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3 Faculty of Chemical and Process Engineering, Warsaw University of Technology, 1, Waryńskiego Street,
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Abstract: An addition of carbon nanostructures to cement paste is problematic due to the difficulties in
obtaining homogenous mixtures. The paper reports on a more effective way of mixing carboxylated
multi-walled carbon nanotubes (MWCNT-COOH) in cement pastes. The additional biological
impact of the studied nanomodified cement was analyzed in the case of two moss species’ vitality.
The applied approach of obtaining a homogeneous mixture is based on intense mechanochemical
mixing of MWCNT-COOH together with polycarboxylate superplasticizer (SP). As a result, a more
homogenous suspension of MWCNT-COOH within a liquid superplasticizer, suitable for addition
to hydrophilic cement paste, was obtained. FT-IR/Raman spectroscopy was used for materials’
characterization. To explain the mixing process at the molecular level, systematic theoretical studies
using density functional theory (DFT) were performed. The structures, interaction energies and
IR/Raman vibrational spectra of model carboxylic acids, mixed with functionalized SWCNTs as
simplified models of real MWCNTs, were obtained. Due to the controversial opinions on the
environmental hazards of carbon nanostructures, additional in vivo studies were performed. In this
case, effects of cement modified by the addition of small amounts of MWCNT-COOH with SP in
comparison to the composite without carbon nanostructures and control subsoil on the vitality of
mosses Polytrichum formosum and Pseudoscleropodium purum were studied.

Keywords: multi-walled carbon nanotubes; superplasticizer; homogenization; FT-IR; Raman; DFT;
intermolecular interaction; mosses; vitality

1. Introduction

Properties of current composites based on cement are improved by the addition of
small amounts of various nanoparticles. However, the effect of these additives on the
physico-chemical properties of the high-performance final product is critically dependent
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on the applied particles’ and nanoadmixtures’ homogeneous distribution within the mix,
e.g., without their agglomeration [1].

There are several methods leading to homogeneous nanoparticle distribution without
agglomeration. For example, the parallel use of efficient superplasticizers, sonification and
fast mixing in cement mortar was reported [2]. However, mechanical mixing applied for
degradation of the formed agglomerates of nanoparticles is not efficient [3]. The introduc-
tion of nanoparticles to concrete mix in the form of water suspension with the application
of sonification is also an efficient way [4]. A detailed analysis of the effect of MWCNT
nanoparticles’ addition on mechanical properties of cement matrix was reported [5]. For
this reason, the design of new mixing methods is an important question in the production
of material with better qualities. From the above studies, it is apparent that the addition
of surfactants, which decrease surface tension and additionally show hydrophilic prop-
erties, supporting dispersion of partly hydrophobic MWCNT particles, is essential for
cement paste.

It is known that the introduction of carbon nanotubes and other ordered carbon mate-
rials into the cement mix and the preparation of homogeneous mixture are difficult due to
their agglomeration as well as transposition and annihilation between some clusters and/or
cells, strain–stress and inner surface topography. This process is partly controlled by the
formation of hydrogen bonds and, to some extent, the van der Waals interactions between
the functionalized nanocarbon particles [6] and therefore an efficient dispersion of carbon
nanoparticles in cement composites is necessary. This is achieved by using sonification and
applying surfactants, for example, sodium dodecyl benzene sulfonate [7], sodium dodecyl
sulfate [8], or an acid treatment [9], leading to functionalization of nanocarbon structures
with polar groups containing oxygen (including -OH and -COOH) [10].

There have been many studies on the formation of a covalent bond between MWCNTs
and various substituents, which provides changes in material hydrophilicity [9,11]. For
example, groups like -OH, -COOH, -NH2 and grafted long acryl chains were permanently
introduced to make carbon nanomaterials more hydrophilic, thus improving their mixing
and dispersion in water [12]. In our earlier reports [13,14] we analyzed theoretically the
structure and properties of functionalized single-walled carbon nanotubes (SWCNTs). On
the other hand, experimental nanocarbon characterization using vibrational spectroscopy,
including infrared (IR) and Raman techniques, is widely used [15,16]. There are several
basic works on the IR technique, as well as on its application for characterization of
organic systems including polymers [17–23]. Raman spectroscopy of single- and multi-
walled carbon nanotubes, graphite and graphene, including graphene oxide (GO) and
reduced graphene oxide (rGO), is also well documented [24–34]. Due to the polymeric
nature of the used superplasticizers, their structure can be analyzed using IR and Raman
techniques. Contrary to Raman studies, the presence of water nearly completely excludes
IR measurements. On the other hand, a versatile nuclear magnetic resonance (NMR)
technique is suitable for the study of polymers in water.

In the current study, we use a molecular modeling approach in order to obtain a deeper
insight into the role of small nanocarbon additions, including functionalized MWCNTs,
leading to the production of a homogenous nanocarbon suspension with superplasticizer.
This could finally lead to obtaining cement materials with improved properties. The most
important stage of the addition of carbon-containing (and other materials) nanofiller to
cement paste is related to homogenous suspension preparation of functionalized MWCNTs
or graphene in water. This is due to the fact that side walls of carboxylated nanotubes
are mainly hydrophobic and their ends are functionalized with polar -COOH and -OH
groups [15,16]. It is also known [15,16] that the amount of sidewall functionalization is
much smaller than at their terminals. Thus, we concentrated on preparation of a nanocarbon
suspension in superplasticizer for subsequent mixing with cement. In fact, the superplasti-
cizer acts as a kind of surfactant for carbon nanotubes [35].

It is known that hydrophobic interactions promote agglomeration of several nanotubes
and decrease their ability to mix with water. Additionally, as a result of strong hydrogen
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bonding, their ends could also stick together and hinder mixing with water [36]. However,
the addition of polymeric superplasticizer with several polar groups could lead to direct H
bond interactions with nanotube “hydrophilic hot spots”. Thus, the presence of superplasti-
cizer in the liquid phase enables formation of strong interactions between MWCNT-COOH
and long polymer chains, which additionally could wrap around the carbon nanotubes and
thus improve their mixing with water. This process is schematically shown in Figure 1. A
similar wrapping of long chains of polysaccharide (amylose) around carbon nanotubes was
observed earlier [36,37]. The beneficial role of polymeric surfactants with long hydrophobic
chains and polar heads in improving dispersion of carbon nanotubes was reported [35].
In a schematic cartoon, the authors [35] nicely explained the surfactant action by utiliz-
ing non-covalent dispersion interactions between non-polar surfactant chains with the
hydrophobic side of carbon nanotubes. We want to admit that in the current work we do
not study markedly weaker dispersion forces or interactions with -OH groups because
we postulate a significantly stronger interaction between hydrophilic -COOH and COO-
groups of the superplasticizer and “sensitive spots” of functionalized nanotubes. These
non-covalent interactions should result in better dispersion of carbon nanomaterials in
water (see Figure 1).
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Figure 1. Schematic diagram explaining the interaction between polar groups of superplasticizer and
carbon nanotubes, partly covered with carboxylic (and some hydroxyl) groups. Left, middle and
right schemes show three stages of interaction between superplasticizer and carbon nanotube.

In the current study, commercial polycarboxylate superplasticizer and MWCNT-
COOH [38,39] were characterized by Fourier transform infrared (FT-IR) and Raman spec-
troscopy. To explain the mixing process mentioned above at the molecular level, we decided
to use theoretical modeling within a framework of density functional theory (DFT [40–42]).
Another important aspect of the introduction of carbon nanostructures into building mate-
rials is environmental safety of the final composite. There are controversial opinions on
nanomaterials’ effect on the vitality of different living organisms. Some studies demon-
strate a negative influence of high concentrations of nanomaterials, but negligible changes
are observed for smaller amounts of graphene-based materials [43,44]. For this reason, a
biological study was carried out, analyzing the effect of pure cement paste and a paste
modified by the addition of MWCNT-SP on the photosynthetic activity of living organisms,
e.g., two species of mosses. These plants, as pioneer organisms, could be used to colonize
anthropogenic areas and combat the so-called “concretemania”.

