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Abstract: Flavonoids and other phenolic constituents are a large group of plant metabolites that have
long attracted interest from researchers worldwide due to their functions in plant physiology, as well
as their huge number of benefits for human health and well-being. This review attempts to reveal
a promising view of the major physiological roles of flavonoids and other phenolic phytochemical
molecules, e.g., protection agents against UV damage, pathogen defense agents, detoxifying agents,
and agents promoting pollen fertility and successful pollination. Besides, the value of both flavonoids
and other phenolic phytochemicals for plant species delimitation was also emphasized for the first
time with the determination of their major physiological roles. Furthermore, their medical benefits
for mankind were also highlighted in this current work.

Keywords: flavonoids; phenolics; plant secondary metabolites; physiological roles; plant species
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1. Introduction

Plant secondary metabolites, or so-called phytochemical compounds, are molecules
produced by plants which are not directly crucial for basic functions such as photosynthesis
or respiratory metabolism, but are required for the better survival of plants in various envi-
ronmental conditions [1–4]. Among them, plant phenolic substances, including flavonoids,
are one of the largest groups of phytochemical compounds and have been widely employed
in a huge number of research works, with an increasing trend in interest from researchers
in order to understand both the functions and potential applications of these phytochem-
ical compounds in various fields [3,5–14]. In addition, these secondary metabolites are
produced in almost every part of the living organisms in the Plantae kingdom [15–20], so
the great benefits of these substances cannot be denied.

In addition, these flavonoids and other phenolic compounds are also useful for plant
species delimitation to distinguish different species from other closely related ones. Nor-
mally, plant taxonomic works begin with using morphological characteristics to delimit
plant species, as this is simple and saves analysis costs [21–25]. However, some closely re-
lated species of plants consist of many similar morphologies or overlapping morphological
characteristics that cannot be used for identification at the species level using morpholog-
ical evidence, such as the five sister species of Peruvian chili peppers from the Capsicum
genus [26]. In addition, some groups of plants have very many morphological variations,
which provides such a great variation in the morphological characteristics of sister species
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or complex species, e.g., the three Phyteuma species members from the Campanulaceae fam-
ily, that they cannot be classified and identified by morphological data [27]. Accordingly,
the phytochemical profiles of these plants, especially their flavonoids and other phenolic
constituents, are also helpful for delimiting these species [26,27].

The aim of this review is to illustrate the importance of these phytochemical com-
pounds regarding their physiological roles, such as protective agents against UV damage,
pathogen defense agents, detoxifying agents, and agents promoting pollen fertility, suc-
cessful pollination, and plant species delimitation, as well as medical benefits for mankind.
So, key words were searched in Google scholar, Scopus, and PubMed in order to obtain
publications on the targeted topic, and 785 publications related to the key words were
found. Then, these publications were carefully read so as to find recent and non-redundant
research studies that met the aim of this review. Some older publications to highlight some
essential points were also included in this work.

2. Biosynthesis of Flavonoids and Other Phenolic Compounds (Figure 1)

Phenolic compounds, comprising several types of flavonoids, are commonly known
as a major group of natural secondary metabolites synthesized by plants themselves.
These plant phenolic components are synthesized from phosphoenolpyruvate erythrose-4-
phosphate using the shikimate and phenylpropanoid pathways [15,28,29] to deliver phenyl-
propanoids directly, and they are also produced via acetyl-Co A using the acetate–malonate
pathway [28,29] to provide simple phenols. Hydroquinone-O-beta-D-glucopyranoside, or
arbutin, is a concrete example of a simple phenol compound, which can be found in the
leaves of many species of both berry and pear [7]. In general, the metabolism of phenyl-
propanoids delivers a series of hydroxycinnamic acids, e.g., 5-O-caffeoylquinic acid and
chlorogenic acid. These phenolics are found not only free-form, but also combined with
sugars as glycosides in various families of eudicot, such as Rosaceae, Rubiaceae, Apiaceae,
Asteraceae, Fabaceae, Moraceae, and Solanaceae [29–32].

