidate, though further experimental in vivo
testing is necessary to confirm its drug potential.

Butyrylcholinesterase (BChE) has become a critical target in Alzheimer’s disease (AD)
research due to its role in acetylcholine (ACh) hydrolysis and its link to β-amyloid (Aβ)
deposition, which worsens disease progression. In a study by Chen, Y., et al. (2024) [94],
compound (5), a selective and potent BChE inhibitor (eqBChE IC50 = 0.059 ± 0.006 µM,
hBChE IC50 = 0.162 ± 0.069 µM), was identified through virtual filtering and structural
modification (Table 1). The compound exhibited excellent drug-like properties, including
high oral bioavailability, metabolic stability, and blood–brain barrier (BBB) permeabil-
ity, making it well suited for targeting the central nervous system (CNS). Compound
(5) effectively protected neural cells from oxidative stress and inflammation in vitro and
demonstrated promising in vivo results, improving cognition and reducing inflammation
in mouse models induced by Aβ1-42 and lipopolysaccharides (LPS). It also reduced Aβ1-42
and inflammatory markers while increasing ACh levels, thereby preserving the neural
microenvironment and alleviating cognitive symptoms. Overall, compound (5)’s neuro-
protective and cognition-enhancing effects position it as a promising candidate for further
research in AD treatment.

In a previous study [95], we explored two series of hybrid molecules combining
melatonin and donepezil with hydrazone or sulfonyl hydrazone fragments. Lead com-
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pound (6a) exhibited significant AChE inhibition (10.76 ± 1.66 µM) and BChE inhibition
(26.32 ± 3.11 µM), along with notable antioxidant activity and lipid peroxidation inhibition.
Compound (6b) showed selective BChE inhibition (21.12 ± 1.48 µM; SI BChE = 47.34) and
effectively prevented oxidative stress in SH-SY5Y cells. In antioxidant tests, compound
6a demonstrated high DPPH activity and showed the best FRAP and FTC activity. These
compounds exhibited low cytotoxicity, high bioavailability, and good BBB permeabil-
ity. Molecular docking suggested that 6a binds to MT1 and MT2 receptors, AChE, and
BChE, making 6a and 6b promising candidates for AD treatment. In further studies, we
(Tchekalarova, J., et al. 2024) [95,97] evaluated compound 6a in AD and melatonin defi-
ciency models, as well as the effects of lead compounds against Aβ-induced neurotoxicity
and memory deficits in mice [96].

The work of Walker, D. K. et al. (2023) [98] presents a new class of compounds de-
signed using a multi-targeted ligand approach for AD. They tested these compounds for
in vitro inhibition of human acetylcholinesterase (hAChE), butyrylcholinesterase (hBChE),
β-secretase-1 (hBACE-1), and amyloid β (Aβ) aggregation. Compounds (7a) and (7b)
showed hAChE and hBACE-1 inhibition similar to donepezil and hBChE inhibition compa-
rable to rivastigmine. They significantly reduced Aβ aggregation and showed no neuro-
toxic effects in SH-SY5Y cells. In AD mouse models, (7a) and (7b) improved learning and
memory, reduced AChE, malondialdehyde, and nitric oxide levels, increased glutathione,
and lowered pro-inflammatory cytokines. Histopathological and Western blot analyses
showed normal brain structure and reduced Aβ, APP/Aβ, BACE-1, and tau protein levels.
Compounds (7a) and (7b) are promising new leads for AD therapeutics.