Mosses (Bryophyta) are small eukaryotic non-vascular plants, which usually have no
internal transport system. They have a flowerless life cycle and form rhizoids as a primitive
analogue of a “true” root system. As pioneer organisms, mosses occupy urbanized areas, as
well as places where higher plants cannot survive due to high temperature (desert), altitude
or limited light (tundra) [45]. High resistance to stressful living conditions makes mosses
good candidates for biomonitoring of environmental pollution. The main advantages of
using these organisms as bioindicators are a lack of crust, i.e., moss tissues are readily
permeable to micro- and macronutrients, high cation exchange capacity and easy plant
material availability (their colonies grow relatively fast). Other advantages of studies with
moss research material are their low cost and short duration of experiments [46]. However,
there are some complications with biomonitoring using mosses. Colonization of these
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organisms is dependent on various factors such as humidity [47]. An example is green
roofs, where the depth of the substrate and the age of the roof have a dominant influence
on the structure of the plant communities on it. Thin substrates and young roofs support
sedum and moss species [48]. The moss layer transfer technique significantly increases
the presence of moss species that were introduced during restoration. The presence of
forest bryophyte species in spreading material increases their biomass in the restoration
site, even on a thick residual Sphagnum peat layer [49]. Another use for mosses in urban
areas is urban greening. They absorb and retain water, reducing surface water run-off, thus
protecting the area from flooding and drying [50,51]. Due to the high availability of mosses
in the urban environment they could be good model organisms for studying nanomodified
materials’ harmful effects. For this reason, it seems to be useful to investigate the effects of
MWCNT-modified cement paste on the viability of the mosses Polytrichum formosum Hedw.
and Pseudoscleropodium purum (Limpr) M. Fleisch. ex Broth. These species are often found
in European forests and could be transplanted, for example, into urban spaces.

2. Results and Discussion

FT-IR studies of carbon nanotubes and graphenes are extremely challenging due to
the presence of tightly bound water and the obtained spectra are noisy, broad and nearly
featureless. For brevity, an example of FT-IR spectra of MWCNTs is shown in Figure S1 in
the Supplementary Materials.

2.1. Superplasticizer Characterization by FT-IR Spectroscopy

In the first step, the applied superplasticizer was characterized using ATR and infrared
spectroscopy (see Figures 2 and 3). On the other hand, the ATR spectrum (see Figure 2),
which does not need sample preparation before measurement, included the main spectral
features preserved though some peaks were overlapped and shifted by a few wavenumbers.
The observed peaks of the superplasticizer from Figure 3 were tentatively assigned and are
gathered in Table 1.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 27 
 

 

living conditions makes mosses good candidates for biomonitoring of environmental 
pollution. The main advantages of using these organisms as bioindicators are a lack of 
crust, i.e., moss tissues are readily permeable to micro- and macronutrients, high cation 
exchange capacity and easy plant material availability (their colonies grow relatively fast). 
Other advantages of studies with moss research material are their low cost and short 
duration of experiments [46]. However, there are some complications with biomonitoring 
using mosses. Colonization of these organisms is dependent on various factors such as 
humidity [47]. An example is green roofs, where the depth of the substrate and the age of 
the roof have a dominant influence on the structure of the plant communities on it. Thin 
substrates and young roofs support sedum and moss species [48]. The moss layer transfer 
technique significantly increases the presence of moss species that were introduced during 
restoration. The presence of forest bryophyte species in spreading material increases their 
biomass in the restoration site, even on a thick residual Sphagnum peat layer [49]. Another 
use for mosses in urban areas is urban greening. They absorb and retain water, reducing 
surface water run-off, thus protecting the area from flooding and drying [50,51]. Due to 
the high availability of mosses in the urban environment they could be good model 
organisms for studying nanomodified materials’ harmful effects. For this reason, it seems 
to be useful to investigate the effects of MWCNT-modified cement paste on the viability 
of the mosses Polytrichum formosum Hedw. and Pseudoscleropodium purum (Limpr) M. 
Fleisch. ex Broth. These species are often found in European forests and could be 
transplanted, for example, into urban spaces. 

2. Results and Discussion 
FT-IR studies of carbon nanotubes and graphenes are extremely challenging due to 

the presence of tightly bound water and the obtained spectra are noisy, broad and nearly 
featureless. For brevity, an example of FT-IR spectra of MWCNTs is shown in Figure S1 
in the Supplementary Materials. 

2.1. Superplasticizer Characterization by FT-IR Spectroscopy 
In the first step, the applied superplasticizer was characterized using ATR and 

infrared spectroscopy (see Figures 2 and 3). On the other hand, the ATR spectrum (see 
Figure 2), which does not need sample preparation before measurement, included the 
main spectral features preserved though some peaks were overlapped and shifted by a 
few wavenumbers. The observed peaks of the superplasticizer from Figure 3 were 
tentatively assigned and are gathered in Table 1. 

 
Figure 2. Selected fragments of the ATR spectrum of superplasticizer (SP) with peaks labeled. Partly 
overlapped peaks are clearly visible. 
Figure 2. Selected fragments of the ATR spectrum of superplasticizer (SP) with peaks labeled. Partly
overlapped peaks are clearly visible.



Molecules 2024, 29, 5379 5 of 28Molecules 2024, 29, x FOR PEER REVIEW 5 of 27 
 

 

 
Figure 3. Selected fragments of the FT-IR spectrum of superplasticizer with peaks labeled. 

Table 1. Position (in cm−1) and tentative assignment of the FT-IR absorption bands a of the 
superplasticizer. 

Peak Wavenumber Assignment Structural Fragment 
1 3462 OH str -OH hydroxyl group 
2 2944 CH2(O) asym str -CH2(O) methylene group adjacent to oxygen 
3 2888 CH2(O) sym str -CH2(O) methylene group adjacent to oxygen 
4 ~2862 CH2 str -CH2- methylene group in polymer chain 
5 ~2806 CH str Methine group in polymer chain (near C=O) 
6 2741 2× CH2 sciss Overtone of the 1360cm−1 band 
7 2692 2× CH2 sciss Overtone of the 1343cm−1 band 
8 1728 C=O str  O=C-OR ester  
9 1705 C=O str O=C-OH carboxyl (acid) 
10 1578 COO− asym str -COO− carboxylate (salt) 

11, 12 1467, 1455 CH2, CH def CH2 and CH aliphatic methylene and methine 
13 1412 COO− sym str -COO− carboxylate (salt) 

14, 15 1360, 1343 CH2 sciss -CH2- methylene group in ethylene fragment  
16, 17 1280, 1242 CCO + C-O-C str O=C-OR ester  
18, 19 1149, 1110 C-O-C asym str H2C-O-CH2- ether  

20 1061 C-O (H/C) str C-O(H) C-O(C) bond in alcohols and esters 
21, 22 964, 948 CH2 rock -CH2CH2- ethylene fragment 

23 843 CCO bend -CH2CH2-O- oxyethylene fragment 
a Mode abbreviations: str (stretch), bend (bending), def (deformation), sciss (scissoring) (in-plane 
bending), sym (symmetric), asym (asymmetric), rock (rocking). 

The carbonyl stretching fragment (1800–1500 cm−1) of the FT-IR spectrum with partly 
overlapped peaks, shown in Figure 3, was carefully analyzed and the individual peaks 
were labeled. In order to assign more precisely the type of functional groups containing a 
carbonyl fragment on the superplasticizer FT-IR spectrum, a digital line fiĴing procedure 
(deconvolution) was applied. As a result, the positions of partly overlapped signals were 
determined. Examples of original spectral fragments and the resolved individual bands 
of neat superplasticizer alone and in the presence of 3% MWCNT suspension are shown 
in Figure 4A (left) and 4B (right), respectively. As result, it was possible to observe 
quantitatively the presence of carboxylic acids (-COOH at 1705 cm−1), esters (-COOR at 
1728 cm−1) and ionic salts (-COO− Me+ at 1575 cm−1) as fragments of SP molecules (Figure 
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Table 1. Position (in cm−1) and tentative assignment of the FT-IR absorption bands a of the super-
plasticizer.

Peak Wavenumber Assignment Structural Fragment

1 3462 OH str -OH hydroxyl group

2 2944 CH2(O) asym str -CH2(O) methylene group adjacent to oxygen

3 2888 CH2(O) sym str -CH2(O) methylene group adjacent to oxygen

4 ~2862 CH2 str -CH2- methylene group in polymer chain

5 ~2806 CH str Methine group in polymer chain (near C=O)

6 2741 2× CH2 sciss Overtone of the 1360cm−1 band

7 2692 2× CH2 sciss Overtone of the 1343cm−1 band

8 1728 C=O str O=C-OR ester

9 1705 C=O str O=C-OH carboxyl (acid)

10 1578 COO− asym str -COO− carboxylate (salt)

11, 12 1467, 1455 CH2, CH def CH2 and CH aliphatic methylene and methine

13 1412 COO− sym str -COO− carboxylate (salt)

14, 15 1360, 1343 CH2 sciss -CH2- methylene group in ethylene fragment

16, 17 1280, 1242 CCO + C-O-C str O=C-OR ester

18, 19 1149, 1110 C-O-C asym str H2C-O-CH2- ether

20 1061 C-O (H/C) str C-O(H) C-O(C) bond in alcohols and esters

21, 22 964, 948 CH2 rock -CH2CH2- ethylene fragment

23 843 CCO bend -CH2CH2-O- oxyethylene fragment
a Mode abbreviations: str (stretch), bend (bending), def (deformation), sciss (scissoring) (in-plane bending), sym
(symmetric), asym (asymmetric), rock (rocking).

