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Abstract: Heavy metal ions in industrial wastewater pose significant environmental and ecological
threats. In this work, a hydrogel featuring a double network structure was synthesized via radical
polymerization and cross-linking of β-cyclodextrin (CD) and carboxymethylcellulose (CMC) with
acrylic acid (AA). The hydrogel’s functional groups and microstructure were characterized using
Fourier transform infrared spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron
microscopy (SEM), and thermogravimetric analysis (TGA). Mechanical properties were evaluated
through rheological and compression tests. The study examined the impact of initial metal ion
concentration, adsorbent-ion contact time, and solution pH on adsorption capacity. The maximum
adsorption capacities of the functionalized CD/CMC-PAA-MBA hydrogel for Cu2+, Pb2+, and Cd2+

ions were 158.12, 393.56, and 290.12 mg/g, respectively. Notably, the hydrogel exhibited the highest
selectivity for Pb2+ in mixed solutions. The adsorption kinetics of the metal ions were modeled using
the pseudo-second-order rate equation and the Langmuir adsorption isotherm.

Keywords: functionalized cyclodextrin/carboxymethyl cellulose hydrogels; heavy metal ions;
adsorption isotherm; adsorption kinetics

1. Introduction

The global industrial and manufacturing sectors have experienced unprecedented
growth, leading to a corresponding surge in wastewater discharges. This effluent often
contains contaminants such as heavy metals, dyes, and organic substances, which, if left
untreated, pose significant threats to precious freshwater resources, ecosystems, and human
and animal health [1,2]. Heavy metal ions, typically formed by the loss of electrons from
metals with densities greater than 4.5 g/cm3 or atomic masses exceeding 55, are notorious
for their non-biodegradability, toxicity, and carcinogenic potential. When released into
the environment, these ions degrade the quality of drinking water and necessitate urgent
removal mechanisms [3–5]. Current methods for wastewater treatment include chemical,
physical, and bioprocesses, with the adsorption method—known for its low production
costs, widespread availability of raw materials, high economic recycling rate, and efficiency
in removing heavy metals—emerging as a superior option [6–9]. Given the widespread
application of adsorption in heavy metal treatment, there is a pressing need to develop
efficient, bio-based adsorbents for heavy metal removal in water.
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Hydrogels, characterized by their three-dimensional, cross-linked polymer structures
and the ability to absorb substantial amounts of water without dissolving, are renowned for
their exceptional water absorption, high porosity, diverse forms, and ease of post-processing.
They boast a significant advantage over other adsorbent materials in the removal of heavy
metal ions, garnering substantial scientific interest due to this capability [10–12].

In recent years, researchers have increasingly focused on biomass materials as a
promising renewable resource. Among these, natural cellulose stands out as the most
abundant polysaccharide in nature, widely distributed and commonly utilized as a green
material [13]. However, the inherent insolubility of cellulose poses challenges for value-
added applications. Through chemical modification, carboxymethylcellulose (CMC) can
be synthesized, offering enhanced solubility and applicability across medicine, food, envi-
ronmental protection, and agriculture. Despite its versatility, standalone carboxymethyl
cellulose hydrogel exhibits limitations such as brittleness, low mechanical strength, and
poor mechanical performance. These shortcomings can be mitigated through chemical
modification, particularly through blending with other polymers, graft copolymerization,
or ether system modifications, with graft copolymerization being the most widely adopted
method for improving heavy metal ion adsorption [14–17].

β-Cyclodextrin, a macrocyclic compound comprising seven glucose units derived
from starch hydrolysis, features a hydrophobic cavity capable of encapsulating organic
substances, forming inclusion complexes. The external hydroxyl groups on the cyclodextrin
surface act as active reaction sites, enabling interactions with a broad array of functional
groups and compounds through van der Waals forces and hydrophobic interactions, includ-
ing organic pollutants and metal ions [18–20]. Given its unique structural characteristics
and the combined properties of cyclodextrin and other molecules, it has emerged as a focal
point for studies on pollutant removal, particularly as an adsorbent.

