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Abstract: The effect of a natural polysaccharide (hyaluronic acid (HA)) on the photocatalytic activity
of methylene blue (MB) was studied both under model conditions (a tryptophan photooxidation
reaction in water) and with in vitro experiments on P. aeruginosa and S. aureus bacterial cultures. It
was shown spectrophotometrically that, in the presence of HA, an increase in the optical density of
the absorption bands λ = 665 nm and 620 nm—which correspond to the monomeric and dimeric
forms of the dye, respectively—was observed in the EAS of the dye, while the ratio of the optical
density of these bands remained practically unchanged. When adding HA to MB, the intensity of
singlet oxygen 1O2 photoluminescence and the degree of fluorescence polarization of MB increase.
The observed effects are associated with the disaggregation of molecular associates of the dye in
the presence of HA. The maximum increase in the photocatalytic activity of MB (by 1.6 times) was
observed in the presence of HA, with concentrations in a range between 0.0015 wt.% and 0.005 wt.%.

Keywords: methylene blue; hyaluronic acid; photogeneration of singlet oxygen; photooxidation of
tryptophan; antibacterial photodynamic therapy

1. Introduction

The problem of resistance of microorganisms to antimicrobial drugs, including antibi-
otics, has become global. The WHO has included bacterial resistance in the list of the 10
most serious threats to humanity [1,2]. New strains of bacteria resistant to all or almost
all known antibiotics are emerging. According to a meta-analysis published in the Lancet
in 2019, bacterial resistance to antibiotics has become the third leading cause of death
worldwide after ischemic heart disease and stroke [3]. Antibacterial photodynamic therapy
(aPDT) could become a full-fledged alternative to antibiotic therapy in the treatment of
complicated local infections of the skin and soft tissues, which are among the most danger-
ous pathologies and are often accompanied by systemic intoxication, resulting in severe
sepsis and multiple organ failure that can lead to death in patients [4,5]. The method is
based on the ability of photosensitizers (previously introduced into the affected tissues) to
transfer excitation energy to molecular oxygen under irradiation conditions, which leads
to the formation of reactive oxygen species (ROS) [6,7]. ROS destroy pathogenic microor-
ganisms without causing the body to become accustomed to the treatment method [6–8].
Cationic photosensitizers (PS) (porphyrins, chlorins, and dyes), which are believed to more
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easily penetrate the cell wall of gram-positive and even the most bactericidal-resistant
gram-negative bacteria compared to uncharged PS, are primarily used in aPDT [9,10]. A
positive charge on the photosensitizer molecule increases the efficiency of the interaction
between the photosensitizer and the bacterial cell (the target) [11]. Methylene blue (MB)
is one of the actively studied cationic photosensitizers for aPDT [12]. This dye (quantum
yield of singlet oxygen generation Φ∆~0.52) absorbs in the region of 660 nm [13]. Due to its
ease of production, low preparation cost, bactericidal properties, and photostability, MB is
approved and recommended as a PS in the treatment of periodontal disease, nail plates,
and candidiasis by the aPDT method [14–16].

It should be noted that, to completely cure a local infectious diseases by the aPDT
method, it is necessary not only to effectively inactivate pathogenic microorganisms but
also to initiate regenerative processes in the wound. To solve this problem, photosensitizers
are often used together with biologically active compounds (enzymes and growth factors),
which can initiate the growth of new tissue in the wound [17–19]. One of the biologically
active compounds that plays an important role in the wound healing process is hyaluronic
acid (HA), the main component of the extracellular matrix of the skin, which affects the
formation of fibrin clots, as well as the production and release of interleukins and cytokines,
and stimulates the proliferation of fibroblasts and keratinocytes [20,21].

The main disadvantage of photosensitizers of various natures, which reduce the activ-
ity of PS in generating ROS, is their tendency to aggregate in aqueous solutions by forming
dimers and larger associates with reduced photoactivity compared to monomers [22–24].

In this paper, the effect of HA on the photodynamic activity of methylene blue under
model conditions and when exposed to bacterial cells was investigated.