Qin, P.J., et al. (2023) [99] designed, synthesized, and evaluated a series of N-benzyl
piperidine derivatives for dual inhibition of histone deacetylase (HDAC) and acetyl-
cholinesterase (AChE). Among the compounds tested, (8a) and (8b) demonstrated sig-
nificant dual enzyme inhibition (8a): HDAC IC50 = 0.17 µM, AChE IC50 = 6.89 µM; (8b):
HDAC IC50 = 0.45 µM, AChE IC50 = 3.22 µM). Histone deacetylases (HDACs) have re-
cently gained attention as a promising target for AD treatment. Research in aged animal
models has shown that reduced histone acetylation leads to the downregulation of genes
essential for learning and memory, particularly in the hippocampus and cerebral cortex
regions of the brain. Both compounds also exhibited free radical scavenging, metal chela-
tion, and Aβ aggregation inhibition activities. Notably, (8a) and (8b) showed promising
neuroprotective effects in PC-12 cells and good selectivity for AChE. These multifunctional
properties highlight the potential of (8a) and (8b) for further optimization as treatments
for AD.

Two primary scaffolds, pyrazolopyridine and tetrahydroacridine (THA), were em-
ployed from Waly, O. M (2022) [100] to develop four series of MTDLs targeting ChE
(hAChE or hBuChE) and Aβ1-42 aggregation, along with optimal metal chelation prop-
erties. Structural modifications were made to the 9-amino group of the THA core of
tacrine and pyrazolopyridine, linking them to various cyclic secondary amines using amide
spacers, ethylamine bridges, or combining THA with pyrazolopyridine to create hybrid
compounds. Different 9-amino substitutions improved the in vitro hAChE activity of
7- or 6,7-disubstituted THA derivatives. Compound (9) emerged as potent multimodal
anti-AD agent, effectively inhibiting hAChE and binding to the peripheral anionic site
(PAS), impacting Aβ aggregation and neurotoxicity. Notably, compound (9) was nearly
twice as effective as donepezil. Compound (9) also inhibited Aβ1-42 self-aggregation and
chelated bio-metals like Fe2+, Zn2+, and Cu2+, preventing reactive oxygen species (ROS)
generation and oxidative brain damage. Compound 9, with dual ChE activity, exhibited
superior cognitive benefits. The compound demonstrated safety in hepG2 cells, excel-
lent blood–brain barrier (BBB) penetration, and a wide safety margin, with LD50 values
exceeding 120 mg/kg.

A series of 36 new N-alkylpiperidine carbamates was developed by Košak, U. (2020) [101]
as potential anti-Alzheimer’s agents targeting cholinesterases (AChE, BChE) and monoamine
oxidases (MAO-A, MAO-B). Two compounds showed promise: compound (10) inhibited
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AChE (IC50 = 7.31 µM), BChE (IC50 = 0.56 µM), and MAO-B (IC50 = 26.1 µM); and
compound (11) selectively inhibited MAO-B (IC50 = 0.18 µM). Compounds (10) and (11)
(Table 1) can cross the blood–brain barrier and are non-cytotoxic. Compounds (10) and (11)
also protected against Aβ1-42-induced neuronal cell death, with compound (11) showing
anti-Aβ aggregation effects.

A series of fifteen acetylcholinesterase inhibitors was designed and synthesized by van
Greunen, D. G et al. (2019) [102], building on the lead compound 5,6-dimethoxy-1-oxo-2,3-
dihydro-1H-inden-2-yl 1-benzylpiperidine-4-carboxylate, which exhibited strong inhibitory
activity against acetylcholinesterase (IC50 0.03 ± 0.07 µM). Modifications were made to
the lead compound, replacing the ester linker with a more metabolically stable amide
linker and substituting the indanone moiety with various aryl and aromatic heterocycles.
The most potent analog, 1-benzyl-N-(1-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-
yl)piperidine-4-carboxamide (12), demonstrated IC50 values of 5.94 ± 1.08 µM, respectively,
in vitro. Computational predictions suggest that compound (12) can cross the blood–brain
barrier, and molecular dynamics simulations reveal a strong similarity in binding between
compound (12) and the FDA-approved acetylcholinesterase inhibitor donepezil.