The carbon taken in from carbon dioxide to produce malonate is similar to the carbon
released in the condensation/decarboxylation reaction catalyzed by CHS enzymes (chal-
cone synthase or naringenin-chalcone synthase). The other selective enzymess that also
work in this process include chalcone isomerase, anthocyanidin synthase, dihydroflavonol
reductase, flavone synthase, flavonol synthase, flavanone 3-hydroxylase, isoflavone syn-
thase, and so forth. These complicated pathways produce monomeric and polymeric com-
pounds which accomplish various tasks in plant physiology [4,15,16,26–28,33–51]. Plant
phenolic substances exhibit extremely diverse groups with a particularly large structural
diversity [1].

Many reports have indicated that flavonoids are one of the biggest groups of phyto-
chemical products, and over 10,000 structures of flavonoids have been identified [52–54].
Flavonoids can be found in various plant tissues, especially photosynthetic tissue such as
mesophyll layers [3]. They are distributed not only inside the cell, but also throughout the
surfaces of many organs or tissues [1,3]. The flavonoid chemical structure is mainly based
on a C6-C3-C6 skeleton, depending on the position of the linkage between the aromatic ring
and benzopyrano moiety. They naturally occur in both forms of aglycones and glycosides,
depending on the plant species and environmental factors, and involve various classes [53],
for example, flavones, isoflavones, flavanones, flavonols, flavanonol, aurones, chalcones,
and anthocyanin (Figure 2).

In Arabidopsis thaliana, a plant model, the regulation of the flavonoid biosynthetic
pathway has been determined. The flavonoid biosynthesis of Arabidopsis is regulated
by single copy genes which encode all enzymes of the central flavonoid metabolism,
excluding flavonol synthase (FLS). This enzyme is encoded by six genes, but only the
activities of the FLS1 and FLS3 genes have been proven [55,56]. According to the report
of Cheynier and her research team, they found that flavonoid production is affected by
the transcription rate of the flavonoid biosynthetic genes [1]. Many kinds of transcription
factors (TFs) play necessary roles in flavonoid biosynthesis, and some of them are conserved
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among monocotyledon and dicotyledon [51,57–59]. A concrete example is anthocyanin
and proanthocyanidin biosynthetic genes, which consist of specific members of the R2R3-
MYB and basic helix–loop–helix transcription factor families combined with a WD-repeat
protein [60]. Likewise, 3-deoxyflavonoids and flavonol biosynthesis in several grass species
are controlled by transcription factor family genes, R2R3-MYBs [50].
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Figure 1. Major biosynthesis pathways of flavonoids and other phenolic compounds.
PAL = phenylalanine ammonia-lyase; C4H = cinnamate-4-hydroxylase; 4CL = 4-coumaroyl: CoA-
ligase; HCT = hydroxycinnamoyl transferase; C3H = p-coumarate-3-hydroxylase; CHS = chalcone
synthase; CHI = chalcone isomerase; ANS = anthocyanidin synthase; DFR = dihydroflavonol reduc-
tase; FS = flavone synthase; FLS = flavonol synthase; F3H = flavanone 3-hydroxylase; IFS = isoflavone
synthase; ANR = anthocyanidin reductase; LAR = leucoanthocyanidin reductase.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 16 
 

 

Figure 1. Major biosynthesis pathways of flavonoids and other phenolic compounds. PAL = 
phenylalanine ammonia-lyase; C4H = cinnamate-4-hydroxylase; 4CL = 4-coumaroyl: CoA-ligase; 
HCT = hydroxycinnamoyl transferase; C3H = p-coumarate-3-hydroxylase; CHS = chalcone synthase; 
CHI = chalcone isomerase; ANS = anthocyanidin synthase; DFR = dihydroflavonol reductase; FS = 
flavone synthase; FLS = flavonol synthase; F3H = flavanone 3-hydroxylase; IFS = isoflavone synthase; 
ANR = anthocyanidin reductase; LAR = leucoanthocyanidin reductase. 