The carbonyl stretching fragment (1800–1500 cm−1) of the FT-IR spectrum with partly
overlapped peaks, shown in Figure 3, was carefully analyzed and the individual peaks
were labeled. In order to assign more precisely the type of functional groups containing a
carbonyl fragment on the superplasticizer FT-IR spectrum, a digital line fitting procedure
(deconvolution) was applied. As a result, the positions of partly overlapped signals
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were determined. Examples of original spectral fragments and the resolved individual
bands of neat superplasticizer alone and in the presence of 3% MWCNT suspension are
shown in Figure 4A (left) and Figure 4B (right), respectively. As result, it was possible
to observe quantitatively the presence of carboxylic acids (-COOH at 1705 cm−1), esters
(-COOR at 1728 cm−1) and ionic salts (-COO− Me+ at 1575 cm−1) as fragments of SP
molecules (Figure 4A (left)). In addition, it was apparent from Figure 4A that the strong
band at 1635 cm−1 was due to the HOH bending mode of water. This band is missing in
Figure 4B. In principle, it could originate from moisture present in KBr while the band at
about 1660 cm−1 could originate from unsaturated and conjugated C=C groups, possibly
from MWCNTs.
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A simplified chemical structure of superplasticizer, as deduced from the analyzed
IR spectra (compare Figures 2 and 4 and Table 1), indicates the presence of three main
molecular fragments (building blocks):

(1) Acids (R-COOH),
(2) Salts (R-COO−),
(3) Esters (R-COOR’).

The surfactant properties of SP are due to its specific chemical structure formed by the
building blocks. Thus, the superplasticizer molecule is formed by long backbone chains
containing aliphatic methylene (-CH2-) and methine (-CH-) groups, e.g., -CH2-CH-CH2-
CH- fragments, and long side oxyethylene chains (-CH2-CH2-O-)n. Thus, it resembles a
comb polymer structure, analyzed theoretically in solid polymer electrolytes with hopping
lithium cation [52]. The main backbone chain of SP is non-polar while the side chains are
highly hydrophilic, in particular due to their carboxylic terminal groups. Therefore, the
applied SP shows the desired surfactant properties.

A detailed analysis of the measured infrared spectra of the applied superplasticizer
(see results in Figures 3 and 4 and Table 1) allows the conclusion that its molecules contain
methylene groups (CH2) belonging to the backbone chain which are visible at about
2862 cm−1. These moieties are formed by saturated polyacrylic fragments (-CH2-CH-CH2-
CH-)n and -CH2- units, directly bonded to oxygen atoms (-CH2-O-) in side polyoxyethylene
chains (see CH stretch vibrations at about 2944 and 2888 cm−1). In fact, the strongest band
in the IR spectrum of SP at 1110 cm−1 belongs to polyetheric fragments -CH2-O-CH2-.
Its high intensity suggests the presence of a very long polyetheric (-CH2-CH2-O-) chain,
containing dozens of units. By comparing the intensity of this C-O-C stretch vibration with
earlier reports [53,54], one could assume the presence of over 80 units forming the side
chain. Obviously, the non-polar, hydrophobic backbones of the superplasticizer polymer
will have an affinity for the non-polar, hydrophobic surfaces of carbon nanoparticles. On
the other hand, polar and strongly hydrophilic carboxylate groups of the sodium acrylate
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ionic salt -COO− Na+ and long hydrophilic poly(oxyethylene) chains will show affinity to
the water environment of the cement mix.

The structure elements discussed above and overall properties of superplasticizer
could lead to better dispersion of carbon nanoparticles in the aqueous environment of
cement mix.

2.2. Raman Spectroscopy of Neat Superplasticizer and with Added MWCNTs

The Raman spectra of neat superplasticizer, as well as with very small admixtures
of MWCNTs, are shown in Figure 5 and the tentative signal assignment is presented in
Table 1.

Molecules 2024, 29, x FOR PEER REVIEW 7 of 27 
 

 

2.2. Raman Spectroscopy of Neat Superplasticizer and with Added MWCNTs 
The Raman spectra of neat superplasticizer, as well as with very small admixtures of 

MWCNTs, are shown in Figure 5 and the tentative signal assignment is presented in Table 1. 

 
Figure 5. The Raman spectra of (A) neat superplasticizer and (B) SP + 3% MWCNTs. 

Raman spectra of the original superplasticizer (sample A) and with the addition of 3% 
MWCNTs (sample B) are shown in Figure 5. It is also worth mentioning a significant increase 
in the viscosity and fluorescence of superplasticizer containing very small amounts of carbon 
nanomaterial. Thus, it was challenging to analyze such Raman spectra and was necessary to 
apply baseline correction and line fitting procedures first. 

The IR and Raman data shown above provide complementary information. In particular, 
no MWCNTs are visible from IR data in samples containing small amounts of nanostructured 
carbon added to superplasticizer. However, Raman spectra in Figure 5 (sample B) clearly 
show characteristic D and G bands of nanostructured carbon materials at about 1346 and 1580 
cm−1. A similar ratio of D/G Raman bands was recently reported in cement paste containing a 
small amount of MWCNTs [55]. From the magnitude of the D band (D > G) we can conclude 
about the presence of significant structural disorder in the applied MWCNTs. In addition, in 
the range of 2440 to 3200 cm−1 several overtones and combination bands are observed due to 
the presence of carbon nanomaterial. In addition, Raman spectra of neat SP (sample A in Fig-
ure 5) reveal large signals due to CH and CH2 stretch modes in the range of 2850 to 2940 cm−1. 
This could be due to a repeated motif of methylene groups in oxoethyl- chains of superplasti-
cizer, forming a kind of comb polymer. 

In Table 2 the observed bands of superplasticizer (sample A) and SP in the presence of 
3% MWCNTs (sample B) are gathered and the tentative peak assignments given. The apparent 
lack of superplasticizer, as observed from Raman spectra of sample B, seems to be confusing 
(see Table 2). On the other hand, very small amounts of carbon nanotubes (only 3% MWCNTs) 
are clearly visible (see characteristic D, G bands and their overtones and combination bands). 
However, very similar spectra of carbon materials in polymers were reported in the literature 
[56–58]. 

Table 2. Vibrational bands a (in cm−1) in the Raman spectra of neat superplasticizer (sample A) and 
with addition of 3% MWCNTs (sample B). 

No 
A B 

Assignment 
Position Intensity Position Intensity 

1   3212 vw 2G 
2   2990 m D + G 
3 2937 sh   CH2(O) asym str 
4 2906 sh    
5 2884 vs   CH2(O) sym str 
6 2851 sh   CH2 str 
7 2731 w    
8 2693 w   2 × CH2 sciss 

Figure 5. The Raman spectra of (A) neat superplasticizer and (B) SP + 3% MWCNTs.

Raman spectra of the original superplasticizer (sample A) and with the addition of
3% MWCNTs (sample B) are shown in Figure 5. It is also worth mentioning a significant
increase in the viscosity and fluorescence of superplasticizer containing very small amounts
of carbon nanomaterial. Thus, it was challenging to analyze such Raman spectra and was
necessary to apply baseline correction and line fitting procedures first.

The IR and Raman data shown above provide complementary information. In par-
ticular, no MWCNTs are visible from IR data in samples containing small amounts of
nanostructured carbon added to superplasticizer. However, Raman spectra in Figure 5
(sample B) clearly show characteristic D and G bands of nanostructured carbon materials
at about 1346 and 1580 cm−1. A similar ratio of D/G Raman bands was recently reported
in cement paste containing a small amount of MWCNTs [55]. From the magnitude of the D
band (D > G) we can conclude about the presence of significant structural disorder in the
applied MWCNTs. In addition, in the range of 2440 to 3200 cm−1 several overtones and
combination bands are observed due to the presence of carbon nanomaterial. In addition,
Raman spectra of neat SP (sample A in Figure 5) reveal large signals due to CH and CH2
stretch modes in the range of 2850 to 2940 cm−1. This could be due to a repeated motif of
methylene groups in oxoethyl- chains of superplasticizer, forming a kind of comb polymer.