This study uses carboxymethyl cellulose (CMC) and β-cyclodextrin as substrates,
separately reacting with ammonium persulfate (APS) to effect grafting of the flexible long-
chain polymer, carboxymethyl cellulose (CMC), via a free radical polymerization process.
The outer hydroxyl groups of β-cyclodextrin (CD) were functionalized with the cross-
linking agent N,N′-methylenebisacrylamide (MBA) to establish a robust network structure,
yielding a stable double-network hydrogel material stabilized via hydrogen bonding and
electrostatic interactions (Figure 1). The internal architecture of the carboxymethyl cellulose
(CMC) exhibited numerous capillaries and a substantial specific surface area, conferring
significant advantages for the adsorption of heavy metal ions [21]. The structural and
morphological features of the material were meticulously characterized using Fourier
transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), X-ray
diffraction (XRD), and thermogravimetric analysis (TGA). The mechanical properties were
evaluated through rheological and compression testing. Furthermore, the influence of
parameters such as pH, concentration, and contact time of the metal ion solution on
adsorption was systematically investigated. The adsorption capacity of the composite
hydrogel materials towards metal ions was assessed using adsorption isotherms and
kinetics, and the reusability of the hydrogels was explored.
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2.1.1. FTIR-ATR Analysis 

The functional groups in the modified β-CD/CMC hydrogels were identified using 
FTIR-ATR spectroscopy, as illustrated in Figure 2a. The CMC spectrum displayed charac-
teristic peaks typical of carboxymethyl cellulose. Notably, the absorption band near 1589 
cm⁻1 corresponded to the COO⁻ stretching vibration, while the band near 3354 cm⁻1 was 
associated with O-H groups. The sharp peak at 2903 cm⁻1 resulted from C-H stretching 
vibration, and the absorption peaks at 1430 cm⁻1 and 1050 cm⁻1 were indicative of -CH2 
groups and C-O-C in glucose [22]. The CD spectrum featured a broad absorption band at 
3335 cm⁻1, attributable to the stretching vibration of -OH. Additionally, a sharp IR absorp-
tion band at 2920 cm⁻1 indicated the stretching vibration of -CH-. The characteristic peak 
at 1160 cm⁻1 in the IR spectrum corresponded to the cyclic sugar ring C-C structure of the 
glucose molecule in cyclodextrin [23]. In the CD/CMC-PAA-MBA spectra, the fundamen-
tal structures of β-CD and CMC were preserved, and a new peak at 1654 cm⁻1 emerged, 
signifying the stretching vibration of the C-N bond. These observations confirmed the suc-
cessful incorporation of AA and MBA into CD and CMC via radical graft copolymeriza-
tion. 

 

Figure 1. Synthesis process of composite hydrogel CD/CMC-PAA-MBA.

2. Results and Discussion
2.1. Structural Characterization and Analysis of CD/CMC-PAA-MBA
2.1.1. FTIR-ATR Analysis

The functional groups in the modified β-CD/CMC hydrogels were identified using
FTIR-ATR spectroscopy, as illustrated in Figure 2a. The CMC spectrum displayed character-
istic peaks typical of carboxymethyl cellulose. Notably, the absorption band near 1589 cm−1

corresponded to the COO− stretching vibration, while the band near 3354 cm−1 was associ-
ated with O-H groups. The sharp peak at 2903 cm−1 resulted from C-H stretching vibration,
and the absorption peaks at 1430 cm−1 and 1050 cm−1 were indicative of -CH2 groups and
C-O-C in glucose [22]. The CD spectrum featured a broad absorption band at 3335 cm−1,
attributable to the stretching vibration of -OH. Additionally, a sharp IR absorption band at
2920 cm−1 indicated the stretching vibration of -CH-. The characteristic peak at 1160 cm−1

in the IR spectrum corresponded to the cyclic sugar ring C-C structure of the glucose
molecule in cyclodextrin [23]. In the CD/CMC-PAA-MBA spectra, the fundamental struc-
tures of β-CD and CMC were preserved, and a new peak at 1654 cm−1 emerged, signifying
the stretching vibration of the C-N bond. These observations confirmed the successful
incorporation of AA and MBA into CD and CMC via radical graft copolymerization.

