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Abstract: Ethylene and sulfur dioxide molecules were co-deposited on a CsI window at cryogenic
temperature, and the photoproducts upon UV irradiation were observed using Fourier transform
infrared (FTIR) spectroscopy. The products were found to be UV wavelength-dependent; at shorter
wavelengths (λ = 266 nm) one strong peak was observed while more than three peaks were identified
at longer UV wavelengths (λ = 300 nm). Spectral features changed seamlessly along with UV
wavelength. Density functional theory (DFT) calculations were carried out for potential products,
and spectral matches between observations and calculations seemed satisfactory, assuming a cyclic
molecule (oxathietane 2-oxide) as the main photoproduct at longer UV wavelengths. On the other
hand, the spectra of photoproducts at shorter UV wavelengths were reproduced by assuming the
decomposition products of an intermediate, from the supplementary experiments using deuterated
samples. Plausible photoreaction schemes were presented to account for the observed photoproducts.

Keywords: ethylene; sulfur dioxide; photolysis; matrix isolation; infrared spectroscopy; density
functional calculation

1. Introduction

It is known that the oxidation of volatile organic compounds (VOCs) contributes to
the secondary organic aerosols (SOAs) in the atmosphere. The main oxidant species in
these processes involve ozone (O3), hydroxy (OH) and nitrate (NO3) radicals. On the
other hand, various organosulfate (OS) compounds have been identified in the atmosphere,
suggesting that gas phase sulfur dioxide (SO2) serves as a reactant for OS formation [1,2].
The reactions of unsaturated organic compounds with SO2 have been studied for years [3–6];
polymer formation from olefins and SO2 in the condensed phase was first reported in 1898.
Dainton and Ivin observed photochemical reactions of SO2 and olefins in the gas phase
for the first time [6]. They proposed an addition mechanism of electronically excited
SO2 to the C=C double bond followed by sulfinic acid formation. They measured the
UV spectra of the mixture of SO2 and olefins in the gas phase and suggested a strong
charge–transfer interaction between them [7]. Since then, analogous systems have been
investigated extensively [8–12]. Most of the photochemical reactions have been studied
at ambient temperature, and the primary step of the prototypical system C2H4–SO2 has
not been clarified yet, to the best of our knowledge. In this respect, a photochemical
study of the molecular complex C2H4–SO2 is crucial to elucidating the details of reaction
mechanisms. The molecular complex C2H4–SO2 was observed in the gas phase by FTMW
technique [13,14] and IR spectroscopy in matrices [15], and those results were compared
with theoretical calculations [16–18]. It has a slipped parallel structure in an electronic
ground state. Makarov et al. reported photolysis of the C2H4–SO2 complex isolated
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in a supersonic jet by the UV resonance multiphoton ionization technique [19]. They
successfully obtained rotationally resolved action spectra of the C2H4–SO2 complex and
found that the two molecular planes of SO2 and C2H4 became closer upon photoexcitation.
Such structural change would enhance the overlap of the π orbitals of the two molecules
to lead to the photoreaction. Quite recently Salta et al. reported a theoretical study of
C2H4–SO2 cycloaddition reactions and identified three cyclic molecules and subsequent
decomposition products [20]. Their results are, however, based on the singlet potential
energy surface and are not directly correlated to the photochemistry of the C2H4–SO2
system. Therefore, it is not clear whether the cycloaddition reactions occur in a concerted
manner through the overlapped π orbitals upon photoexcitation.

In the present study, we explored the primary step of the photoreaction of the C2H4–
SO2 complex in a cryogenic matrix using infrared spectroscopy. Spectral signatures of
the photoproducts after UV irradiation have been compared with theoretical simulations,
similarly to our previous studies [21].