In Table 2 the observed bands of superplasticizer (sample A) and SP in the presence
of 3% MWCNTs (sample B) are gathered and the tentative peak assignments given. The
apparent lack of superplasticizer, as observed from Raman spectra of sample B, seems to
be confusing (see Table 2). On the other hand, very small amounts of carbon nanotubes
(only 3% MWCNTs) are clearly visible (see characteristic D, G bands and their overtones
and combination bands). However, very similar spectra of carbon materials in polymers
were reported in the literature [56–58].
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Table 2. Vibrational bands a (in cm−1) in the Raman spectra of neat superplasticizer (sample A) and
with addition of 3% MWCNTs (sample B).

No
A B

Assignment
Position Intensity Position Intensity

1 3212 vw 2G

2 2990 m D + G

3 2937 sh CH2(O) asym str

4 2906 sh

5 2884 vs CH2(O) sym str

6 2851 sh CH2 str

7 2731 w

8 2693 w 2 × CH2 sciss

9 2684 s G’ (2D)

10 ~2441 vw G*

11 1620 sh G2

12 1583 vs G (Tangential)

13 1480 m CH2, CH def

14 1397 vw

15 1346 vs D (Disorder)

16 1280 m CCO + C-O-C str

17 1233 vw CCO + C-O-C str

18 ~1220 vw

19 1142 m C-O-C asym str

20 1064 w C-O(H/C) str

21 843 m CCO bend

22 579 vw

23 534 vw

24 360 vw

25 276 w
a Mode abbreviations: str (stretch); bend (bending); def (deformation), sciss (scissoring) (in-plane bending); sym
(symmetric), asym (asymmetric); m (middle); w (weak); vs (very strong); vw (very weak) and sh (shoulder).

2.3. Theoretical Modeling of Superplasticizer Interaction with Carbon Nanotubes

In order to model structural fragments of superplasticizer, carbon nanotubes and their
mutual interactions, we decided to select two density functionals, BLYP and B3LYP, and
check their performance on several small molecules.

2.3.1. Performance of BLYP, B3LYPD3BJ and BLYPD3BJ Density Functionals in Predicting
Structure, Interaction Energy and Vibrational Parameters of Water Monomer and Dimer

Due to its small size, the water monomer is a convenient model for verifying the
performance of lower-level theoretical methods, including DFT, with respect to benchmark
CCSD(T) calculations [59]. The latter method is too expensive and will be used here only for
comparison. In addition, the current theoretical results on water monomer could be directly
compared with experiments in the gas phase [60], as well as with high-level theoretical
calculations at the coupled cluster level of theory [61]. It is known that BLYP and B3LYP
density functionals are able to model geometry and energy of hydrogen bonds, which are
dominated by electrostatic interactions. However, to account for long-range dispersion
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forces, also present as small components of H bonds, the use of empirical terms modeling
these interactions, for example, the GD3BJ term, introduced by Grimme, is recommended.
In our studies, we were interested in recovering the total electrostatic and dispersion effects
and we applied the B3LYPD3BJ and BLYPD3BJ functionals. In addition, small carboxylic
acids were selected as models of superplasticizer structure fragments. The possibility of
carboxylic groups interacting with sodium and calcium cations and with functionalized
carbon nanotubes was also taken into account.

For brevity, in Table S1 in the Supplementary Materials, geometrical and vibrational
parameters of water monomer are compared, predicted by BLYP, B3LYPD3BJ and BLYPD3BJ
density functionals, combined with a large and flexible aug-cc-pVTZ basis set against
experiment and benchmark CCSD(T) results [60,61]. It is apparent that the selected density
functionals predict very accurate OH bond length and HOH angle of the water monomer
which deviate from experiments by 0.050–0.015 Å and 0.04–0.6◦, respectively. Additionally,
the structure of water, predicted without and with the D3BJ dispersion term, is the same.
As expected, the benchmark coupled cluster method, combined with a large basis set [61],
reproduces the experiment very well.

It is known [62–65] that in routine molecular modeling calculations, the predicted
harmonic frequencies are not computationally expensive but, due to omission of anhar-
monicity, they significantly overestimate experiment. However, it is apparent from Table S1
that the water monomer wavenumbers of symmetric and asymmetric OH stretch and
HOH deformation modes are very accurately predicted in both high-level harmonic and
anharmonic CCSD(T) calculations (RMS < 3 cm−1). On the other hand, B3LYPD3BJ/aVTZ
calculations also produce acceptable and fairly accurate wavenumbers (RMS < 35 cm−1).
The corresponding BLYPD3BJ/aVTZ results are about five times worse. However, when
the latter results are “treated” as fundamental ones, they reproduce experimental results
extremely well (RMS ~1 cm−1).

Prediction of water dimer geometry and interaction energy allows both the determina-
tion of forces, which keep two H bonded monomers together, and its molecular structure.
However, with limited size basis sets, one has to take care about the basis set superposition
error (BSSE [66]), for example, by applying the counterpoise method (CP [67]).

The results of unconstrained optimization of linear water dimer, which is the most
stable one [68–74], using BLYPD3BJ and B3LYPD3BJ density functionals, combined with
the aug-cc-pVTZ basis set, are included in Figure S2. It is apparent that the geometrical
parameters calculated with both density functionals are very similar but the counterpoise-
corrected interaction energies, calculated with the former method, are significantly closer
to the benchmark CCSD(T) result (−4.94 vs. −5.02 kcal/mol [68], see Table S2). Very
accurate BLYPD3BJ interaction energies of H bonded dimers (close to CCSD(T) results) in
comparison to B3LYPD3BJ were also reported by Řezáč [75].

Apart from interaction energy, in Table S2 are also gathered structural and vibrational
parameters of water dimer, calculated with BLYPD3BJ and B3LYPD3BJ density functionals
and using the aug-cc-pVTZ basis set and compared with the available experimental and
benchmark coupled cluster results [65,68,69,76–80]. Obviously, the distances calculated
with BLYPD3BJ are somewhat longer than the corresponding B3LYPD3BJ ones but still
very accurate. It is also evident from Table S2 that both CCSD(T) and DFT methods predict
vibrational frequencies with lower accuracy than structural parameters. However, the
B3LYPD3BJ predicts water dimer wavenumbers about three times better than BLYPD3BJ.
Additionally, one has to remember that to obtain better agreement with the observed
IR/Raman data, the theoretical vibrations are often scaled [81].

2.3.2. Monomer and Dimer Properties of Formic and Acetic Acids

The next two briefly tested model molecules are formic and acetic acids. These
compounds have been studied using both experimental and theoretical methods [82–108].
The BLYPD3BJ and BLYP optimized structures of trans conformers of carboxylic acids,
which are the most stable ones, are shown in Figure S3. It is apparent from Table S3 that
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both BLYPD3BJ- and BLYP-calculated formic and acetic acid bond lengths very accurately
reproduce experiment and benchmark theoretical results (RMS deviations of 0.008–0.022 Å,
see [83,85,86,89–91,105]). In particular, the B3LYP results closely reproduce CCSD(T) data.
However, as expected, these results are somewhat worse than those obtained from very
expensive computations at both CCSD and CCSD(T) levels of theory [86,109].

The selected level of DFT theory (BLYP/aVTZ and BLYPD3BJ/aVTZ) is also able to
predict fairly accurate harmonic vibrations of formic acid monomer [86,89,91,105,110] and
the RMS deviations of about 31 cm−1 with respect to experimental IR and Raman data, as
well as benchmark coupled cluster results, are relatively small (see Table S4). However,
the corresponding VPT2-calculated RMS of about 96 cm−1 is very bad. Interestingly, the
harmonic vs. anharmonic values for B3LYP (and B3LYPD3BJ) show the opposite trend
(Table S4C, RMS of 68 and 22 cm−1). It is apparent from Table S4 that the harmonic BLYP
frequencies are over two times better than the B3LYP ones.

However, the accuracy of theoretical interatomic distances and vibrational frequencies
of formic acid monomer is lower than in the case of water monomer (see Tables S3 and S4).
On the other hand, the anharmonic (VPT2) frequencies calculated by BLYP and BLYPD3BJ
density functionals are unacceptable (RMS of ~100 cm−1, see Table S4B).

The BLYP-optimized structure of a typical formic acid dimer, formed by two neutral
formic acid molecules, together with indicated bond lengths without and with inclusion of
dispersion, is shown in Figure 6A. The cyclic dimer is held by two BLYP- and BLYPD3BJ-
estimated H bonds differing by only ~0.03 Å.
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The other “mixed” formic acid dimer is formed by its anion and a neutral molecule
(Figure 6B). The BLYPD3BJ- and B3LYPD3BJ-calculated interatomic distances are also
shown in the scheme. Very short H bonds indicate strong interactions.