2. Results and Discussion

The dependence of the effective rate constant keff of the tryptophan photooxidation
reaction in the presence of MB on the concentration of HA is shown in Figure 1. The value
of keff and the trend keff = f (CHA) both depend on the concentration of MB. Thus, at low con-
centrations of MB, the addition of HA leads to an increase in keff of 1.1–1.6 times (Figure 1,
curves 1–3). With an increase in the concentration of MB, the rate of the model reaction
in the presence of HA decreases. Previously, we showed that, in the presence of another
anionic polysaccharide, sodium alginate (SA), the photocatalytic activity of MB decreased
regardless of the dye concentration due to the electrostatic interaction between the cationic
MB and the carboxyl groups of SA [22]. It is known that HA, having a negative charge due
to the presence of carboxyl groups, can also form complex compounds with some cationic
dyes, such as Azure A [25] and Alcian blue [26]. Since the primary structure of HA consists
of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine, HA can
also form intra- and intermolecular hydrogen bonds (up to five hydrogen bonds in each
unit of the macromolecule) [27]. Most likely, HA can form such donor–acceptor complexes
with MB molecules, promoting their disaggregation [28–30]. Jiao et al. [28–30] noted that
the interaction of positively charged dyes with negatively charged glycosaminoglycans
can lead to a change in the conformation of the dye, which in turn leads to hydrophobic
interactions between the dye molecules bound to the glycosaminoglycans. Thus, the in-
crease in the photocatalytic activity of MB (C = 2.5 × 10−6–5 × 10−6 M) in the presence of
low concentrations of HA (≤0.1 wt. %) is possibly associated with the disaggregation of
MB. A schematic illustration of this process is shown in Scheme 1. Previously, a similar
effect, leading to the disaggregation of photosensitizers (photoditazine, methylene blue,
and rose bengal) and an increase in the keff value, was discovered when using amphiphilic
polymers (PVP and pluronic) in a reaction of photocatalytic oxidation of tryptophan in
water [22,31,32]. The curves exhibit extrema, possibly due to the fact that, with a further
increase in the concentration of the polymer in water, the degree of ineffective adsorption
of the dye and substrate increases, and the polymer, in this case, acts as a “diluent” that
prevents contact between MB and tryptophan, since tryptophan practically does not inter-
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act with HA. Due to the short lifetime of 1O2 in aqueous solutions, this leads to a decrease
in the value of keff.
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Figure 1. Dependence of the effective rate constant of tryptophan photooxidation (keff), catalyzed by 
the methylene blue–hyaluronic acid (MB-HA) double systems on the concentration of HA. The con-
centration of MB is 2.5 × 10−6 M (curve 1); 3.5 × 10−6 M (curve 2); 5 × 10−6 M (curve 3); 1 × 10−5 M (curve 
4); the concentration of tryptophan is 1.5 × 10−5 M. 

 
Scheme 1. Schematic illustration of the processes occurring in the initial solution of MB and in the 
presence of HA under the action of light. 

Figure 1. Dependence of the effective rate constant of tryptophan photooxidation (keff), catalyzed
by the methylene blue–hyaluronic acid (MB-HA) double systems on the concentration of HA. The
concentration of MB is 2.5 × 10−6 M (curve 1); 3.5 × 10−6 M (curve 2); 5 × 10−6 M (curve 3); 1 ×
10−5 M (curve 4); the concentration of tryptophan is 1.5 × 10−5 M.
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These conclusions are confirmed by an increase in the intensity of photoluminescence
of singlet oxygen 1O2 in the presence of MB upon the introduction of HA into the system
(Table 1).
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Table 1. The luminescence peak area of 1O2 singlet oxygen when using MB and the MB-HA as
photosensitizers in D2O at 293 K at different HA concentrations.

[HA], wt. % Slum 1276 nm,a.u.

0 0.1879 ± 0.00245

0.0015 0.22185 ± 0.00165

0.0025 0.22185 ± 0.00715

2.1. Electronic Absorption Spectra of MB and MB-HA

The interaction between methylene blue and hyaluronic acid is also reflected in the
electronic absorption spectra (EAS) of the dye [33].

Figure 2 shows the EAS of MB in water at different concentrations of HA and dye
(Figure 2A–C). The absorption spectrum of MB contains an intense (ε~6.5 × 104 M−1 × cm−1)
asymmetric absorption band with λ = 665 nm (Dmax), corresponding to the monomeric form of
the dye, and a small shoulder in the region of λ = 610–615 nm (Dshoulder), which is attributed
to the dimeric form of the dye [34]. It is likely that, when adding HA to an aqueous solution
of MB with a concentration of 2.5 × 10−6 M (Figure 2A), an increase in the optical density
of both absorption bands (λ = 665 nm and 620 nm) in the EAS of the dye is observed. This
is associated with the interaction of HA with both the monomeric and dimeric forms of
MB. Moreover, the almost unchanged value of φ = Dmax/Dshoulder confirms this (Table 2).
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Figure 2. Electronic absorption spectra of MB: [MB] = 2.5 × 10−6 M ((A) curve, black),
[MB] = 5 × 10−6 M ((B) curve, black), [MB] = 10−5 M ((C) curve, black) and MB-HA at different
concentrations of HA: [HA] = 0.0025 wt. % ((A–C) curves, blue), [HA] = 0.005 wt. % ((A–C) curves,
yellow), [HA] = 0.01 wt. % ((A–C) curves, green).
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Table 2. The ratio φ = Dmax/Dshoulder at different MB concentrations.