2.1.2. X-Ray Diffraction Analysis

The crystal structures of CMC, CD, and CD/CMC-PAA-MBA hydrogels were exam-
ined using X-ray diffraction (XRD), with the results presented in Figure 2b. β–CD exhibited
distinct characteristic diffraction peaks at 10–27◦, consistent with the β–CD standard from
the PDF card (JCPDS No. 47–2421). The CMC spectrum revealed a broad, strong diffraction
peak at 20.23◦, indicating a degree of crystallinity. Conversely, the prepared CD/CMC–
PAA–MBA hydrogel showed only weak diffraction peaks between 18.02 and 27.85◦. These
observations suggest that graft polymerization enhanced the amorphous nature of the
polymers, transitioning them from crystalline to amorphous states [24]. The consistency of
these findings with previous FTIR-ATR analyses confirms the successful grafting of AA
and MBA onto CD and CMC.
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Figure 2. (a) FTIR-ATR spectra of CD, CMC, and CD/CMC-PAA-MBA; (b) XRD curves of CD, CMC,
and CD/CMC-PAA-MBA; (c) TGA curves of CD, CMC, and CD/CMC-PAA-MBA; (d) 10 cycles of
compression curves of CD/CMC-PAA-MBA.

2.1.3. Thermogravimetric Analysis

The thermal stability and decomposition behavior of CD/CMC-PAA-MBA hydrogels
were analyzed via TGA, with the results depicted in Figure 2c. The decomposition of
the composite hydrogel was primarily partitioned into three distinct stages. The initial
stage, occurring in the range 50–200 ◦C, exhibited a weight loss of 12.2%, attributable
to the evaporation of physically bound water within the β-CD cavity. The second stage,
spanning 210–300 ◦C, showed an 18.2% mass loss, primarily due to the thermal degradation
of β-CD, CMC macromolecular chains, PAA grafts, and MBA. The third stage, defined
by a sharp decomposition between 310 and 450 ◦C, resulted in a 30.2% mass loss, largely
attributed to the thermal decomposition or vaporization of organic small molecules and
residual byproducts [25]. These findings underscore the robust thermal stability of the
CD/CMC-PAA-MBA composite hydrogel.

2.1.4. Compression Properties Analysis

During the adsorption of heavy metal ions, the hydrogel must exhibit adequate
mechanical strength. To assess this property, cyclic compression tests were conducted
on the prepared hydrogels. As depicted in Figure 2d, the hydrogel exhibited a minimal
area of hysteresis in ten consecutive compression cycles, with consistent hysteresis areas
each time. This behavior indicates a rapid recovery process, supported by the elastic
modulus and hysteresis loop calculations presented in Figure 2d. Within a certain range
of compressive deformation, the compression was reversible. This suggests the presence
of strong intermolecular forces within the designed hydrogel, conferring it reversible
and rapid compressive recovery characteristics. Consequently, the hydrogel maintains
structural integrity even after adsorbing significant amounts of heavy metal ions, facilitating
its recovery and reuse in subsequent experiments [26].

2.1.5. Rheological Properties Analysis

The rheological properties of this hydrogel series were analyzed, focusing on the rela-
tionship between viscoelasticity and mechanical strength. Specifically, the storage modulus
(G′) and loss modulus (G′′) were examined under oscillatory frequency and strain scanning
modes. As depicted in Figure 3a, the hydrogels’ G′ values were consistently higher than
their G′′ values across the frequency range of 1–100 rad/s, indicating the formation of stable



Molecules 2024, 29, 5414 5 of 16

hydrogels. The CD/CMC-PAA-MBA hydrogel, for instance, exhibited an average storage
modulus of 2077.45 Pa and a loss modulus of approximately 198.04 Pa, with a significant
difference of 1879.41 Pa. This substantial disparity suggests that the CD/CMC-PAA-MBA
hydrogel possesses excellent elastic properties and consistent mechanical strength, which
aligns with its ability to maintain its structural integrity during metal ion adsorption.
Furthermore, as shown in Figure 3b, the G′ and G′′ of the hydrogels were assessed at a
constant oscillatory frequency of 10 rad/s across a strain range of 0 to 100%. The results
revealed that both G′ and G′′ remained stable as the strain increased from 0 to 100%, with
minimal differences between them. The small disparity in G′ and G′′ indicates that these
hydrogels exhibit stable and relatively robust mechanical performance and elasticity, which
are advantageous for the efficient adsorption of metal ions [27].
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2.1.6. Surface Morphology Analysis