The carbon taken in from carbon dioxide to produce malonate is similar to the carbon 
released in the condensation/decarboxylation reaction catalyzed by CHS enzymes 
(chalcone synthase or naringenin-chalcone synthase). The other selective enzymess that 
also work in this process include chalcone isomerase, anthocyanidin synthase, 
dihydroflavonol reductase, flavone synthase, flavonol synthase, flavanone 3-hydroxylase, 
isoflavone synthase, and so forth. These complicated pathways produce monomeric and 
polymeric compounds which accomplish various tasks in plant physiology [4,15,16,26–
28,33–51]. Plant phenolic substances exhibit extremely diverse groups with a particularly 
large structural diversity [1]. 

Many reports have indicated that flavonoids are one of the biggest groups of 
phytochemical products, and over 10,000 structures of flavonoids have been identified 
[52–54]. Flavonoids can be found in various plant tissues, especially photosynthetic tissue 
such as mesophyll layers [3]. They are distributed not only inside the cell, but also 
throughout the surfaces of many organs or tissues [1,3]. The flavonoid chemical structure 
is mainly based on a C6-C3-C6 skeleton, depending on the position of the linkage between 
the aromatic ring and benzopyrano moiety. They naturally occur in both forms of 
aglycones and glycosides, depending on the plant species and environmental factors, and 
involve various classes [53], for example, flavones, isoflavones, flavanones, flavonols, 
flavanonol, aurones, chalcones, and anthocyanin (Figure 2). 

 
Figure 2. Chemical structures of the major classes of flavonoids. 

In Arabidopsis thaliana, a plant model, the regulation of the flavonoid biosynthetic 
pathway has been determined. The flavonoid biosynthesis of Arabidopsis is regulated by 

Figure 2. Chemical structures of the major classes of flavonoids.



Molecules 2024, 29, 5351 4 of 15

3. Major Physiological Functions of Flavonoids and Other Phenolic Compounds
3.1. Protective Agent Against UV Damage

From the point of view of protection against ultraviolet (UV) radiation damage,
flavonoids and other phenolic compounds played a key role in assisting embryophytes and
land plants to adapt and evolve themselves from an aquatic to a terrestrial environment in
the middle of the Palaeozoic era between 480 and 360 million years ago. At that time, the
original terrestrial plants such as mosses, liverworts, hornworts, and some tracheophytes
were able to synthesize various phenolic substances so as to address specific requirements,
and in particular, these substances acted as UV light screens to help land plants to survive
in such an extremely changed environment [5,6,8,34,61].

The spectra of UV radiation can be divided into lower energy UV-A (320–400 nm),
higher energy UV-B (280–320 nm), and UV-C (254–280 nm). The most severe damage
is caused by the UV-B band, which may affect the chlorophyll pigments in chloroplasts,
proteins, the phospholipid bilayer of cell membranes, photosynthesis, transpiration, and
pollination [50,62–65]. The higher the altitude, the higher the intensity of UV radiation.
According to this, terrestrial plants, especially alpine species, protect themselves by using
flavonoids and other phenolic compounds [62]. Flavonoids have the helpful abilities of
absorbing harmful UV light and scavenging various types of free radicals in plant cells and
tissues [66].

Murai and his research team surveyed both quantitative and qualitative variations
of UV-absorbing flavonoids in the leaves of Fallopia japonica [currently, this species is
synonymous with Reynoutria japonica Houtt., https://www.worldfloraonline.org/taxon/
wfo-0000406106#distributionMap, searched on 1 November 2024] and the needles of Larix
kaempferi (Lamb.) Carrière, which grew at various altitudes on Mt. Fuji in Japan. They
found an increase in flavonoids content in the leaves of F. japonica and the needles of L.
kaempferi when the altitudes of their habitats were increased [66]. Likewise, a relationship
between altitudinal variation and UV-absorbing flavonoids has also been reported in
Plantago asiatica [67] and Himalayan Rheum nobile Hook. f. & Thomson [68]. Phytochemical
studies have reported that B-Ring ortho-dihydroxylated flavonoids are also synthesized
by highland plants that live at high altitudes, e.g., Plantago asiatica, Geum calthifolium var.
nipponicum, and Sieversia pentapetala. Seashore Calystegia soldanella (L.) R. Br. populations
exhibited chemical adaption trends to survive the environmental stress posed by UV
irradiation by accumulating quercetin glycosides [67] in order to protect themselves from
intense UV-B conditions.