Series of N-benzylpiperidine analogs were synthesized by Sharma, P. (2019) [103] as
dual inhibitors of AChE and BACE-1. Compound (13) showed the best balanced inhibi-
tion. Notably, compound (13) had high brain permeability, inhibited AChE-induced Aβ

aggregation, and was non-toxic to SH-SY5Y cells. It improved scopolamine-induced cogni-
tive impairment in mice and demonstrated antioxidant and AChE inhibitory properties.
Compound (13) also showed cognitive improvement in the Morris water maze and good
oral absorption.

A novel series of multi-target-directed ligands against AD was developed by com-
bining donepezil and curcumin [104]. Among these, compound (14) exhibited strong
acetylcholinesterase (AChE) inhibition (IC50 = 187 nM) and the highest selectivity for
BuChE over AChE (66.3). Additionally, compound (14) inhibited 45.3% of Aβ1-42 self-
aggregation at 20 µM and showed significant antioxidant activity. The metal-chelating
ability of compound (14) was confirmed with a 1:1 stoichiometry for the 14–Cu(II) com-
plex. Moreover, its excellent blood–brain barrier permeability suggests potential efficacy in
targeting the central nervous system.

An eco-friendly synthetic route for producing donepezil precursors is presented by
Costanzo, P., (2016), [105] utilizing alternative energy sources to enhance yields, regiose-
lectivity, and reaction rates while minimizing waste. The synthesized compounds, which
exhibit increased structural rigidity compared to donepezil, were evaluated for AChE
inhibition, selectivity against BuChE, side-activity on BACE-1, and effects on SH-SY5Y
neuroblastoma cell viability. Two promising lead compounds were identified for a dual
therapeutic approach to AD treatment (15) and (16) (Table 1).

Masitinib (17) is a multi-kinase inhibitor (Table 1) that also inhibits fibroblast growth
factor receptors and has been identified as a synaptoprotective agent in a dual amy-
loid precursor protein (APP)/presenilin 1 (PSEN1) mouse model of Alzheimer’s disease
(AD) [106,111]. In a Phase 3 clinical trial (NCT01872598) and an ongoing Phase 3 study
(NCT05564169), masitinib demonstrated significant cognitive improvements [112]. Ad-
ditionally, it plays a role in addressing hallmark pathologies of AD, such as tau accumu-
lation, alongside other promising multi-targeted drug candidates aimed at modulating
inflammation [112,113].

Dasatinib (18), a drug that targets the SRC family tyrosine kinases YES1 and FYN,
has been shown to significantly reduce tau phosphorylation in a neuroblastoma cell line
overexpressing the mutant tau protein (Table 1). Meanwhile, the transcription factor STAT3
inhibitor C188-9 has demonstrated the ability to alleviate neuroinflammation, tau phos-
phorylation, and amyloid-beta (Aβ) secretion [114]. Additionally, dasatinib influences
the levels of pro-inflammatory and anti-inflammatory cytokines in wild-type mice [108].
Additionally, it plays a role in addressing hallmark pathologies of AD, such as tau accu-
mulation, alongside other promising multi-targeted drug candidates aimed at modulating
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inflammation [106,113]. A phase I, open-label, proof-of-concept trial was conducted to
evaluate the CNS penetrance, safety, feasibility, and efficacy of orally administered senolytic
therapy—dasatinib (D) and quercetin (Q)—in early-stage symptomatic Alzheimer’s pa-
tients. Findings showed CNS penetrance of dasatinib and supported its safety, tolerability,
and feasibility in AD patients. Biomarker data offered mechanistic insights into senolytic
effects, warranting confirmation in larger, placebo-controlled studies. ClinicalTrials.gov
identifier: NCT04063124.

As indicated in Table 1 and clinical trials, multi-target drugs containing an N-benzyl
piperazine fragment have shown enhanced efficacy in mitigating cognitive decline and
addressing key Alzheimer’s disease pathologies, including amyloid and tau accumulation.
The ongoing advancement in our genetic, molecular, and pathological understanding of
AD bolsters our optimism that MTDs will significantly transform the treatment landscape
for this challenging disease.