2. Materials and Methods
2.1. Experiments

An SO2 gas diluted by Ar (1:100) and gaseous ethylene were purchased from Tomoe
Shokai (Ohta-ku, Japan) and GL Sciences (Shinjuku-ku, Japan), respectively, and used with-
out further purification. C2H4 was diluted with Ar at various ratios. The SO2/Ar sample
was mixed with additional Ar to obtain more dilute samples. A typical concentration of
SO2/Ar and C2H4/Ar samples was guest: Ar = 1:760. The two samples were co-deposited
onto a CsI window separately through the twin-valve inlets [21]. The window temperature
was maintained at 10–30 K using a circulating helium refrigerator. Matrix-isolated species
were irradiated by a tunable UV light source obtained by the second harmonic generation
(SHG) of a pulsed dye laser (ND6000, Continuum, Dallas, TX, USA) or the fourth harmonic
generation (FHG) of Nd: YAG laser (Surelite-II, Continuum, Dallas, TX, USA) at 266 nm.
Typical fluences were 0.6~2 mJ/pulse for the SHG at 280–310 nm and 10 mJ/pulse for the
FHG. The wavelength region corresponded to the S1-S0 transition of SO2, the chromophore
of the C2H4–SO2 complex. Infrared spectra before and after the irradiation were recorded
with an FT/IR-6100 spectrometer (JASCO, Hachioji, Japan) to obtain the difference spec-
tra for each species. Details of the instrumentation have been described in our previous
articles [21,22].

The spectra thus obtained are presented in Figure 1. In the first stage of the as-
signment of photoproducts, we referred to online databases (NIST Chemistry WebBook,
PubChem) as well as a search engine (Google Scholar) to explore the vibrational spectra
of the potential molecules of the type CkHlOmSn (k ≤ 2, l ≤ 4, m ≤ 2, n ≤ 1). Most of
the candidate molecules do not have reported infrared data. We, therefore, carried out
extensive simulations of vibrational peaks theoretically, as described below.
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Figure 1. Difference spectra of the C2H4–SO2 system in Ar matrix after UV excitation in (A) 900–
1500 cm−1, (B) 1500–2000 cm−1, (C) 2000–2500 cm−1 and (D) 2500–3000 cm−1 regions. 
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2.2. Calculations

For the assignment of photoproducts, density functional theory (DFT) calculations
were carried out for candidate molecules with the formula CkHlOmSn (k ≤ 2, l ≤ 4, m ≤ 2,
n ≤ 1). For the C2H4SO2 molecules, 69 isomeric structures were constructed manually
using GaussView 5.0 and optimized at the semi-empirical PM6 level, followed by further
optimization at the B3LYP/6-31+G(d) level. Finally, the top 14 stable isomers were reop-
timized at B3LYP/cc-pVTZ. For smaller species, 42 molecules were subject to structure
optimization at the B3LYP/6-31G(d) levels of theory. Vibrational calculations for the op-
timized geometries were carried out to ensure that they are at energy minima. Details
of calculations are included in the Supplementary Information (SI). All calculations were
performed with the Gaussian suit (Gaussian09, Rev. A2 and Gaussian16, Rev. C01) [23,24].

3. Results and Discussion
3.1. Assignment of Observed Vibrational Peaks

As seen in Figure 1, photoproducts varied in accordance with the UV wavelength; at
λ < 290 nm, only one peak was observed at 1726 cm−1, and by-products such as CO2, CO,
and OCS were found at 2343, 2138, and 2046 cm−1, respectively. On the other hand, at
λ > 290 nm, four peaks became prominent at 947, 960, 1182, and 1195 cm−1. The constant
intensity ratio of the three peaks at 960–1195 cm−1 suggested that they originate from the
same species. Since a variation in the irradiation time (30 min to 1 h) did not change the
spectral pattern, it is reasonable to assume that these peaks were from primary products
and that the production of the secondary species was negligible. On the other hand, due
to the overlap and interference with the depletion of a parental C2H4 band (ν7), relative
intensities of the peak at 947 cm−1 could not be estimated quantitatively, and it was not clear
whether this peak originated from the same species as those in the higher wavenumber
region. Likewise, the carrier of the peak at 2920 cm−1 could not be identified.

At first glance, we suspected the peak at 1726 cm−1 to be assignable to glyoxal CHO-
CHO, in analogy with the previous experiment of the C2H4-O3 system [21]. On the other
hand, the peak at 1182 cm−1 seemed assignable to the ν2 band of dihydrogen sulfide
H2S [25] that is produced simultaneously.