CHA

CMB
2.5 × 10−6 M 5 × 10−6 M 1 × 10−5 M

0 2.0 2.1 1.9

0.0025% 1.9 1.9 1.6

0.0050% 1.9 1.9 1.5

0.0100% 1.9 1.9 1.5

From Figure 2, it follows that, at a concentration of MB greater than or equal to
5 × 10−6 M, the addition of HA leads to a drop in the optical density of the main band
λ = 665 and a slight increase in the shoulder, with λ = 620 nm in the EAS (Figure 2B,C),
which indicates some aggregation of the dye molecules. This is also reflected in a drop in
the φ value (Table 2).

It should be noted that the fluorescence spectra of MB in the presence of HA remain
almost unchanged, also indicating an insignificant effect of HA on the aggregation processes
of MB in aqueous solutions (in contrast to polyanionic SA [22]).

2.2. Fluorescence Anisotropy

To identify the interaction between MB and HA molecules, the effect of the polymer
on the anisotropy (polarization) of methylene blue fluorescence was studied (Table 3). The
degree of fluorescence polarization at [MB] = 2.5 × 10−6 M in the initial aqueous solution
is r = 0.087, which is consistent with literature data [35].

Table 3. Fluorescence anisotropy (r) at [MB] = 2.5 × 10−6 M in the absence and presence of HA. The
excitation wavelength is 665 nm.

Sample r of the Samples in Aqueous Solution (685 nm)

MB 0.087 ± 0.003

MB+HA (0.005%) 0.095 ± 0.004

MB+HA (0.010%) 0.090 ± 0.007

In the presence of HA, the r value for the dye increases (up to 0.095). It is probable
that the increase in the degree of luminescence polarization is due to the interaction of
the fluorophore functional groups with fragments of the polymer structure, leading to a
limitation of the fluorophore freedom of rotation in an aqueous solution and an increase in
the r value. This effect is most pronounced at an HA content of 0.005%, similar to what was
observed when studying kinetic data (Figure 1).

2.3. 1H-NMR

To confirm the possible interaction of methylene blue with hyaluronic acid, 1H-NMR
spectra of the original dye, the polysaccharide, and their mixture in a 1:1 ratio by weight
were studied. As can be seen from Table 4 and Figure 3, for the MB-HA system, a change
in the position of the proton signals is observed for both the dye molecules and for the
polysaccharide molecules. In the presence of HA, all signals of the aromatic region of the
dye are shifted to weak fields by 0.2 ppm. At the same time, it seems that the HA signals
in the spectrum did not change much in their position or shape with the addition of MB.
However, several very wide signals can be seen in the region of 1.5–3.5 ppm (HA signals
shifted to strong fields). Most likely, some of the HA molecules form stable complexes with
MB. The shielding of HA molecules occurs due to the aromatic part of the MB molecules,
and the acid signals are shifted to strong fields.
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Table 4. Proton chemical shifts for HA, MB, and MB-HA (1:1 by mass) in D2O at 22.4 ◦C.