Thus, recent studies emphasize the potential of MTDs with N-benzylpiperidine or
N-benzylpiperizine fragments to provide more holistic therapeutic approaches by simulta-
neously targeting multiple disease mechanisms. This growing body of evidence suggests
that these innovative therapies could lead to improved patient outcomes and alter the
trajectory of AD management.

In addition, hybrids incorporating donepezil-like pharmacophores, with the
N-benzylpiperidine moiety as a linker, notably enhance inhibitory activity against both
acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Furthermore, the addition
of donepezil-like pharmacophores not only strengthens monoamine oxidase B (MAO-B)
inhibition but also modulates amyloid-beta (Aβ) aggregation and mitigates neurotoxicity.

6. Natural Compounds as Multi-Target Drugs for Alzheimer’s Disease Treatment

Natural compounds offer a promising avenue for multi-targeted approaches to
Alzheimer’s disease (AD) treatment. By addressing multiple pathological features of
AD, these compounds may provide neuroprotection and improve cognitive function. Fur-
ther research, particularly in optimizing bioavailability and conducting large-scale clinical
trials, will be essential in translating these natural compounds into viable therapeutic
options for AD.

Natural compounds have emerged as promising multi-target agents for the treat-
ment of AD, given their ability to modulate multiple pathological pathways involved
in the disease. These compounds, derived from plants and other natural sources, offer
neuroprotective effects by targeting key mechanisms such as amyloid-beta plaque accumu-
lation, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial
dysfunction—hallmarks of AD pathology.

Below are some key natural compounds being explored as multi-target drugs for AD
treatment, some of them included in clinical trials.

6.1. Natural Compounds in Clinical Trials for AD Treatment

Two notable examples effective in managing Alzheimer’s symptoms are huperzine A
and galantamine, derived from natural sources. Beyond these, many other natural products
(NPs) show potential for AD treatment by acting through antioxidant, anti-inflammatory,
and neuroprotective mechanisms. While extensive reviews exist on NPs in AD treatment,
this section will focus on NPs currently in clinical trials, with key clinical information
summarized in Figure 5 [115].
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6.2. Melatonin

In light of the growing global health crisis posed by AD, Zefan Zhang et al. [116]
provide a comprehensive review examining melatonin’s (Figure 6) potential as both a pre-
ventive and therapeutic agent. As a naturally occurring hormone with strong antioxidant
properties, increasing evidence points to melatonin as a promising candidate in addressing
AD-related pathologies. The review highlights several mechanisms, including its possible
effects on amyloid-beta accumulation, tau pathology, antioxidant defense, immune re-
sponse, and circadian rhythm regulation. However, significant gaps remain before clinical
application is feasible. These include the need for more randomized clinical trials involving
patients with or at risk for AD, determining optimal dosage and timing, and assessing
potential side effects, especially with long-term use. The review [116] consolidates cur-
rent knowledge, identifies these gaps, and proposes future research directions to better
understand melatonin’s neuroprotective potential and its role in mitigating AD.
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Figure 6. Melatonin (N-acetyl-5-methoxytryptamine), a tryptophan metabolite synthesized mainly in
the pineal gland.

On the positive side, melatonin’s accessibility, affordability, and potential benefits
position it as a promising intervention that requires further testing [117]. Studies among
both AD dementia populations and preclinical, asymptomatic AD, coupled with biomarker
testing, are needed to address remaining gaps for translation [116]. Since peptides, proteins,
and hormones can directly reach the brain when administered intranasally via transport
and diffusion along the olfactory and trigeminal nerves, future studies should explore
whether intranasal melatonin could be a viable therapeutic option for increasing brain
melatonin levels in individuals at risk of developing AD. Notably, intranasal melatonin
has demonstrated effectiveness in improving sleep in proof-of-concept studies, suggesting
that this route of administration could enhance melatonin’s neuroprotective effects and
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improve patient outcomes [2,116,118]. Further research is essential to evaluate its long-term
efficacy, safety, and potential to mitigate AD progression [119].