C2H4 + SO2
hν→ CHO − CHO + H2S (1)

We expected that the wavelength dependence of the vibrational spectra could be
accounted for by the secondary photolysis of glyoxal [26] and H2S. However, it turned out
that the peak at 1182 cm−1 was too strong compared with the 1726 cm−1 band since the ν2
band of H2S was two orders of magnitude weaker than the C=O stretching band of glyoxal;
at the B3LYP/6-31G* level infrared intensities for these bands were calculated to be 4.9 and
165 km mol−1, respectively, according to the CCCBDB [27]. Supplementary experiments
with an ethylene isotopologue C2D4 gave us another aspect of assignments. The isotopic
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sample was purchased from Cambridge Isotope Laboratories (Andover, MA, USA) and
used without further purification. Figure 2 shows difference spectra for the photolysis of
the C2D4–SO2 system at 266 nm and 300 nm, with the same experimental conditions as the
normal species. We found that the 1726 cm−1 peak was redshifted to 1688 cm−1 and that it
was not consistent with reported infrared peak positions of fully deuterated glyoxal [28].
The spectral features in the 900–1500 cm−1 region showed an additional peak at 987 cm−1

for λ = 266 nm that could not be assigned to C2D2O2 either. The strong absorptions at 1182
and 1195 cm−1, on the other hand, remained unperturbed upon deuteration; two strong
peaks were located at 1164 and 1189/1190 cm−1. Such behavior is not consistent with the
isotopic shift of the ν2 band of dihydrogen sulfide. From these facts, we concluded that the
photolysis of the C2H4–SO2 system cannot be interpreted using the mechanism (1).
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Since there is no apparent mechanism that can account for the observed vibrational
features, we conducted an extensive search for the photoproducts. As briefly described in
the preceding chapter, 69 isomeric structures of the C2H4SO2 formula were constructed and
subjected to DFT calculations to simulate vibrational spectra. Simulated spectra for smaller
species (including sulfinic acid) did not match the observed spectral features; see Table
S2 in Supplementary Materials. In the first stage of this search process, we paid special
attention to the photoproducts at λ > 290 nm since the vibrational spectra contain several
peaks and are, thus, more informative than those in the photolysis at shorter wavelength
(just one peak at 1726 cm−1). The candidate molecules were then limited to those without
the C=O group. An initial guess for each candidate was modeled with GaussView, by
considering the usual valence scheme. Figure 3 shows the top ten stable isomers obtained
in the descending order of stability, and their simulated spectra are compared with the
observation in Figure 4.
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We found that the isomer VII (4-membered sultine, oxathietane 2-oxide) is the most
plausible candidate based on a good agreement of spectral patterns with experimental
observations in spite of its relatively low stability. One possible explanation would be that
the other (more stable) isomers (I–V) have separated O, S, and O moieties and, thus, require
large activation energy for bond breaking of SO2 molecule for production. As shown in
Figure 5, the spectra of photoproducts in the C2D4–SO2 system can also be accounted for by
deuterated isomer VII, and we can safely state that the photolysis of the C2H4–SO2 system
mainly proceeds in the following scheme at λ > 290 nm.
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observations in spite of its relatively low stability. One possible explanation would be that 

the other (more stable) isomers (I–V) have separated O, S, and O moieties and, thus, re-

quire large activation energy for bond breaking of SO2 molecule for production. As shown 

in Figure 5, the spectra of photoproducts in the C2D4-SO2 system can also be accounted for 

by deuterated isomer VII, and we can safely state that the photolysis of the C2H4–SO2 sys-

tem mainly proceeds in the following scheme at λ > 290 nm. 