As before, both BLYPD3BJ and BLYP density functionals predict similar (but not
identical) formic acid dimer interatomic distances (see Figure 6A and Table S6) and very
accurately reproduce coupled cluster [86] and experimental results [90,105] (deviation of
0.01–0.03 Å). However, there is a significant difference in the optimized structure shown in
Figure S2B, predicted by BLYP and BLYPD3BJ density functionals. In other words, upon
inclusion of dispersion effects, the H atom is more localized at one formate molecule and
the other shows a more pronounced carboxylic anion structure. Thus, the former functional
predicts the carboxylic H atom exactly in the middle between two oxygen atoms (H· · ·O of
1.2313 Å) and the O· · ·O separation is 2.4574 Å. The latter density functional produces an
asymmetric H bond with the H atom localized closer to one oxygen atom (O· · ·H distances
are 1.1734 and 1.2974 Å). Additionally, the O· · ·O distance is slightly shorter (2.4654 Å).

There are 24 normal modes of formic acid dimer [86,94–96,110]. Both density func-
tionals predict its vibrational frequencies reasonably well with RMS deviations from 20 to
40 cm−1 (Tables S7 and S8). However, the inclusion of an empirical dispersion term slightly
deteriorates the accuracy of the predicted vibrations.
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A very similar structure to formic acid dimer was obtained for acetic acid dimer
(Figure S4), too. The corresponding harmonic and anharmonic frequencies for acetic acid
dimer, calculated with BLYP and B3LYP density functionals (with and without the GD3BJ
term), are gathered in Table S9. In this case, B3LYP predicts some anharmonic vibrations
higher than the corresponding harmonic ones.

It is known that both formic and acetic acids form very strong dimers which are
also present in the gas phase [93]. Thus, it was interesting to calculate the corresponding
interaction energies holding two monomers in a dimer (see Table 3).

Table 3. Raw and CP-corrected interaction energy (in kcal/mol) of formic and acetic acid dimers. The
magnitude of dispersion and BSSE are also evaluated.

Method Interaction Energy Dispersion % Dispersion BSSE

Formic acid dimer

Optimized and SP calculated with 6-31+G*

BLYP (raw) −17.23
1.19

BLYP (CP) −16.04

Optimized with 6-31+G*, SP calculated with aug-cc-pVTZ

BLYP (raw) −17.41
0.23

BLYP (CP) −17.18

Optimized with 6-31+G*, SP calculated with aug-cc-pV5Z

BLYP (raw) −17.34
0.02

BLYP (CP) −17.32

Optimized and SP calculated with aug-cc-pVTZ

BLYP (raw) −17.53
0.25

BLYP (CP) −17.28

BLYPD3BJ (raw) −20.89 −3.36 16.08
0.26

BLYPD3BJ (CP) −20.63 −3.35 16.24

B3LYP (raw) −18.42
0.26

B3LYP (CP) −18.16

B3LYPD3BJ (raw) −21.15
−2.73

12.91
0.26

B3LYPD3BJ (CP) −20.89 13.07

CCSD(T)/aTZ a −19.7

CCSD(T)/CBS b −18.61

Acetic acid dimer

Optimized and SP calculated with aug-cc-pVTZ

BLYP (raw) −18.36
0.29

BLYP (CP) −18.07

BLYPD3BJ (raw) −22.00 −3.64 16.55
0.30

BLYPD3BJ (CP) −21.70 −3.63 16.73

B3LYP (raw) −19.20
0.29

B3LYP (CP) −18.91

B3LYPD3BJ (raw) −22.16
−2.96

13.36
0.29

B3LYPD3BJ (CP) −21.87 13.53

CCSD(T)/aTZ a −20.8

Lit. b −14.16
a Single-point CCSD(T) on MP2/aug-cc-pVTZ geometry, from ref. [104]; b CCSD(T)/CBS(aTZ,aQZ) result, from
ref. [111].
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The benchmark interaction energy for trans-formic acid dimer calculated at the CCSD(T)/
CBS level of theory is −18.753 kcal/mol [94,112,113]. From the energy difference between
BLYP and BLYPD3BJ results, it was possible to see a significant contribution of dispersion
in the total interaction energy (14 and 20% for formic and acetic acid dimers). It was
observed that the accuracy of structure optimization has a small effect on the value of the
interaction energies. Higher-level theory interaction energies, such as aug-cc-pVTZ and
aug-cc-pV5Z, differ only a little. It is worth noticing that our BLYP result for formic acid
dimer is close to benchmark coupled cluster results. Interestingly, for the applied aug-cc-
pVTZ basis set, a fairly small BSSE was calculated (about 0.25–0.30 kcal/mol). Single-point
CCSD(T) calculation with a very large basis set (aug-cc-pV5Z) indicated a very small basis
set superposition error (0.02 kcal/mol).

2.3.3. Performance of BLYP, B3LYPD3BJ and BLYPD3BJ Density Functionals in Predicting
Structure, Interaction Energies and Vibrational Frequencies of Formic and Acetic Acid Salts
with Na+ and Ca2+

Molecules of superplasticizer could strongly interact with polar groups of carbon
nanotubes forming typical carboxylic dimers R-COOH . . .. HOOC-R’ or partly ionized
R-COOH· · · (OOC-R)− ones. Obviously, the presence of metal cation Me+ will lead to
differently charged structures like R-COO-Me+-OOC-R. The structure patterns of metal
carboxylates depend on the type of cation [114] and the dominating structures for sodium
and calcium are structures A and C, respectively (see Scheme 1).
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Scheme 1. Observed patterns for metal carboxylates: (A) ionic systems and (B–D) with more covalent
and coordinated character.

In our systems, both Na+ and Ca2+ cations are present [114]. First, the compounds
containing formic and acetic acid dimers without coordinated water or hydrated dimers
are considered.

Anhydrous calcium and sodium formates (Figure 7) contain two perpendicular COO−

groups. This arrangement of atoms allows minimization of repulsion between negative
oxygen atoms.

In our systems containing superplasticizer, carbon nanotubes and cement components,
both Na+ and Ca2+ cations are present. In the subsequent stage of modeling, first their
anhydrous salts of formic and acetic acids and then the hydrates are considered.

Anhydrous calcium and sodium formate dimers (Figure 7) show two COO− groups
which are oriented perpendicularly to each other to minimize repulsion of negatively
charged oxygen atoms.

A more realistic model of calcium and sodium formate should contain solvent in
their first hydration sphere. Taking into account available coordination numbers (CNs) of
calcium (from 4 to 9 [114]), we arbitrarily chose the structure with CN = 6 and 7. Therefore,
three water molecules could be located in the first hydration shell. The B3LYPD3BJ/aug-
cc-pVTZ-optimized structure of Ca(OOCH)2(H2O)3 in the gas phase is shown in Figure 8.
Water molecules are additionally stabilized by a network of H bonds which also include
a water donor hydrogen atom and acid oxygen as a proton acceptor (Hd· · ·Oacid). The
calculated H bond lengths are short (1.97–2.08 Å) and indicate fairly strong interactions.
The separation between calcium cation and water oxygen atoms is within a range from 2.43
to 2.49 Å. A typical ionic structure with a calcium atom located between two carboxylic
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oxygen atoms of both formate anions is predicted with Ca· · ·O distances from 2.35 to
2.47 Å.
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molecules (aug-cc-pVTZ-X2C basis set for calcium).

In the case of superplasticizer, which contains both protonated and deprotonated
carboxylic groups and sodium cations, we could expect formation of mixed dimers and
salts. Using formic acid as a simple model, structures of mixed formic acid–formate
anion (Figure 8B) and mixed sodium formate salt were optimized (Figure 9). The first
structure indicates a typical symmetric dimer with a hydrogen atom shared by both formate
groups. The O· · ·H· · ·O bridges are very short and strong (1.2313 Å). Thus, the raw and
CP-corrected interaction energies are −49.84 and −49.60 kcal/mol.
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In the case of mixed salt, a strong H bond between the H5 atom of formic acid and
the O8 atom of the formate anion is also formed (1.56 Å). The sodium cation is closely
connected to three oxygen atoms (O9, O8 and O3 with separations of 2.28, 2.28 and 2.35 Å).

Calcium hydroxide is a type of small molecule, which are very important for cement
chemistry. It is a linear molecule but some earlier DFT calculations reported an angle of
O-Ca-O smaller than 180 degrees [115]. The B3LYP/6-311++G(3df,3pd) bonds and O-Ca-O
angle are 2.038, 0.953 Å and 170o, respectively. However, the MP2 results indicated a linear
structure with bonds of 2.046 and 0.953 Å. The mentioned discrepancies are due to the fact
that Ca(OH)2 is a very computationally demanding chemical compound [116].