6.3. Cannabidiol

Cannabidiol (CBD) (Figure 7), a non-psychoactive compound from Cannabis sativa, is
emerging as a potential therapeutic agent for AD due to its diverse biological effects, includ-
ing anti-inflammatory, antioxidant, neuroprotective, and anxiolytic properties [120,121].
The research highlights the potential mechanisms by which CBD may mitigate AD-related
pathologies [122–124]. CBD’s anti-inflammatory effects [125,126] help reduce neuroin-
flammation by downregulating pro-inflammatory cytokines, potentially slowing disease
progression. Its antioxidant properties [127] combat oxidative stress [128], a key contributor
to neuronal damage in AD. Preclinical studies suggest CBD also modulates amyloid-beta
and tau pathology [129,130], two hallmark features of AD, reducing plaque accumulation
and tau hyperphosphorylation. Additionally, CBD promotes neurogenesis [131], poten-
tially enhancing cognitive function by compensating for neuronal loss. Furthermore, CBD’s
ability to alleviate anxiety, depression, and sleep disturbances could improve the overall
quality of life for AD patients [132]. These multifaceted properties make CBD a promising
candidate for AD management, warranting further investigation in clinical trials.
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a pentyl side chain in the structure.

6.4. Dronabinol

Dronabinol (Figure 8) is a synthetic delta-9-THC that is indicated in anorexia treatment
and loss of weight in HIV patients, nausea, and cancer chemotherapy-related vomiting [133].
A study presented at the International Psychogeriatric Association’s annual meeting
(25–27 September 2024 Buenos Aires) found dronabinol to be a safe, effective treatment
for agitation in Alzheimer’s disease (Agit-AD) [134]. Led by Dr. Paul Rosenberg from
Johns Hopkins, the three-week, placebo-controlled trial with 80 patients showed signif-
icant improvements on the Pittsburgh Agitation Scale (PAS) and Neuropsychiatric In-
ventory (NPI-C) agitation subscales in the dronabinol group. No significant differences
in adverse events were noted between groups. Researchers suggest this trial could sup-
port “repurposing” dronabinol as a novel treatment for Agit-AD, with promising public
health impact.
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Figure 8. Dronabinol, the synthetic form of delta-9-tetrahydrocannabinol (THC), is a psychoactive
compound and primary active component found in cannabis.

6.5. Curcumin

Curcumin (Figure 9), the active compound in Curcuma longa (turmeric), has gained
significant attention as a potential therapeutic agent [135,136] for AD due to its potent
anti-inflammatory [137], antioxidant [138], and neuroprotective properties [139–141]. Given
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that AD is characterized by amyloid-beta plaque accumulation, tau tangles, oxidative
stress, and chronic neuroinflammation, curcumin’s ability to target these multiple
pathological pathways makes it a promising candidate for treatment [135,142,143].
Curcumin has been shown to inhibit amyloid-beta aggregation [144,145], modulate tau
phosphorylation [145–147], reduce oxidative damage, and suppress neuroinflammation by
downregulating NF-κB signaling [148,149]. Additionally, curcumin may promote neuro-
genesis in the hippocampus [150,151], which could counteract neuronal loss and improve
cognitive function. Despite these promising mechanisms, challenges such as curcumin’s
low bioavailability, rapid metabolism, and the need for further long-term clinical trials re-
main. Researchers are developing novel formulations, such as nanoparticles and liposomal
curcumin, to enhance its bioavailability. Curcumin’s multi-targeted effects suggest it may
be most effective in combination therapies [135]. While curcumin shows great potential
for AD treatment, larger clinical studies are essential to confirm its efficacy, safety, and
long-term benefits.
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Figure 9. The structure of curcumin with the chemical name of diferuloylmethane.