Position of
Protons in the MB

Molecule

MB Proton
Signals, ppm

Position of
Protons in the HA

Molecule

HA Proton
Signals, ppm

MB Proton
Signals in the

Presence of HA,
ppm

HA Proton Signals
in the Presence of

MB, ppm

1 7.14
7.24 3, 8

3.84
4.55
3.68
4.46

7.40
7.47 -

3 6.89
6.99

2–7, 9, 10

3.82
3.93
3.73
3.84
3.63
3.73
3.47
3.57
3.42
3.52
3.37
3.48
3.24
3.35

7.06
7.15

3.82
3.92
3.62
3.72
3.38
3.49
3.24
3.35

2 6.66
6.75

6.83
6.94

4 3.01
3.10 11 1.91

2.02
3.10
3.20

1.91
2.02
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2.4. FT-IR

Figure 4 shows fragments of the IR spectra of HA in the absence and presence of
the dye. In the IR spectra of HA (curve 1, Figure 4), the intense bands are observed at
1607 cm−1 and 1405 cm−1, corresponding to vibrations of the COO- groups and the C-O-,
OH, and CH groups [36]. In the IR spectra of MB (curve 2, Figure 4), the intense bands are
observed at 1594 cm−1, 1489 cm−1, 1391 cm−1, 1353 cm−1, and 1334 cm−1, which can be
attributed to the vibrations of the C=N, C=C, C=S+, CH, and C-N groups, respectively [37].
In the MB-HA system (1:4 ratio by weight) (curve 3) a shift of the band from 1607 cm−1 to
1598 cm−1, corresponding to vibrations of the COO- groups in HA macromolecules, was
observed. Since there is an intense band at 1594 cm−1 in the same region, corresponding
to the vibrations of the C=N and C=C groups in the dye structure, it can be assumed
that the band at 1598 cm−1 in the spectra of the MB-HA systems is a superposition of
the bands at 1607 cm−1 and 1594 cm−1. However, the shift of the band at 1489 cm−1 (to
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1496 cm−1) possibly indicates an interaction of the functional groups of the dye with HA
macromolecules. In this regard, it can be assumed that the shift of the COO- band from
1607 cm−1 to 1598 cm−1 is also due to the ionic interaction of the carboxylate ions of the
HA macromolecules with the MB molecules.
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2.5. Photodynamic Activity of MB and MB-HA

Preliminary studies were conducted to determine the photodynamic activity of the
dye against pathogens in the absence and presence of HA. To evaluate the effectiveness of
the dye and the MB-HA system in inactivating bacteria, the traditional method of counting
bacteria in a Petri dish was used. S. aureus (gram-positive) and P. aeruginosa (gram-negative)
were used as bacteria.

These bacteria are the main causative agents of superficial infections and belong
to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) of deadly pathogens
resistant to antibiotics [38,39]. Bacterial colony-forming units are shown in Figures 5 and 6.

First, the photodynamic activity of methylene blue against S. aureus and P. aeruginosa
was studied at different dye concentrations and light doses (Figure 5A,B). As can be seen
from Figure 5A,B, none of the radiation doses used suppressed bacterial growth on the
plates with MB concentrations of 10−6 M and 5 × 10−6 M. The suppression of bacterial
growth was observed when irradiating dishes with MB concentrations above 10−5 M.
Moreover, bacterial survival decreased with an increasing radiation dose (Figure 6). As can
be seen from Figure 6, in order to inactivate more than 85–90% of microbes, it is necessary
to use a radiation dose of 100 J/cm2. In this case, P. aeruginosa is most sensitive to aPDT
at a given dye concentration of 10−5 M and radiation doses of 70–100 J/cm2. In previous
studies [40–42], it was shown that cationic PS, capable of effectively binding to the outer
membrane and displacing Ca2+ and Mg2+ ions (which are necessary for the vital activity of
pathogens), are preferable for the inactivation of P. aeruginosa. Zada et al. demonstrated
the effectiveness of methylene blue at different concentrations against P. aeruginosa [43].
Moreover, a maximum reduction in bacteria of 3.48 log10 and 4.32 log10 was observed when
using MB together with a laser diode with a wavelength of 635 nm at a radiation dose of
90 J/cm2 and 108 J/cm2.

As can be seen from Figure 5, a further increase in the concentration of PS up to
5 × 10−5 M and 10−4 M leads to a complete suppression in growth of both bacteria in the
irradiation zones at all radiation doses used.

Thus, MB exhibits antimicrobial phototoxic activity against S. aureus and P. aeruginosa
at a concentration of 10−5 M and a radiation dose of 70 J/cm2. These concentrations of the
cationic dye and radiation dose were chosen as working parameters for further studies.