3.2. Pathogen Defense Agent

Phenolic compounds play an essential role in plant defense and repair mechanisms,
including pathogen defense. Plants cells and tissues accumulate phenolic compounds by
increasing the activities of enzymes such as phenylalanine ammonialyase, chalconesynthase,
and phosphoenolpyruvate-carboxylase when they are infected by pathogens [49,69,70].
Phytoalexins are one of the major groups of natural phytochemicals that interact with the
pathogen defense processes, which are low-molecular-weight antimicrobial components
that are synthesized and accumulated in plant cells and tissues after infection by bacteria,
viruses, or other pathogens [1]. Several phenolics, including flavonoids such as isoflavonoid
glycosides, have been classified as important precursors for phytoalexin production during
infection [28].

Moreover, the antipathogenic properties of several flavonoids can be non-specific,
resulting from their antioxidative properties [48,71,72]. Flavonoid compounds help to
reduce reactive oxygen species that are generated by plants and pathogens through in-
fection [73,74]. Flavonoids are transported to the infection sites of individual plants and
induce the hypersensitivity reaction, then cause programmed cell death and also combine
with the cell walls of necrotic and adjacent cells [47,73,74]. Additionally, these substances
can prevent pathogen infection by modulating auxin (IAA) activity, resulting in tissue
differentiation, calluses, and tylose formation [47]. According to the study of Treutter in

https://www.worldfloraonline.org/taxon/wfo-0000406106#distributionMap
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2005 on the flavonoids involved in plant resistance, he found that flavonoids may directly
cause pathogen enzyme inhibition by chelating metals that are required for the pathogen’s
activity [46,75,76].

3.3. Detoxifying Agent

A major source of active oxygen species is the photosynthetic electron transport
chain, so chloroplasts have evolved a detoxification system to avoid oxygen-mediated
toxicity [4,45,77–79]. Flavonoids play a significant role as detoxification agents in these
processes. Yamasaki and his research team demonstrated that, if flavonoids are localized,
super oxide anion radicals cannot freely diffuse into the vacuoles of plant cells. They
reported that the flavonoid–peroxidase reaction acted as a detoxification factor against
H2O2 in plant cells such as Schefflera arboricola Hayata [currently, this species is synonymous
with Heptapleurum arboricola Hayata, https://www.worldfloraonline.org/taxon/wfo-0000
981504, searched on 1 November 2024] [44]. Moreover, Jansen and colleagues conducted
research on plant stress from ultraviolet radiation and pointed out that phenolic compounds
were efficient scavenging agents for reactive oxygen species [43]. Phenolics may also help
to inactivate iron ions by chelation and additional suppression via the super oxide-driven
Fenton reaction.

Furthermore, flavonoids and phenolic compounds are also necessary for antioxidant
activity in the electron transport pathways inside plant mitochondria [77]. There are two
electron transport pathways in mitochondria, including the cytochrome and alternative
pathways. Results from a study by Shimoji and Yamasaki showed that the flavonoids
myricetin, quercetin, and kaempferol displayed an antioxidant property that could in-
hibit alternative oxidase activity [42]. Additionally, ortho-dihydroxy B-ring-substituted
quercetin and luteolin were accumulated in the leaves of Ligustrum vulgare L. in mesophyll
and epidermal tissues, and it was found that these ortho-dihydroxy B-ring-substituted
flavonoids protected plant tissues from oxidative damage from sunlight [41]. In grapevine
leaves (Vitis vinifera L.), the flavonoid redox cycle was investigated as an alternative system
for detoxification against H2O2 [80].

3.4. Pollen Fertility and Successful Pollination

Flavonoids and other phenolics are synthesized in almost every part of a plant, and
these phytochemical compounds play necessary roles in providing color, fragrance, and
taste to flowers, fruits, and seeds, which are important factors for attracting pollinators
and seed dispersers [37,81–83]. Yellow pollen grains with various ranges of visible and
ultraviolet reflection spectra, which can be detected by the targeted animal pollinators,
are produced from the unique microspore mother cells and combinations of different
flavonoids in each plant species, and this leads to successful pollination [37,84]. Many
studies have reported that flavonoids are used by plants to produce the distinct yellow
color of pollen grains, but white-colored pollen has also been described in maize, morning
glory, and petunia [40,83,85,86].