6.6. Resveratrol

Resveratrol (Figure 10), a natural polyphenol found in grapes, berries, and red
wine, has garnered interest as a potential therapeutic agent for AD due to its potent
antioxidant and anti-inflammatory properties [152–154]. Resveratrol’s ability to target
key pathological features of AD, such as amyloid-beta plaque accumulation [155] and
tau hyperphosphorylation [156], makes it a promising neuroprotective compound [157].
Resveratrol has been shown to reduce amyloid-beta accumulation [158] by enhancing
its clearance, inhibit tau hyperphosphorylation [159], mitigate oxidative stress [160,161]
by neutralizing free radicals, and reduce neuroinflammation by downregulating pro-
inflammatory cytokines [161,162]. Additionally, resveratrol activates the SIRT1 pathway [163],
which is linked to improved amyloid-beta clearance, reduced inflammation [152], and better
synaptic plasticity, potentially improving cognitive function. Resveratrol may also protect
the integrity of the blood–brain barrier [164–166], preventing further exacerbation of AD.
Despite its potential, resveratrol’s low bioavailability remains a challenge [167], prompting
the exploration of novel delivery systems to enhance its effectiveness. While preclinical
studies are promising, further long-term clinical trials are required to establish resveratrol’s
efficacy, safety, and optimal dosage in AD patients [168].
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Figure 10. Structure of resveratrol, a natural polyphenolic compound.

6.7. Quercetin

Quercetin (Figure 11), a natural flavonoid abundantly found in various fruits and
vegetables, has garnered attention as a potential therapeutic agent for AD due to its multi-
faceted neuroprotective properties [169,170]. Emerging research indicates that quercetin
can significantly reduce amyloid-beta levels [171,172], a hallmark of AD pathology, and
inhibit tau aggregation [173], thereby addressing two critical aspects of the disease’s pro-
gression. Its robust antioxidant activity [174] plays a vital role in protecting neurons
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from oxidative stress, a key contributor to neuronal damage and cognitive decline in AD.
Additionally, quercetin exhibits strong anti-inflammatory effects [175] that help mitigate
neuroinflammatory damage, further enhancing its protective capabilities. By targeting
multiple pathways [176] involved in AD pathology—such as amyloid-beta accumulation,
tau hyperphosphorylation, oxidative stress, and neuroinflammation—quercetin provides a
comprehensive approach to neuroprotection. Despite its promising potential [177], chal-
lenges related to bioavailability [178] and the need for large-scale clinical trials remain.
Future research should focus on optimizing quercetin formulations and exploring its ef-
ficacy in combination therapies to establish its role in the prevention and treatment of
AD [179]. In addition, quercetin and dasatinib are being explored as potential therapies for
early-stage AD due to their senolytic properties, which may help clear senescent cells that
contribute to neurodegeneration. ClinicalTrials.gov: NCT04063124.
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Figure 11. Chemical structure of quercetin (3,3′,4′,5,7-pentahydroxyflavone). Quercetin has a polyphe-
nolic structure characterized by two benzene rings (A and B) connected by a three-carbon chain that
includes a ketone group.

6.8. Licochalcone A

Licochalcone A (LCA) (Figure 12) is a natural compound derived from the root of
Glycyrrhiza inflata (licorice). It has garnered attention for its potential therapeutic effects
in AD with strong antioxidant properties, helping to reduce oxidative stress, a significant
factor in AD pathology [180]. LCA may protect neurons from damage caused by amyloid-
beta (Aβ) plaques and tau protein hyperphosphorylation, both hallmarks of AD [181]. It has
been shown to inhibit inflammatory pathways, which could mitigate neuroinflammation
associated with AD [182]. Some studies suggest that LCA may enhance cholinergic function,
potentially improving cognitive deficits [183].
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Figure 12. Licochalcone A is a flavonoid compound derived from the roots of Glycyrrhiza uralensis
(licorice) and has a unique chalcone structure, which differentiates it from other flavonoids.