The surface morphology and properties of CMC and β–CD composite hydrogels were
investigated through SEM analysis, as depicted in Figure 4a. The observed surfaces were
characterized by their rough, irregular, and uneven nature, featuring an evident porous
structure with micropores of varying sizes. The internal architecture of the composite
hydrogel revealed an intricate three-dimensional porous network, replete with numerous
interconnecting microporous sheets and a thin, porous structure that exposed a multitude of
active adsorption sites on the outer surface. This intricate network facilitated the diffusion
of heavy metal ions into the hydrogel’s interior and their binding with the adsorption
sites. Figure 4b–d present the SEM images of the composite hydrogels after loading with
Cu2+, Pb2+, and Cd2+. The surfaces of these adsorbed hydrogels exhibit a significantly
roughened appearance, with the inner walls of the pore channels hosting a dense array of
tiny particles corresponding to the adsorbed Cu2+, Pb2+, and Cd2+ ions. This morphology
suggests successful adsorption of these metal ions within the pores of the CD/CMC–PAA–
MBA hydrogel, facilitated by the exposed lamellar surfaces. Furthermore, the elemental
composition of the loaded hydrogels was examined using EDS analysis, as illustrated in the
vignettes of Figure 4b–d. The presence of all three metal ions was detected in the hydrogel
loaded with Cu2+, Pb2+, and Cd2+, unequivocally indicating their enrichment within the
adsorbed sample.
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CD/CMC–PAA–MBA.

2.2. Study of the Adsorption Properties of CD/CMC-PAA-MBA Hydrogels
2.2.1. Effect of Solution pH on the Adsorption

The pH of the solution affected the chelating copolymerization coordination process
of heavy metal ions with hydrogel materials; therefore, the pH of the solution played a
very important role in the adsorption properties of the hydrogel materials (Figure 5a). To
analyze the effect of pH on adsorption efficiency, the isoelectric point (pH0) of the hydrogel
was measured. At pH = 0, almost all surface groups of the adsorbent are protonated and
carry a positive charge. Consequently, if the pH value is greater than pH0, the surface of
the adsorbent will accumulate a negative charge, which is beneficial for the adsorption of
metal ions [28]. In the present study, the variation of adsorption of Cu2+, Pb2+ and Cd2+ by
adsorbent was investigated in the range of pH 2–5. The pH range of 2–5 was chosen because
when the solution pH was 6, the state of the metal ions in the solution changed, leading
to the appearance of precipitated hydroxides and flocs, which affected the adsorption
properties of the hydrogel material, whereas at a pH less than 2, the concentration of
H+ in the solution became higher, resulting in the surface of the hydrogel material being
positively charged as well, and the phenomenon of repulsion of the same charge would
occur, leading to a decrease in the adsorption capacity. The hydrogel exhibited substantial
adsorption magnitude within the pH range of 2 to 5. Therefore, in order to overcome
the occurrence of these two problems, the pH range of 2–5 was chosen as the optimal
experimental condition [29].
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2.2.2. Effect of Temperature on the Adsorption

Temperature significantly influences the adsorption capacity of hydrogels, and its
variation can elucidate whether the adsorption process is exothermic or endothermic.
Figure 5b illustrates the adsorption capacities of the CD/CMC-PAA-MBA composite hy-
drogel for three metal ions (Cu2+, Pb2+, and Cd2+) across a temperature range of 25 to
65 ◦C. Notably, the adsorption capacity of the composite hydrogel for these metal ions
progressively declined with increasing temperature. For instance, the adsorbed amount of
Cu2+ decreased from 158.12 mg/g to 74.31 mg/g, Pb2+ from 393.56 mg/g to 320.17 mg/g,
and Cd2+ from 290.12 mg/g to 217.18 mg/g as the temperature rose from 25 ◦C to 65 ◦C.
This trend suggests that elevated temperature is detrimental to the adsorption capacity of
the composite hydrogel. Consequently, the exothermic nature of the adsorption process
indicates that lower temperatures, notably 25 ◦C, are optimal for achieving the highest
adsorption efficiencies for these heavy metal ions.