C2H4 + SO2
hν
→  

(2) 
O S 

O 

(2)

A plausible reaction scheme is proposed in Figure 6, given the production of oxathi-
etane 2-oxide. In the electronic ground state, the C2H4–SO2 complex has a slipped parallel
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structure, as shown by FTMW studies [14,15]. Upon UV irradiation around 250–300 nm,
the SO2 moiety is excited into the S1 state and promptly relaxed into the triplet state via
intersystem crossings (ISC) [29–32]. The triplet SO2 has a biradical character and undergoes
an addition reaction to the unsaturated C=C bond of ethylene. The spin density of each
atom in the T1 SO2 can be estimated to be 0.85 for S and 0.57 for O, respectively, by DFT
calculations at the same level of theory. The addition reaction can take place at both S and
O atoms to produce two types of triplet biradical intermediates (A and B), as shown in
the broken rectangle. Actually, we optimized the structure of the C2H4–SO2 complex at
the T1 state and found that these two triplet biradical exist as energy minima, as shown
in the inset of Figure 6. Another T-shaped isomer where SO2 interacts with π-electrons of
ethylene directly was found rather unstable energetically. How do these intermediates relax
to cyclic molecules (VI or VII)? The optimized structure of each cyclic product in Figure 6 at
the T1 state is displayed in Figure 7. It shows that the intermediate A correlates to isomer
VII at the T1 state and can relax to isomer VII via ISC and phosphorescence. Since the
intermediate A is the most stable among the three isomeric structures in Figure 6, it seems
reasonable that the photoexcitation of the C2H4–SO2 complex via S1 state preferentially
leads to the isomer VII (oxathietane 2-oxide).
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Another possible route for the isomer VII formation is the [2+2] cycloaddition of C2H4
and electronically excited SO2 (S1), as suggested by Salta et al. [20]. We estimated this
reaction path as of minority due to the following reasons: Firstly, as we assumed in the
present study, the S1 state is rapidly relaxed into the T1 state. Secondly, the [2+2] concerted
reaction favors the parallel configuration of one of the S=O bonds with the C=C bond as
shown below, and it is quite different from the structure of the C2H4–SO2 complex. It
thus suggests that the cycloaddition would be slow due to the small Frank–Condon factor
upon photoexcitation.
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O S 
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(3)

On the other hand, in the case of large excess energy (at shorter UV wavelength), it
would be reasonable to assume that the triplet intermediates are subject to the S-O bond
breaking followed by hydrogen migration to produce noncyclic species, as shown in the
dotted rectangles of Figure 6. DFT calculations were carried out for the three potential pho-
toproducts, and the optimized structure for each rotamer is displayed in Figure 8. Spectral
matches for the photoproducts in the C2H4–SO2 and C2D4–SO2 systems in Figures 9 and 10
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seem favorable for the metastable isomer 1(2-hydroxysulfanylacetaldehyde) though the
reproduction of the spectral features remains qualitative. The final assignments of observed
peaks are listed in Table 1. Calculated frequencies for the candidate molecules obtained at
the highest level of theory (B3LYP/cc-pV(T+d)Z) show a reasonable agreement with the
observed peak positions after applying the appropriate scaling factor (0.965).
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Table 1. Observed vibrational peak positions and assignments.

Observed Peak
Position (cm−1)

Calculated Peak
Position (cm−1) a Assignment Vibrational Mode

C2H4–SO2

947 919 oxathietane 2-oxide CH2 twist

960 950 oxathietane 2-oxide C-O str

1182 1170 oxathietane 2-oxide S=O str + CH2 twist

1195 1177 oxathietane 2-oxide S=O str + CH2 twist

1726 1745 2-hydroxysulfanylacetaldehyde C=O str

2920 2945 oxathietane 2-oxide CH2 str

C2D4–SO2

920 909 oxathietane 2-oxide-d4 C-O str

973 949 oxathietane 2-oxide-d4 CD2 wag

987 924 2-hydroxysulfanylacetaldehyde-d4 CD2 wag

1080 1068 oxathietane 2-oxide-d4 CD2 wag

1164 1132 oxathietane 2-oxide-d4 C-C str

1189 1173 oxathietane 2-oxide-d4 S=O str

1190 oxathietane 2-oxide-d4 Fermi? b

1688 1724 2-hydroxysulfanylacetaldehyde-d4 C=O str

2079 2070 2-hydroxysulfanylacetaldehyde-4 C-D str

2189 2-hydroxysulfanylacetaldehyde-d4 Fermi? b

2190 2139 oxathietane 2-oxide-d4 CD2 sym str

2210 2226 oxathietane 2-oxide-d4 CD2 asym str
a. scaled wavenumber (factor 0.965) from the results at B3LYP/cc-pV(T+d)Z level of theory. b. These transitions
cannot be assigned to fundamental bands and are tentatively assigned to overtone/combination band borrowing
intensity via Fermi resonance.
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3.2. Comparison with Gas Phase Study