6.9. Pinitol

Pinitol (Figure 13), a naturally occurring cyclitol present in various plants, particularly
in pine nuts and soy, has been studied for its potential therapeutic benefits in Alzheimer’s
disease. Here is a summary of its properties and role in clinical research: Pinitol has
insulin-mimicking effects that may boost glucose metabolism in the brain, an important
factor given the link between insulin resistance and AD pathology. Additionally, it may
provide neuroprotection by mitigating oxidative stress and inflammation, both of which
significantly contribute to neuronal damage in AD. Pinitol may also enhance cholinergic
signaling, potentially supporting cognitive function [184].
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The discussed natural compounds—melatonin, quercetin, pinitol, resveratrol, cannabid-
iol, licochalcone A, curcumin, and dronabinol—exhibit unique structural and functional
properties that may contribute to their therapeutic effects in Alzheimer’s disease. Many of
them, such as quercetin and curcumin, contain multiple hydroxyl (–OH) groups, crucial for
their antioxidant activity, although they are all antioxidants. Compounds like quercetin
and resveratrol feature aromatic rings that enhance their free radical scavenging ability,
while chiral centers in cannabidiol and dronabinol may influence their pharmacological
effects. These compounds possess strong antioxidant and anti-inflammatory properties,
helping to neutralize oxidative stress and reduce neuroinflammation associated with AD.
Melatonin and cannabidiol can also protect against Aβ-induced neurotoxicity, while pinitol
and quercetin may enhance cholinergic signaling, potentially improving cognitive function.
Some, like quercetin, also have senolytic properties, aiding in the elimination of senescent
cells. The combination of their features positions these compounds as promising candi-
dates for AD treatment, targeting multiple pathways involved in the disease. Further
research and clinical trials are needed to establish their efficacy and safety in managing
Alzheimer’s disease.

7. Conclusions

Recent research focuses on developing novel bioactive hybrid compounds that tar-
get multiple pathways concurrently. Polypharmacology, which involves drugs acting on
multiple targets, has the potential to reduce toxicity and drug interactions compared to
traditional single-target therapies. Hybrid compounds that combine multiple bioactive
elements can offer improved efficacy and cost-effective solutions. Although approved
treatments are limited, heterocyclic compounds based on N-benzylpiperidine fragments
have shown promise in AD drug discovery. This review highlights the importance of
the N-benzylpiperidine structure as part of multi-targeted drugs (MTDs) and its unique
properties that contribute to its therapeutic potential, especially for Alzheimer’s disease
(AD). These properties make N-benzylpiperidine derivatives promising candidates in
drug discovery, particularly for multi-targeted approaches in treating Alzheimer’s disease
targeting oxidative stress, cholinergic deficits, neuroinflammation, amyloid-beta (Aβ) ac-
cumulation, and tau protein hyperphosphorylation in AD. This review also shows the
potential of various natural compounds with unique structural and functional properties
as multi-targeted therapies for Alzheimer’s disease (AD), addressing multiple disease path-
ways. Compounds such as melatonin, quercetin, pinitol, resveratrol, cannabidiol (CBD),
licochalcone A, curcumin, and dronabinol have demonstrated therapeutic effects in clinical
studies, including improvements in cognitive function, reductions in inflammation, and
neuroprotective properties. By simultaneously targeting oxidative stress, inflammation,
and neuroprotection, these compounds present a promising approach to AD treatment.
However, further clinical trials are essential to validate their efficacy and safety profiles in
the context of Alzheimer’s disease management. All these summarized findings suggest
that combining N-benzylpiperidine or N-benzylpiperazine fragments with natural prod-
ucts could lead to the creation of hybrid molecules with enhanced pharmacokinetic and
pharmacodynamic properties, minimized side effects, and improved therapeutic efficacy in
targeting complex diseases like Alzheimer’s. This approach may support the development
of multi-targeted drugs that address various pathways in neurodegeneration, ultimately
contributing to more effective and safer treatment options for AD.
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