2.2.3. Effect of Contact Time on the Adsorption

The contact time between the hydrogel adsorbent and heavy metal ions significantly
impacts adsorption performance. Figure 5c depicts the adsorption capacity of the CD/CMC-
PAA-MBA composite hydrogel for three metal ions (Cu2+, Pb2+, and Cd2+) at varying
contact times. As illustrated in Figure 5c, the composite hydrogel exhibited a dual-phase
adsorption behavior, characterized by an initial rapid phase followed by a slower phase
until saturation was achieved. Remarkably, within the first 5 min, the hydrogel rapidly
adsorbed Cu2+, Pb2+, and Cd2+ to levels of 130.6 mg/g, 359.8 mg/g, and 253.9 mg/g,
respectively. The adsorption equilibrium was attained within 15 min, primarily due to
the saturation of binding sites on the adsorbent, which limited further capacity to bind
additional metal ions. Notably, the adsorption time for this composite hydrogel, based on
cellulose materials, was shorter than previously reported [30].
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2.2.4. Effect of Initial Metal Ion Concentration on the Adsorption

Figure 5d illustrates the impact of varying initial concentrations of Pb2+, Cu2+, and
Cd2+ on the adsorption properties of the CD/CMC-PAA-MBA composite hydrogels. The
data reveal that the adsorption capacity of the hydrogel increased substantially with
higher initial concentrations of the metal ions, exhibiting a linear growth pattern at low
concentrations and a plateau at higher concentrations. This behavior can be attributed to
the fixed number of active adsorption sites within the hydrogel, which, under a constant
amount of adsorbent, become progressively saturated as the metal ion concentration rises.
Consequently, the hydrogel’s adsorption capacity initially escalates with increasing metal
ion concentration but ultimately levels off, ceasing further chelation coordination with
the heavy metal ions. The maximum adsorption capacities for Pb2+, Cu2+, and Cd2+ were
determined to be 158.12 mg/g, 393.56 mg/g, and 290.12 mg/g, respectively.

2.2.5. Adsorption Isotherm

In order to study the affinity between adsorbent and adsorbate, the difficulty of
adsorption capacity, and the interrelationship between homogeneity and inhomogeneity
on the adsorbent surface, the adsorption process of the prepared composite hydrogels was
fitted and analyzed in this study using the Langmuir adsorption isothermal model and the
Freundlich isothermal adsorption model, respectively. The Langmuir isothermal adsorption
model is a classical monomolecular layer adsorption model for adsorbents whose surfaces
are homogeneous and also illustrates that the interaction relationship between adsorbent
and adsorbate is dominated by chemisorption (Equation (1)).The Freundlich isothermal
adsorption model is a more ideal mathematical-empirical formula, which is mostly used in
the case of materials whose surfaces are non-homogeneous and illustrates the interaction
relationship between adsorbent and adsorbate is dominated by chemophysical adsorption
(Equation (2)) [31].

Langmuir isothermal adsorption model:

Ce

Qe
=

1
KLQm

+
Ce

Qm
(1)

where Qe is the adsorbed amount when the adsorbent reaches adsorption equilibrium
in mg/g; Qm is the theoretical maximum adsorption amount or saturation adsorption
amount of the adsorbent in mg/g; KL is the Langmuir’s constant in L/mg; and Ce is the
concentration of the residual metal ions in the system when the adsorption by the adsorbent
reaches equilibrium, in mg/L.