To clarify the above results, we optimized the calcium hydroxide structure using
density functional B3LYP and compared it with our high-level coupled cluster results.
The optimized linear structure of Ca(OH)2, calculated with the all-electron (ae) CCSD(T)
method, combined with the aug-cc-pVTZ basis set for O and H atoms and aug-cc-pVTZ-
X2C for Ca, is shown in Figure 10. Interestingly, in our study, the B3LYP with the same
basis sets predicted very similar bond lengths (2.0298 and 0.9533 Å) of the linear molecule
with all positive harmonic frequencies. Ca(OH)2 was additionally optimized with larger
and more flexible basis sets (aug-cc-pVQZ, aug-cc-pwCVQZ and aug-cc-pwCVQZ-X2C
for H, O and Ca atoms) using SCF-HF, B3LYP and MP2 methods. These calculations also
resulted in linear structures with all positive wavenumbers and CaO and OH bond lengths
of 2.0461 and 0.9322, 2.0298 and 0.9533, 2.0209 and 0.9526 Å, respectively.
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However, the B3LYP/aug-cc-pVTZ calculations resulted in a slightly non-linear
molecule with Ca-O-H and O-Ca-O angles of 179.29 and 176.88º and Ca-O and O-H bond
lengths were 2.0352 and 0.9547 Å, respectively. In addition, one negative frequency was
observed (−53.03 cm−1), indicating the presence of transition (TS) instead of a ground state.
In conclusion, our DFT, MP2 and CCSD(T) values are close to benchmark CCSD(T)/aug-cc-
wCVQZ results reported by Radom and coworkers (2.036 and 0.952 Å) [116].

2.3.4. BLYPD3BJ Modeling of Superplasticizer Fragment Structures

A superplasticizer, in particular the polycarboxylate type, acts as the surfactant in
cement paste, but it could also significantly improve mixing of nanocarbon material with
water. Its action is directly related to its molecular structure, partly reflected in the corre-
sponding IR and Raman spectra (see Figures 2 and 4A).

However, due to the large size of polymeric superplasticizer molecules, we arbitrarily
selected (and named) three distinct structural fragments for subsequent theoretical analysis:

(A) Acid (14 atoms),
(B) Salt (a carboxylate anion, 13 atoms),
(C) Ester (24 atoms).

These structures contain two methyl groups representing the main polymeric chain.
The molecules of acid, salt and ester shown below were fully optimized at the B3LYP/aug-
cc-pVTZ level of theory (see Figure 11).
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Figure 11. Optimized models of superplasticizer building blocks: (A) Acid, (B) Salt (or a carboxylate
anion) and (C) Ester.

It is worth mentioning that, in recent studies, direct interactions between formic acid
dimer and (6,6) and (8,8) SWCNTs using DFT and MP2 calculations were reported [108].
However, the authors modeled a small molecule (formic acid dimer) confined inside the
carbon nanotube. It was observed that, in the case of intermolecular interactions with
graphene-based materials, the model size had no significant effect on energy value [117].
For this reason, it is likely that the interactions of the SWCTs with small SP models will not
significantly affect the quality of the obtained results and their interpretation.

2.3.5. Structure of Model Zigzag (5,0) SWCNT-COOH

Due to the complexity of modeling multi-walled carbon nanotubes, a single-walled
nanotube model was used in this work. It is worth noting that in the context of the
interaction of the mentioned nanomaterial with a superplasticizer, hydrophilic substituents
play a key role, so replacing the MWCNT by an SWCNT does not significantly affect the
quality of the obtained results. In the case of fairly large carbon nanotubes, containing
76 atoms, to decrease the computational demands, we reduced the size of the basis set
from aug-cc-pVTZ to 6-311++G**. Side and top views of a fully optimized B3LYPD3BJ/6-
311++G** zigzag (5,0) SWCNT structure, substituted with single carboxyl groups at both
ends, are shown in Figure 12. Additionally, all free valences at both ends of the SWCNT are
capped with hydrogen atoms.
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Additionally, the corresponding theoretical IR and Raman spectra, predicted for the
model SWCNT-COOH molecule, are also shown in Figure 12B and 12C, respectively. Unfor-
tunately, the quality of experimental IR spectra of SWCNT-COOH is low and not suitable
for a meaningful comparison (Figure S1). For easier comparison with the experiment (see
Figure 5B), the Raman spectrum in Figure S5 is plotted using 20 cm−1 line broadening.
For brevity, the theoretical Raman spectrum of this model is also shown in Figure 12C
with default line broadening of 4 cm−1 preserved. The theoretical Raman spectrum clearly
indicates bands due to -COOH vibration at 3735 and asymmetric stretch CH at about
3267 cm−1. In addition, the predicted C=C vibrations at 1583 and 1371 cm−1 of the SWCNT
model are present in the range of G and D bands observed in our recorded Raman spectra
(compare Figures 4B and 13). However, the contribution ratio of –COO− groups in real
samples is significantly smaller than that from the aromatic rings. Thus, in experimental
spectra aromatic carbon fragments vibrations dominate.
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Figure 13. Optimized B3LYP/6-31+G* structure of model fragment of zigzag (5,0) SWCNT-COOH
interacting with HCOOH.

2.3.6. Model Zigzag (5,0) SWCNT-COOH Interaction with a Carboxylic Acid

As shown in the previous sections, the -COOH functional groups could strongly bind
with polar fragments of superplasticizer and subsequently wrap it around the SWCNT (see
Figure 1). Thus, in the theoretical stage of our study we modeled H bond type interaction
between our model of a functionalized carbon nanotube and formic acid. The latter
compound is selected as the smallest but feasible for calculation model of superplasticizer
(Figure 13). Nevertheless, such calculations for a molecular system containing 76 atoms
were fairly demanding. Thus, we significantly limited the basis set size and used the Pople
type 6-31+G* one. As a result of the calculations, a stable structure was obtained (Figure 13).

In order to estimate the interaction energy of this model, we performed additional
single-point counterpoise calculations. As expected, the raw and CP-corrected energies
were about −21.98 and −20.63 kcal/mol, respectively. This result supports a strong interac-
tion between the functionalized single-walled carbon nanotube and superplasticizer.

In real samples of superplasticizer and MWCNTs, the H bond interaction takes place
for a large number of -COOH groups and the total interaction energy is significantly
higher. These interactions result in the formation of stable SP-MWCNT complexes with a
specific spatial arrangement. In this case, lone SP hydrophilic groups do not contribute to
intramolecular bonds and become more accessible for interactions with the environment.
Thus, our theoretical model supports strong interactions between SP and MWCNT-COOH
that result in improved mixing with water.

2.4. Biological Tests

Descriptive statistics for the PSII photosynthetic activity of the two moss species are
summarized in Table 4.
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Table 4. Basic statistical parameters of photosynthetic activity values of bryophytes.

Species Sample Mean Median Min–Max Geom.
Mean

Harmonic
Mean SD Variance Range Skewness Kurtosis Sum

Pf

Control 0.614 0.670 0.147–0.747 0.590 0.552 0.142 0.020 0.600 −1.60 1.88 49.7

Cement 0.695 0.724 0.218–0.796 0.687 0.673 0.087 0.008 0.578 −3.43 13.7 56.3

MWCNT-
Cement 0.696 0.721 0.358–0.761 0.691 0.685 0.074 0.005 0.403 −2.38 5.97 56.4

Pp

Control 0.602 0.664 0.142–0.740 0.564 0.499 0.162 0.026 0.598 −1.81 2.44 48.7

Cement 0.471 0.492 0.135–0.746 0.417 0.353 0.200 0.040 0.611 −0.365 −1.20 38.2

MWCNT-
Cement 0.554 0.621 0.130–0.766 0.510 0.448 0.182 0.033 0.636 −1.00 −0.181 44.9

Data presented in Table 4 show the variation in values between samples and species.
Figure 14 shows substrate influence on both species’ photosynthetic activity.
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Figure 14. Comparison of photosynthetic activity between individual samples in the species Poly-
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The statistical significance of these values is presented in Table 5 and it shows differ-
ences between samples within and between species.

Table 5. Statistically significant differences between substrate types and their effect on PSII values
(non-parametric Mann–Whitney U test) a.

Data
Sum.Rang Sum.Rang U Z p Z Correct. p

Pf

Control vs. cement 4895 8308 1574 −5.71 *** −5.72 ***

Control vs. MWCNT-cement 4944 8259 1623 −5.55 *** −5.55 ***

Cement vs. MWCNT-cement 6643 6560 3239 0.137 0.891 0.137 0.891

Pp

Control vs. cement 7918 5285 1964 4.41 *** 4.41 ***

Control vs. MWCNT-cement 7100 6104 2783 1.67 0.096 1.67 0.096

Cement vs. MWCNT-cement 5769 7434 2448 −2.79 ** −2.79 **

Pf vs. Pp

Control vs. cement 6729 6474 3153 0.425 0.671 0.425 0.671

Control vs. MWCNT-cement 9035 4168 847 8.15 *** 8.15 ***

Cement vs. MWCNT-cement 8588 4615 1294 6.65 *** 6.65 ***
a Bold values indicate statistical significance at the level of: ** p < 0.01, *** p < 0.001.