In 1992, Mo and colleagues conducted research on the white pollen grains of maize
and petunia to examine the role of flavonols in functional pollen via chalcone synthase
mutants. This was the first report on the correlation between flavonoids and the fertility of
pollen grains. This research team discovered that the mutant groups exhibited deficiencies
in flavonoids and sterile pollen because these pollen grains could not produce functional
pollen tubes. Interestingly, after adding kaempferol (the flavonol class of flavonoids) during
pollination, the pollens of these mutant plants could grow functional pollen tubes similar
to those of wild types [85]. Moreover, they found that flavonoid-deficient pollen cannot
self-cross via its own stigma, but can function partially on the stigma of wild-type plants
which contain flavonol substances [85]. Pollak and his team worked on Petunia hybrida
E.Vilm. and investigated the effects of chalcone synthase and flavonol accumulating on the
stigmas and anthers of this species. They generated flavonoid-deficient mutants that lacked
chalcone synthase to determine the important roles of flavonoids in pollen fertility [87].

https://www.worldfloraonline.org/taxon/wfo-0000981504
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In tomato (Solanum lycopersicum L.), the RNA interference silencing of the chalcone
synthase gene, which participates in the first step of flavonoid biosynthesis, led to partheno-
carpic tomato fruits [38]. The post-transcriptional silencing of the FLS gene of Nicotiana
tabacum L. also resulted in a decrease in seed production [39]. In addition, the silenced
mutant lines exhibited lower levels of flavonol and anthocyanidins, whereas the flavan-3-ol
level was increased. Flavonols, particularly quercetin, demonstrated their essential roles in
pollen tube germination and successful plant pollination, not only in in vitro, but also in
in vivo experiments [39].

Besides, flavonoids and other phenolic compounds in plant physiological functions
from various plant species were provided to give examples on this perspective (Table 1).

Table 1. Flavonoids and other phenolic compounds in plant physiological functions.

Plants Native or
Cultivated Regions

Major Flavonoids/Other
Phenolic Compounds

Physiological
Functions Reference

Reynoutria japonica
Houtt. Japan Flavonol 3-O-glycosides UV-absorbing agent [66]

Larix kaempferi (Lamb.)
Carrière Japan Flavonol 3-O-glycosides UV-absorbing agent [66]

Calystegia soldanella (L.)
R. Br. Japan

Kaempferol 3-O-rutinoside,
3-O-glucoside and 3-O-rhamnoside,
quercetin 3-O-rutinoside, 3-O-glucoside,
3-O-rhamnoside and 3-O-apiosyl-(1 →
2)-[rhamnosyl-(1 → 6)-glucoside]

UV-absorbing agent [67]

Rheum nobile Hook. f. &
Thomson Japan

Quercetin 3-O-glucoside, quercetin
3-O-rutinoside, quercetin
3-O-galactoside, quercetin
3-O-arabinoside and quercetin
3-O-[6′′-(3-hydroxy-3-methylglutaroyl)-
glucoside]

UV-absorbing agent [68]

Glycine max (L.) Merr. USA 4′,7-dihydroxyisoflavone,
4′,5,7-trihydroxyisoflavone Pathogen defense agent [28]

Origanum Vulgare L. India Caffeic acid, rosmarinic acid Pathogen defense agent [69]

Apocynum venetum L. China Anthocyanin Pathogen defense agent [71]

Edible beans (legumes) China Catechin, ferulic acid, protocatechuic
acid, gallic acid, p-coumaric acid Detoxifying agent [79]

Heptapleurum arboricola
Hayata Japan Quercetin, kaempferol, quercetin

glycoside, kaempferol glycoside Detoxifying agent [44]

Ligustrum vulgare L. Japan Quercetin, luteolin Detoxifying agent [41]

Vitis vinifera L. Chile Quercetin, kaempferol Detoxifying agent [80]

Vigna radiata (L.)
R. Wilczek Japan Myricetin, quercetin, kaempferol Detoxifying agent [42]