The MB-HA system also exhibited photodynamic activity against both bacteria.
Figure 7A,B shows digital images of S. aureus and P. aeruginosa culture plates after aPDT
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treatment using MB and MB-HA, where the HA concentration was set to 0.005%. The use
of the MB-HA system in combination with light irradiation led to a 1.78-fold reduction in
S. aureus colonies and a 1.45-fold reduction in P. aeruginosa colonies compared to the use
of the original dye alone against these bacteria (Figure 7C). In this case, S. aureus is more
sensitive to photoinactivation in the presence of the MB-HA system. As mentioned above,
this difference is associated with both the bacteria’s structure and, apparently, with the
formation of a complex between MB and HA.
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It is interesting to note that when the concentration of HA is increased to 0.01%, the
indicated effect of HA on the activity of MB against both bacterial strains is not detected.
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As noted earlier (Figure 1), a similar concentration dependence of the effect of HA on the
activity of MB in the photogeneration of singlet oxygen (in the reaction of tryptophan
photooxidation) was observed under model conditions.
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with a 660 nm LED on an LB medium with added MB or MB-HA. CMB = 10−5 M. Radiation doses:
70 J/cm2. Irradiation was performed in quadruple repetition. The circles indicate the inhibition
zone, magnified 1.5 times. (C) Diagram of the colony-forming units (CFUs) after the antimicrobial
photodynamic therapy (aPDT) treatment of P. aeruginosa and S. aureus with MB and MB-HA with
visible light at 660 nm and a radiation dose of 70 J/cm2. CMB = 10−5 M and CHA = 0.005 wt. % or
0.01 wt. %. Data are presented as the mean ± standard deviation (n = 4).

3. Materials and Methods
3.1. Reagents

Methylene blue (MB), a cationic dye of a phenothiazine nature (3,7-bisdimethylaminoph-
enothiazine chloride, MM 373.90 g/mol, extinction coefficient at a wavelength of 665 nm
(ε665nm) = 64,800 M−1 × cm−1) (Figure 3), was used as a photosensitizer (Chimmed,
Moscow, Russia). Hyaluronic acid (HA) was used in the form of sodium salt (MM 39,000 Da,
Evergrowing, Nanjing, China) (Figure 3). D,L-tryptophan (Trp) (MM 204.23 g/mol, Acros
organic, Geel, Belgium) was used as a substrate in the photooxidation reaction.

3.2. Preparation of the MB-HA System and Study of Its Photosensitizing Properties in the
Generation of Singlet Oxygen

To prepare the reaction system, methylene blue and hyaluronic acid were dissolved in
water. The concentration of MB varied from 2.5 × 10−6 to 1 × 10−5 M, and the concentration
of HA was in the range of 0–0.02 wt. %.

The photosensitizing activity of MB in the presence of a polysaccharide during the gen-
eration of singlet oxygen was determined in a model reaction of tryptophan photooxidation
in an aqueous solution. Trp was added to the resulting reaction systems. The concentration
of Trp was 1.5 × 10−5 M. The solutions of components were mixed in certain ratios for
15 min, and the order of mixing did not affect the activity of the system. The reaction of Trp
photooxidation with atmospheric oxygen was carried out in a quartz cuvette (V = 3 mL,
thickness = 10 mm). Irradiation was performed using an AFS LED phototherapeutic device
(Polironik, Moscow, Russia) with a wavelength of 660 nm and a power of 1100 mW, while
stirring with a magnetic stirrer. The kinetics of the substrate photooxidation process were
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recorded by a decrease in the intensity of the band at λem = 356 nm in the tryptophan
fluorescence spectrum (excitation wavelength λex = 280 nm).

For the comparative assessment of the photosensitizing activity of the dyes and
their complexes with AP and PS, the effective constant keff of the photooxidation rate of
tryptophan was used, which was calculated using the equation that follows:

ke f f =
I0 − It

I0 × ∆t
× 1

CMB

where I0 and It are the initial tryptophan fluorescence intensity and the substrate fluores-
cence intensity at time t and CMB is the concentration of methylene blue. The number of
measurements was no less than five, and the measurement error was no more than 10%.

3.3. Spectral Research

The EAS of methylene blue in the studied solutions in the absence and presence of
HA was recorded using a Cary 50 spectrophotometer (Varian, Belrose, Australia); the
fluorescence spectra of MB and the MB-HA system were studied using a Cary Eclipse
spectrofluorometer (Varian, Australia) (excitation wavelength λex(MB) = 665 nm). Singlet
oxygen luminescence spectra were recorded using a Horiba Fluoromax Plus spectrofluo-
rometer (Horiba-Jobin-Yvon, Palaiseau, France), a DSS-IGA020L IR detector (spectral range
800–1700 nm), and a TLP RG780 long-wave filter (Edmund Optics, Barrington, NJ, USA).

The degree of fluorescence anisotropy (polarization) (r) of the original MB, as well
as the MB-HA system, was automatically calculated by a Cary Eclipse spectrofluorom-
eter (Varian, Australia) based on the values of G, IVV, and IVH in the fluorescence emis-
sion spectra of the studied solutions using the equation presented in the publication by
Kuryanova et al. [44].