As can be seen from Table 5, data for both species within different substrates and
between species show different statistical significances based on the kind of substrate. For



Molecules 2024, 29, 5379 18 of 28

the moss “Pf”, data from control conditions differ from the other substrate types. However,
there are no statistically significant differences between cement vs. MWCNT-cement
composites. In the case of Pp moss, the relationship is slightly different. In particular,
the type of substrate, e.g., cement vs. MWCNT-cement, influences statistically significant
differences in the PSII photosynthetic activity values of the species. The difference is also
apparent from the comparison of these values between the species, where we can also see
differences at the p < 0.001 level between cement and Pf vs. cement and Pp and carbon
nanotubes and Pf vs. carbon nanotubes and Pp.

Environmental factors have an important influence on the plant (including moss)
life cycle [118]. For example, the impact of temperature and light intensity can directly
influence the chlorophyll content, the photosynthetic rate in mosses and thus photosynthetic
activity, e.g., in peat mosses [119,120]. The type of substrate used also plays a key role in
the growth and development of mosses [121]. As shown in Table 4 and Figure 14, both
species, depending on the substrate, showed variable photosynthetic activity during the
two-month-long experiment. The fact that the mosses maintain their vitality may be related
to their entry into cryptobiosis. Throughout their life cycle they are able to vegetate in
this way for a very long time [122]. The established cut-off value is 0.1 [123]. Below this
value, mosses should only be considered as a natural pollutant sorbent and not as a living
bioindicator and organism. As indicated by the results of our analyses, no values < 0.1
were recorded during the study period. However, there is a noticeable difference between
species (see Figure 14), as confirmed by a statistically significant difference (Table 5). This
indicates a variable adaptation mechanism of each species to a change in living conditions
(transfer from natural ecosystem to artificial conditions). Despite the provision of relatively
constant conditions for functioning (humidity, light intensity, photoperiod), the mosses
were characterized by variable photosynthetic activity, which may reflect the individual
response of each moss during the measurements. Differences are seen relative to the used
substrates on which mosses live.

3. Experimental
3.1. Materials

In this study, we used a commercial polycarboxylate superplasticizer (BASF, see
Figure S6) (“Master Glenium ACE 420” as 30% solution in distilled water) as a surfactant to
form a homogeneous mixture of multi-walled carbon nanotubes (MWCNTs). Raw multi-
walled carbon nanotubes (MWCNTs) with the trade name CTUBE 100 from CNT Co., Ltd.
(Suwon-si, Republic of Korea, provided in 2015) were used (see Figure 15).
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The nanotubes were synthesized by thermal vapor deposition (thermal CVD) and
characterized by several techniques, including TEM, SEM, elemental analysis, EDX, FT-IR,
Raman spectroscopy and electron spectroscopy methods [39]. The diameter of the used
MWCNTs was from 20 to 40 ± 10 nm and their length from 1 to 10 µm [39] (see Figure 15A
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showing TEM image of bundled MWCNTs and an enlarged fragment of a single tube in
Figure 15B). Thus, MWCNTs were characterized by a large length-to-diameter ratio and
their ends were carboxylated which facilitated their binding to cement grains via formation
of MWCNT-COO- - - Ca2+- (cement grain) ionic bonding [55] and non-covalent hydrogen
bonds of -COOH - - - HO- (cement grain). This leads to long, bundled “anchor” nanotubes
and bridging small cracks. The used multi-walled carbon nanotubes were carboxylated
(MWCNT-COOH) mainly at their ends. However, for convenience, in the following parts
of the study we refer to them as MWCNTs.

Cement composites for biological tests were prepared using CEM I 42.5 R (CEM I)
cement from Odra Cement Plant in Opole (Poland).

3.2. Biological Materials

Two moss species were used in the biological study: Polytrichum formosum Hedw.
(Pf) and Pseudoscleropodium purum (Limpr) M. Fleisch. ex Broth. (Pp). Plant material
was collected at the beginning of July 2024 from forests in Opole Voivodeship in the Bory
Niemodlińskie region of the Prószków Forest District near the cities of Prószków and
Jaśkowice (N50.581981, E17.825761 and N50.582360, E17.825151). Mosses were sampled in
open areas, at least three meters from the nearest tree crown, from the ground, according to
the ICP Vegetation protocol guidelines [124]. The collected samples were transported to
the laboratory using the transplant method [125].

3.3. Methods
3.3.1. Preparation of Suspensions of MWCNTs in the Superplasticizer

In general, it is not easy to prepare a uniform mixture of carbon nanomaterial and
cement. As result of several tests, we decided to first make a homogeneous mixture of
MWCNTs in liquid superplasticizer (see Figure S7). In other words, a kind of mechano-
chemical method was used to make a homogenous mixture of partly hydrophobic carbon
nanotubes in a water environment. A three-roll mill (EXAKT 80S) was used to prepare
suspensions of carbon nanomaterials in the superplasticizer. The grinding process was
carried out with a minimum gap of 5 µm between the rolls. This process was carried out
until a homogeneous suspension was obtained (after three rolling cycles).

A suspension of MWCNTs in superplasticizer was prepared with the above method.
FT-IR and Raman characterization was performed for the superplasticizer (SP) and
SP + 3% wt. MWCNTs.

3.3.2. FT-IR Spectroscopy

The applied superplasticizer was studied using FT-IR spectroscopy in the form of a
thin liquid film between two KBr pellets. It was possible to measure samples of MWCNTs
suspended in SP in the form of KBr pellets (5 mg/500 mg KBr, like for typical IR mea-
surements of solid state samples). All FT-IR spectra were obtained in the range of 4000 to
400 cm−1 using a Thermo Nicolet Nexus spectrometer and with a resolution of 2 cm−1.

In addition, for fast characterization of the studied samples, the attenuated trans-
mission reflectance (ATR) spectra were also recorded. The ATR spectra show the main
features of FT-IR spectra though their resolution is significantly lower (close signals are
more overlapped with slightly shifted peak positions).

3.3.3. Raman Spectroscopy

A Raman confocal Alpha 300R microscope with an Olympus 50x/0.50 long working
distance objective was used to collect spectra in the spectral window of 150–4000 cm−1.
The laser beam with a wavelength of 532 nm and a power of 1.5 mW was focused on a
small area of the sample and the Raman signal, recorded with a 1s acquisition time, was
acquired 200 times.

Raman spectra were measured from small amounts of oily and very thick liquid
superplasticizer and its suspension containing 3% MWCNTs.
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A flat baseline and good-quality spectrum of superplasticizer (with high signal-to-
noise ratio) was observed. However, the addition of MWCNTs resulted in strong fluores-
cence of the sample and the spectra were recorded with a highly raised baseline. Thus,
to obtain meaningful spectra it was necessary to perform digital baseline correction prior
to analysis.

3.4. Computational Details

All calculations were performed using the Gaussian 16 C.01 program [126]. Obviously,
the size of a real system is too big for molecular modeling and, therefore, the selection of
smaller but reasonable models is essential [62]. It was also important to choose proper
theoretical tools [62]. Due to its efficiency in predicting accurate structures, energies
and spectroscopic parameters, we selected DFT and applied the B3LYP hybrid density
functional [42,127–129]. In addition, in some cases we also used an older, “pure” density
functional—BLYP [127,130]. In our earlier works we noticed that this functional works
somewhat faster and provides improved vibrational frequencies but predicts slightly less
accurate geometry [131,132]. Models of superplasticizer and carbon nanotubes, selected
for calculations, are fairly large. Thus, we decided to start an unconstrained optimization
of geometry with a very small basis set, 3–21G, first and subsequently used larger ones
(6-31G*, 6-311++G** and in some cases also aug-cc-pVTZ, subsequently abbreviated as
aVTZ) [62,133–136]. It should be noticed that due to the presence of multiple bonds and lone
electron pairs in structures of our models, the use of basis sets containing both polarization
and diffuse functions is essential [62,133–136]. Additionally, to account for weak long-range
dispersion interactions we also implemented the recently introduced Grimme’s empirical
term GD3 [137] with Becke–Johnson dumping correction BJ [138].

In order to verify the selection of two density functionals and empirical correction
of dispersion, we initially checked their performance on two small molecules and their
homodimers—water and formic acid. In the next step, we modeled the structure and H
bonding interactions between the two simplest protonated and deprotonated carboxylic
acids and their interactions with sodium and calcium cations. Finally, we analyzed the inter-
actions between fragments of carboxylated single-walled carbon nanotubes and fragments
of superplasticizer molecule. Obviously, the use of the MWCNT model is significantly
more computationally expensive and therefore it was not modeled in the current study.