Zea mays L. USA Kaempferol
Fertility of pollen
grains, pollination
success

[85]

Petunia hybrida E. Vilm. USA Flavonol aglycones Fertility of pollen
grains [87]

Nicotiana tabacum L. India Quercetin Fertility of pollen
grains [39]

Solanum lycopersicum L. The Netherlands Flavonoids Pollination success [38]
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4. Flavonoids and Other Phenolic Compounds vs. Plant Species Delimitation

During its evolution, the extreme biodiversity of the plant kingdom has generated
not only species diversity, but also a variety of flavonoids and other phenolic components.
Additional analyses of different plant species will lead to the discovery of novel structures
and possibly new metabolic pathways that provide new plant systematic data to determine
plant taxonomic statuses and species boundaries [25,27,36,84,88–90]. In plant biosystemat-
ics, many types of information, such as classical morphological, phenetics (morphometric
or numerical taxonomy), anatomical, palynological, chromosome, DNA sequencing, and
phylogenetic analysis data, have been combined and analyzed together, so as to provide a
concrete conclusion on the species delimitation of several plants. However, large numbers
of plant taxa are still waiting for further information to clearly delimit their species bound-
aries. Likewise, a research team from Peru and France studied Peruvian chili peppers
from the Capsicum genus belonging to the Solanaceae family, which display overlapping
morphological characteristics, so these Capsicum species, particularly Capsicum baccatum,
Capsicum chinense, and Capsicum frutescens, fail to use classical taxonomy for their species
delimitation [26]. The results from this research team pointed out that their flavonoids and
other phenolic compounds were the main biomarkers that were helpful to delimit these
Capsicum species members at the species level [26]. Additionally, a European research team
from Slovenia conducted research on the species members of the Phyteuma genus belonging
to the Campanulaceae family, which have many variations in morphological traits [27].
This great variation has led to confusion and misinterpretation in using taxonomic keys that
are constructed by using morphological characteristics. Their results proved that phenolic
compounds are useful biomarkers for the species delimitation of taxonomic complexes in
the Phyteuma genus at both specific and intraspecific levels [27].

Some plant taxa synthesize specific flavonoids and/or phenolics, e.g., legume families
produce isoflavonoid substances. Moreover, Sorghum bicolor, Sinningia cardinalis, and Zea
mays [36] are a few species that commonly synthesize 3-deoxyanthocyanins [36]. An obvi-
ous example is the species members in Viteria, a species-rich genus (Dipterocarpaceae fam-
ily). Using flavonoid analysis, the Vatica genus was reported to have 65 species distributed
throughout Asian countries [91]. Joshi conducted a chemotaxonomic study on three species
members that still have species delimitation conflicts, and her results pointed out that
quercetin 3-glucoside, apigenin 5-glucoside, kaempferol 3,5-glucoside, and quercetin 3-
rutinoside can be used as chemotaxonomic markers to delimit these studied species [92].
Furthermore, the patterns of flavonoid aglycones and glycosides have also been reported as
useful tools for the species delimitation of species members in the Shorea Roxb. ex Gaertn
genus [35,93].

Similarly, Clark and Mabry studied Hazardia species and demonstrated that the gly-
cosides of quercetin, kaempferol, isorhamnetin, luteolin, and apigenin, the glycoflavone of
apigenin, and methoxylated flavonol aglycones were helpful for species delimitations of
Hazardia species, together with additional information on morphology and geography [94].
The taxonomic problem in the species delimitation of the Agave (Agavaceae) genus was
also solved by chemotaxonomic data on phenolics [95]. In addition, Chin-Sung and his
Korean research team focused their study on the Adonis amurensis complex distributed in
eastern Asia. Excessive morphological variations in the flower led to taxonomic problems
with species boundaries and confusion about species definition and recognition for fur-
ther economic applications [96]. This team isolated and characterized 19 flavonoids and
phytochemical compounds from the leaves and flowers of the A. amurensis complex; they
proposed that it was probably an evolutionary advancement that affected the loss of some
C-glycosylflavones and O-glycosylflavone synthesis in this complex species [96]. These
studies also suggest that flavonoids and phytochemicals can be as variable in plant species
delimitation as morphological characteristics [94–96]. Additionally, phenolic compounds
were also reported as useful evidence for species delimitation in Tamaricaceae species mem-
bers by a Russian research team [97]. This team determined the phenolic phytochemical
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profiles of poorly studied Siberian species belonging to the Myricaria Desv. genus, such as
Myricaria longifolia (Willd.) Ehrenb. and M. bracteata Royle [97].