From rotational analysis of REMPI action spectra, Makarov et al. concluded that
molecular planes of SO2 and C2H4 became more parallel upon photoexcitation and that
the reaction products were C2H3 + HSO2 [19]. Their conclusion was based on the result of
an analogous system C2H2-SO2 [33] where an infrared emission spectrum of HSO2 was
observed after the UV excitation of the complex and mass spectrometry. They did not
mention other photoproducts, such as those in Figures 3 and 8. On the other hand, we
could not observe vibrational peaks of C2H3 nor HSO2 in the Ar matrix; spectroscopic
data for these species are well documented [34,35] and can be compared with the present
experimental results. These discrepancies may result from the following: Firstly, the
radical pathway suggested by them is a minor reaction channel resulting from H-migration
of the intermediate A. Secondly, these radicals originate from sequential photolysis or
fragmentation during the ionization of oxathietane 2-oxide, as shown below:
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Actually, a time-dependent DFT calculation of the oxathietane 2-oxide at B3LYP-D3/6-
31+G(d) level indicates the presence of the S1 state of this molecule at 280 nm above the
ground state and that it is resonant with the photolysis laser. Salta et al. proposed two
reaction pathways from oxathietane 2-oxide to smaller products but did not mention this
radical production [20].

Another discrepancy resides in the structure of the C2H4–SO2 complex in excited
states. The optimized structure at the T1 state (Figure 13 in [19]) is considerably different
from those in the inset of Figure 6 though they did not give any structural parameters for
that. As seen above, DFT calculations in this study are consistent with experimental results
and seem more reliable.

4. Conclusions

As shown in the preceding sections, the photoproducts of the C2H4–SO2 complex
in the Ar matrix upon UV excitation can be assigned to the 4-membered sultine (oxathi-
etane 2-oxid) and a related noncyclic molecule (2-hydroxysulfanylacetaldehyde), which
is consistent with the DFT calculations. More sophisticated calculations are required for
the elucidation of the detailed mechanism of the photoreactions, as has been shown by
Anglada et al. [36,37]. Correlated wavefunction methods, such as CASSCF, would be the
way to go since the single-determinant DFT formalism cannot describe well the near-
degenerate energy levels.

The influence of the matrix host on the reaction should also be addressed. One may
think that the difference between the results of the present study and that of [20] originates
from (at least partially) ‘cage effect’. In the present stage experimental results are consistent
with DFT calculation in vacuo, and the influence of cage effect seems negligible. Similar
experiments in other matrices (Ne and parahydrogen) would shed light on the influence of
the cage effect on the photoreaction of the C2H4–SO2 system.

Finally, we would like to point out different behaviors upon photoexcitation between
the C2H4–SO2 system and the C2H4–O3 system [21] in spite of the isoelectronicity of the
two oxidant molecules in the valence shell. The branching ratio of the two reaction paths
leading to the 4-membered sultine and the noncyclic aldehyde in the former system shows
remarkable and seamless UV wavelength dependence. On the other hand, photolysis in the
C2H4-O3 system does not show such dependence: two reaction products (ethylene oxide
and glyoxal) coexist throughout the 300–670 nm region [21]. These differences may be (at
least in part) correlated to the difference of the nonadiabatic couplings in these molecules;
spin-orbit coupling plays an important role in SO2 [29], whereas the vibronic couplings
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are prominent in O3. Such subtle differences in the primary photoreactions may lead to a
variety of SOAs with different compositions/properties originating from these two oxidant
molecules in the atmosphere.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29225362/s1, Figure S1: Stable isomers optimized at
PM6 calculations. Table S1: Results of DFT calculations on the C2H4SO2 species. Table S2: Results of
DFT calculations on the smaller species.
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