3.5. Composite Preparation for Biological Studies

Cement composites for biological tests were prepared and their composition is shown
in Table 6.

Table 6. Compositions (in g) of studied cement probes.

Composite CEM I Water MWCNT-SP

Cement 250 300 -

MWCNT-Cement 250 300 2.75

3.6. Biological Studies

In the laboratory, mosses were re-identified to ensure species homogeneity, using
a SZ61 microscope (Olympus, Tokyo, Japan) and an IPOS-810 (Delta Optical, Gdańsk,
Poland). The process was carried out in the research section of the International Research
and Development Center of the University of Opole (MCBR UO). The experiment was
conducted in the FITO-R phytotron rack (Biogenet Ltd., Gdańsk, Poland) in the MCBR UO
building (see Figure S8). Mosses were cultured on three types of substrate: control (3 cm
layer of sterile sand), hardened cement paste (3 cm layer), hardened MWCNT-modified
cement paste (3 cm layer). Culture conditions, including maintaining the appropriate tem-
perature of 21 ◦C and humidity of 50%, were determined according to the literature [139].
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In order to assess the effect of substrate type on the viability of mosses—photosystem
II chlorophyll fluorescence (PSII)—the actual photochemical productivity (yield) [140] was
measured using a modulated portable fluorometer (Opti-Sciences, Hudson, NH, USA)
under ambient light conditions [141]. PSII was measured three times a week for a period
of two months from 12 July to 14 September 2024. For each species and each substrate
variant, three measurements were taken (81 measurements). A total of 486 measurements
were taken.

Statistical analysis of the results obtained was performed using Microsoft Excel 2021
and STATISTICA (version 13.3) software for data processing and visualization. For descrip-
tive analysis, basic descriptive statistics values (min, max, median, mean with standard
deviation, variance, skewness, kurtosis and sum) were calculated for photosynthetic ac-
tivity data across variants (Table 4). The significance of differences between species and
substrates was ensured by independent pooled sampling [142]. The normality of the
data was tested using the Shapiro–Wilk test. To avoid significant differences between
photosynthetic activity values leading to non-normal distribution of the data, a Box–Cox
transformation was applied to improve and increase the normality of the data [143]. Lack-
ing such improvement in terms of obtaining a normal distribution, differences between
photosynthetic activity values were assessed using the non-parametric Mann–Whitney U
statistical test. A difference was considered statistically significant when p < 0.05.

4. Conclusions

Mixing nanocarbon structures with cement paste to obtain homogenous mixtures
is a very difficult process. It was demonstrated in the current study that a simultaneous
blending of MWCNTs with polycarboxylated superplasticizer using an efficient mixing
mill could produce a well-dispersed suspension, which is suitable for easier addition to
cement. FT-IR and Raman spectroscopy were used to characterize a superplastisizer and
suspension of MWCNTs with SP in a water environment. The experimental findings
were supported by theoretical modeling of interactions between fragments of polymeric
superplasticizer (acid, salt and esters) and functionalized carbon nanotubes. The density
functional theory was applied to obtain structural and energetic parameters of the fully
optimized models. The BLYP and B3LYP density functionals combined with reasonable
size basis sets predicted reliable structures and IR/Raman vibrational spectra of interacting
molecules (water, formic and acetic acids and their dimers).

Finally, the finite models of SWCNT-COOH carbon nanotubes were also built and
their interaction with formic acid representing the superplasticizer was assessed. The
estimated counterpoise-corrected interaction energy between H bonded SWCNT-COOH
and HCOOH was about −21 kcal/mol. Such a significant interaction supports the presence
of a strong interaction between “interaction hot spots” of nanotubes with a polymeric SP
molecule, which leads to better mixing with a polar environment (water). The obtained
theoretical results could improve our understanding about the formation of well-dispersed
nanocarbon material in a superplasticizer leading to easier introduction of SWCNTs (and
MWCNTs) to cement paste and concrete mix.

As result of the conducted biological studies, no clear effect of the cement substrate
with the addition of MWCNTs on the studied moss species’ vitality was observed. In
the case of Polytrichum formosum, composite modification did not induce a statistically
significant effect. However, notable vitality changes of Pseudoscleropodium purum were
observed. It should be concluded that the effect of the cement paste with the addition
of MWCNTs is not clear-cut and will depend on the adaptability of the individual moss
species. However, the addition of nanoparticles did not have a negative effect on the
functioning of the species Polytrichum formosum and Pseudoscleropodium purum. Moreover,
higher Pseudoscleropodium purum PSII activity on MWCNT-cement was observed compared
to the control substrate. The obtained results confirmed the hypothesis that mosses could
be used as bioindicators of nanomodified building materials’ environmental effect. Cement
paste with MWCNTs does not have a destructive effect on the studied mosses’ viability.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29225379/s1, Figure S1: FTIR spectra of MWCNT;
Figure S2: BLYPD3BJ and B3LYPD3BJ (in parenthesis) optimized structures of linear water dimer
(the aug-cc-pVTZ basis set was used, distances are in Å, angles in degrees and interaction energy in
kcal/mol); Figure S3: BLYPD3BJ and BLYP (in parenthesis) optimized structures of (A) trans-formic
and (B) trans-acetic acid monomers (the aug-cc-pVTZ basis set was used, distances are in Å); Figure S4:
BLYPD3BJ/aVTZ and BLYP/aVTZ optimized structures of acetic acid dimer (interatomic distances in
Å); Figure S5: The predicted Raman spectrum (20 cm−1 linewidth is used) of optimized BLYPD3BJ/6-
311++G** structure of model fragment of zigzag (5,0) SWCNT-COOH composed from five “belts”;
Figure S6: Chemical formula of studied superplasticizer; Figure S7: Photos of MWCN-SP (A) before
and (B) after mixing; Figure S8: Moss cultivation in phytotron rack on three types of substrate: control,
cement composite and MWCNT-modified cement composite; Table S1: DFT predicted (A) structural
and vibrational parameters of water monomer using aug-cc-pVTZ basis set and their (B) deviations
from experiment. Experimental and benchmark theoretical values are given for comparison (bonds
in Å, angle in degrees and wavenumbers in cm−1); Table S2: DFT calculated structural parameters,
interaction energy and vibration frequencies of water dimer are compared with experiment and
benchmark calculations (distances in Å, angles in degrees, wavenumbers in cm−1 and interaction
energy in kcal/mol); Table S3: (A) BLYPD3BJ, BLYP, B3LYPD3BJ and B3LYP optimized bond lengths
(in Å) of trans-formic and trans-acetic acid monomers and (B) the corresponding deviations from
experiment. The aug-cc-pVTZ basis set was used. Experimental and benchmark parameters are in-
cluded for comparison; Table S4: (A) Selected experimental and theoretical benchmark wavenumbers
of formic acid monomer, (B) BLYP and BLYPD3BJ and (C) B3LYP and B3LYPD3BJ calculated harmonic
and anharmonic values using the aug-cc-pVTZ basis set; Table S5: BLYP, BLYPD3BJ, B3LYP and
B3LYPD3BJ calculated harmonic and anharmonic frequencies of acetic acid monomer using the aVTZ
basis set; Table S6: BLYP, BLYPD3BJ, B3LYP and B3LYPD3BJ predicted formic acid dimer interatomic
distances using aVTZ basis set and their deviations from experiment. Experimental and benchmark
parameters are included for comparison; Table S7: Experimental and benchmark frequencies of formic
acid dimer; Table S8: BLYP, BLYPD3BJ, B3LYP and B3LYPD3BJ calculated harmonic and anharmonic
frequencies of formic acid dimer. aVTZ basis set is used and RMS deviations from experiment are
also shown; Table S9: BLYP/aVTZ, BLYPD3BJ/aVTZ, B3LYP/aVTZ and B3LYPD3BJ/aVTZ calcu-
lated harmonic and anharmonic frequencies of acetic acid dimer; Table S10: Raw and CP-corrected
interaction energy (in kcal/mol) of formic and acetic acid dimers. The magnitude of dispersion and
BSSE is also evaluated, see refs. [144,145].
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efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi. Ecol. Quest. 2024,
35, 1–29. [CrossRef]

140. Loriaux, S.D.; Avenson, T.J.; Welles, J.M.; Mcdermitt, D.K.; Eckles, R.D.; Riensche, B.; Genty, B. Closing in on maximum yield of
chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant. Cell. Environ. 2013, 36, 1755–1770.
[CrossRef] [PubMed]
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