Besides terrestrial plants, the usefulness of flavonoids and other phenolic compounds
for plant species delimitation has also been reported for aquatic plant species [14,88,98,99].
Monochoria hastata (L.) Solms and M. angustifolia (G. X. Wang) Boonkerd & Tungmunnithum,
aquatic flowering plants that are species members of the Monochoria C. Presl genus (Pont-
ederiaceae family), have been used not only as local vegetables, but also as ingredients
in traditional medicine recipes [88,98,99]. M. hastata and M. angustifolia are distributed in
Thailand and some countries in Asia, and they mostly grow in the same natural aquatic
habitats (Figure 3), such as rice fields and other water bodies [88]. The high variation in the
morphological characteristics of both their vegetative and reproductive parts has caused
confusion in their taxonomic status, as well as their species boundaries. Research studies
were conducted on almost 500 plant samples from these Monochoria species, covering pop-
ulations distributed throughout all the floristic regions of Thailand. The results revealed
that the flavonoids’ phytochemical profile was useful for investigating the evolutionary
connections of these Monochoria species members, as well as for the botanical authentication
of these two medicinal plant species [88].
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Another example was investigated in Nelumbo nucifera Gaertn. and Nymphaea lotus L.,
which are aquatic medicinal plants that can be found in the same aquatic habitats [14,100].
Dried and/or powdered stamens of N. nucifera are widely used as a valuable raw plant ma-
terial for various kinds of traditional medicines [14,100]. However, dried and/or powdered
stamens of N. nucifera are frequently confused with those of N. lotus, and this adulteration
leads to issues with the costs of raw material and the efficacy of phytopharmaceutical
products for industrial sectors [14]. The results from this research work illustrated that
flavonoid phytochemical compounds provide potential evidence for solving authentication
problems and identifying N. nucifera and N. lotus from their dried stamen materials [14].

5. Medical Benefits of Flavonoids and Other Phenolic Compounds

Besides their physiological functions in plants as valuable secondary metabolites,
flavonoids and other phenolic phytochemical compounds also play key roles in offering various
medical benefits for mankind to promote human health and well-being [11–13,30,31,100–111].
In this current decade, a huge number of research teams worldwide are conducting re-
search on the potential of these flavonoids and other phenolic bioactive molecules for
both the treatment and prevention of several diseases [12,32,88,103,105,112–125]. In ad-
dition, in commercial sectors such as phytopharmaceuticals, cosmetics, and cosmeceu-
ticals, companies are also conducting research on these phytochemical compounds to
seek information on their potential bioactive molecules as major ingredients for product
development [30,101,109,110,126,127].

The potential of dihydromyricetin, a major flavonoid phytochemical compound from
Ampelopsis grossedentata, for diabetic cardiomyopathy was evaluated by Chen and his re-
search team from China [102]. This team worked on a diabetic mice model and used a
treatment group administered with dihydromyricetin 250 mg/kg/day for 12 weeks [102].
The results showed that this flavonoid helped to improve cardiac dysfunction, fibrosis, and
injury; this bioactive molecule also reduced inflammation, oxidative stress, and necropto-
sis via sirtuin 3 (SIRT3) activation in a streptozotocin-induced diabetic mice model [102].
Vázquez-Ruiz and a team from Spain researched the prevention of cardiovascular problems
via the rich intake of phenolics from red wine, olives, and olive oil in the Mediterranean
diet [103]. This research team followed 16,147 Spanish participants, who were the young
Mediterranean cohort for this project, for more than 12 years using a 136-item question-
naire to validate food consumption frequency, and their polyphenol intake was obtained
by using the Phenol-Explorer database. This study pointed out that a moderate-to-high
dietary consumption of phenolic phytochemical compounds, especially flavonoids, may
possibly decrease the incidence of cardiovascular disease by the means of the Mediter-
ranean dietary pattern [103]. Phan and his group determined the medical potential of a
flavonoid-rich extract from Eclipta prostrata L., which is traditionally used for enhancing
memory and cognitive functions and diabetes management [104]. This study illustrated
that the flavonoid-rich extract from this plant moderately inhibited α-glucosidase and α-
amylase and provided high antioxidant and anti-acetylcholinesterase effects; the molecular
docking results also showed that most of the identified flavonoids and other phenolic major
compounds exhibited good ADMET properties [104].