To determine r, the studied solutions were excited by light with a wavelength of
λex(MB) = 665 nm. The anisotropy of the reaction mixtures was recorded at a wavelength
of λMB = 685 nm. The measurement error was no more than 3–5%, and the number of
measurements in one sample was 5 to 8.

NMR measurements were performed using the equipment of the Multi-User Analyti-
cal Center of the Federal Research Center of Problems of Chemical Physics and Medicinal
Chemistry. The 1H-NMR was recorded on a Bruker AVANCE III 500 MHz high-resolution
spectrometer (Ettlingen, Germany) at room temperature (22.4 ◦C) with an operating fre-
quency of 500 MHz. The dye (MB), polysaccharide (HA), and their mixture (weight ratio of
1:1) were each dissolved in D2O (Sigma-Aldrich, Burlington, MA, USA, 99 atom % D) and
placed in standard glass ampoules (outer diameter 5 mm). The chemical shift scale was
calibrated using the residual protons of the solvent signal (H2O, δH = 4.80 ppm).

The FT-IR analysis of the samples (HA, MB, and MB-HA (1:4 by mass)) was performed
using a Spectrum Two FT-IR Spectrometer (PerkinElmer, Waltham, MA, USA) in attenuated
total reflectance (ATR) mode. The spectrometer features were as follows: high-performance,
room temperature LiTaO3 MIR detector and a standard optical system with KBr windows
for data acquisition over a spectral range of 4000–350 cm−1, with a resolution of 0.5 cm−1.
Spectra were normalized by the band ~1600 cm−1.

3.4. Photodynamic Activity of MB and MB-HA

The strains used in this work were P. aeruginosa (Pseudomonas aeruginosa) ATCC 27853
and S. aureus (Staphylococcus aureus) ATCC 29213. Maintenance of the bacterial cultures
and experimental setup were carried out using an LB Miller medium (VWR Life Science,
Radnor, PA, USA) in liquid form or with the addition of agar (bacteriology grade, AB EUR
(DiaM, Moscow, Russia)), when the use of solid media was required.

For photodynamic inactivation using MB and MB-HA, two pathogen strains were
selected: gram-negative bacteria P. aeruginosa and gram-positive bacteria S. aureus.

The PS system (MB or MB-HA) was added to the melted nutrient medium, which
was poured into Petri dishes. Afterward, a bacterial lawn was applied to the surface of
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the solidified media using a sterile cotton swab. Then the Petri dishes were exposed at
room temperature in a dark laminar flow hood for 20–30 min. The resulting samples were
subjected to photoirradiation using an LED phototherapeutic device with a wavelength
of λ = 660 nm and a power of 1100 mW. The radiation dose was 50–100 J/cm2, and the
exposure time was 2–4.5 min. The concentration of MB was between 10−6 and 10−4 M, and
the concentrations of HA were 0.005 wt. % and 0.01 wt. %.

The samples were incubated at 37 ◦C for 24 h. Analysis was carried out by counting
colony-forming units (CFUs) in irradiation zones (light spots), or if colonies were not
observed, a complete growth inhibition was stated.

4. Conclusions

Thus, in this work, it was demonstrated that the activity of methylene blue in the
photogeneration of singlet oxygen (in the reaction of tryptophan photooxidation) increases
in the presence of hyaluronic acid. This was confirmed by the increase in the intensity of
photoluminescence of singlet oxygen 1O2 in the presence of MB upon the addition of HA.
This may be due to the disaggregation of molecular aggregates in the dye in the presence
of HA since the optical density of the absorption band at 665 nm in the EAS increased in
the presence of HA. The NMR method showed that, in a joint solution of MB and HA, the
signals of protons in the aromatic region of the dye shift to weak fields, and the signals of
protons in hyaluronic acid shift to strong fields, which indicates the formation of sufficiently
strong MB-HA complexes. The effect of HA on the photocatalytic activity of the dye was
most pronounced at a concentration of MB of 2.5–3.5 × 10−6 M. A maximum increase in
the photocatalytic activity of MB (by 1.3–1.6 times) was observed in the presence of HA at
concentrations in a range between 0.0015 wt.% and 0.005 wt.%. The MB-HA complex can
be used in antimicrobial photodynamic therapies due to its high photocatalytic activity and
accessibility. An increase in the MB’s bactericidal activity against S. aureus and P. aeruginosa
bacteria in the presence of HA was shown.
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