The antibacterial and antifungal effects of Phoenix dactylifera L. from the Arabian desert
with a leaves extract rich in flavonoids and phenolic acids were tested [11]. Silver nanopar-
ticles were green-synthesized by ethanolic and water extracts from P. dactylifera leaves; the
antifungal activity was tested in different species of Candida, and the antibacterial activity
was assessed in both two Gram-positive and two Gram-negative strains [11]. This team
found that silver nanoparticles had noteworthy antimicrobial effects, whereas the water
extract provided antimicrobial activity a little higher than that of the ethanolic extract. So,
the researcher suggested that palm leaf extracts fight against pathogenic bacteria and also
fungi, instead of using chemical substances [11]. Another study focusing on the antibac-
terial, antifungal, insecticidal, and phytotoxic potential of a flavonoid-rich extract was
conducted by a team from Pakistan and Saudi Arabia, and they studied silver nanoparticles
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from Amaryllis vittata (L.) Herit leaf and bulb extracts [30], as well as French pine bark
extract chewing gum [101]. The results from these findings demonstrated the potential
for developing new interesting agricultural applications and pharmacological/medical
products [30,101].

The healthy benefits of flavanol-rich cocoa have also been evaluated by various re-
search teams [109,110]. Davinelli and his team from Italy and the USA conducted a
randomized controlled trial to evaluate the potential of flavanol-rich cocoa in 48 healthy
human subjects for 4 weeks of flavanol-rich cocoa supplementation, comparing them with
the baseline. The results supported the health benefits of flavanols from cocoa [109]. An-
other randomized clinical trial involving 22 healthy participants was conducted on the
flavanols from dark chocolate by a research team from Germany [110], who used a double-
blind crossover clinical trial analysis with participants consuming 20 g of dark chocolate
(comprising 400 mg of flavanols) or 7.5 g of milk chocolate. This research proposed the
medical benefits of vasodilating flavanols from dark chocolate on visual function [110].
Another study by Cádiz-Gurrea and his research group from Peru and Spain focused on
qualitatively determining the flavonoids and other phenolic phytochemical compounds
in husk and bean (cocoa by-products) extracts from different cocoa-growing areas in Peru
using high-performance liquid chromatography (HPLC) coupled with mass spectrometry,
also emphasizing the potential of cocoa by-products as high added-value products for
medical, nutraceutical, and pharmaceutical manufacturing [111].

6. Conclusions

It can be clearly seen that flavonoids and other phenolic components play significant
roles in various physiological activities, such as protective agents to fight against damage
from ultraviolet (UV) radiation, pathogen defense agents, and detoxifying agents in order
to help several plants to survive in challenging environments with various biotic and
abiotic factors. In addition, these phytochemicals also help to promote pollen fertility
and successful pollination, which are the most important processes for conserving their
species. Nonetheless, these secondary metabolites are also effective tools for plant species
delimitation and classification depending on the group of plants. Therefore, additional
studies and surveys of flavonoids and other phenolics from new/undiscovered plant
species need to intensively investigate in order to make progression in these research areas
and achieve a better understanding of plant physiology and evolution. Additionally, these
phytochemical compounds also offer an immense benefit to human beings, following a
huge number of research studies performed to determine their medical advantages in in
silico, in vitro, and in vivo animal models, as well as many clinical trials. Nevertheless,
long-term studies, toxicity tests, and greater numbers of participants (subject size) for
many clinical trials should be implemented to ensure the safety and efficacy of these
flavonoids/phenolic-rich supplements, phytopharmaceutical products, and medicines.
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