Freundlich isothermal adsorption model:

lnQe =
1
n

lnCe + lnKP (2)

Temkin isothermal adsorption model:

Qe= Bln KT + Bln Ce (3)

Qe is the adsorbed amount when the adsorbent reaches adsorption equilibrium, in
mg/g; Ce is the concentration of metal ions remaining in the system when the adsorption
of the adsorbent reaches equilibrium, in mg/L; Kp is Freundlich’s constant; n is a char-
acterization constant, and the range of values of the n-value is related to the degree of
non-homogeneity of the surface of the adsorbent or the adsorption capacity of the adsorp-
tion sites on the adsorbent surface. That is, when n > 1 (or 0 < 1/n < 1), it indicates that the
adsorption process of the adsorbent is occurs easily (this adsorption process can also be
called preferential adsorption); when 0 < n < 1 (or 1/n > 1), it indicates that the adsorbed
process of the adsorbent does not occur easily, where KT and B are the Temkin parameter
related to the adsorption amount constants, respectively [32–34].
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In order to further investigate the adsorbed mechanism of the composite hydrogel on
Pb2+, Cu2+, and Cd2+, as well as the difficulty of the adsorption process, the relevant exper-
imental data were fitted via the Langmuir, Freundlich, and Temkin isothermal adsorption
equations, respectively; the results are shown in Figure 6, and the relevant parameters fitted
by the two isothermal adsorption models are shown in Table 1. We can see that compared
with the correlation coefficients fitted by the Freundlich model, the correlation coefficients
fitted by the Langmuir isothermal adsorption model of composite hydrogel materials for
Pb2+, Cu2+, and Cd2+ are 0.9951, 0.9901, and 0.9973, respectively, which were closer to 1.
This indicates that the adsorption process of heavy metal ions by the hydrogel can be fitted
using the Langmuir model, which also suggests that the adsorption process is primarily
dominated by monolayer chemisorption. The Langmuir model further indicates that the
majority of Pb2+, Cu2+, and Cd2+ ions are adsorbed on the active adsorption sites of the
CD/CMC-PAA-MBA surface. The Langmuir model fitting reveals the maximum adsorp-
tion capacities of Pb2+, Cu2+, and Cd2+ by the hydrogel to be 182.48 mg/g, 636.94 mg/g,
and 290.69 mg/g, respectively. From the relevant data fitted by the Freundlich model, it
can be seen that the value of n, which was the characteristic constant for the adsorption of
Pb2+, Cu2+, and Cd2+ by the hydrogel, was 3.39, 1.86, and 2.55, respectively, and all of them
were greater than 1, indicating that the adsorption process is occurs easily and belonged
to preferential adsorption. In the Temkin isotherm adsorption model, a larger value of B
indicates a more significant variation of adsorption heat with the coverage of the adsorbent
and a faster decrease in adsorption heat during the adsorption process. Consequently, we
observed the fastest variation in adsorption heat when the adsorbent adsorbs Pb2+.
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Table 1. Adsorption isotherm parameters for Cu2+, Pb2+, and Cd2+.

Langmuir Freundlich

Qm KL R2 n Kp R2

Cu2+ 182.48 0.1034 0.9951 3.39 10.08 0.8005
Pb2+ 636.94 0.0985 0.9901 1.86 9.17 0.3950
Cd2+ 290.69 0.0867 0.9973 2.55 10.55 0.7474

Temkin

B KT R2

Cu2+ 34.61 1.22 0.8841
Pb2+ 162.95 0.24 0.6184
Cd2+ 46.41 3.31 0.7071

2.2.6. Adsorption Kinetics

To elucidate the impact of CD/CMC-PAA-MBA on adsorption kinetics, experimental
data were analyzed using a kinetic model. This model primarily depicts the adsorption
process as a function of time, reflecting the transition curve of adsorption quantity over
the adsorption duration. The observed curves elucidate the distribution dynamics of the
adsorbate between the adsorbent and solution phases. This study focused on elucidating
the adsorption mechanism of the synthesized composite hydrogel through the applica-
tion of two kinetic adsorption models: the pseudo-first-order and pseudo-second-order
models. The pseudo-first-order model postulates that the adsorption process is governed
predominantly by physical diffusion, as described by Equation (3). In contrast, the pseudo-
second-order model posits that adsorption is influenced by electron sharing, exchange, and
transfer mechanisms, essentially involving the formation of covalent bonds, as represented
by Equation (4) [35].

log(Qe − Qt) = logQe −
k1

2.303
t (4)

t
Qt

=
1

k2Q2
e
+

t
Qe

(5)

In the equation, Qt is the amount adsorbed after time t, in mg/g; Qe is the amount
adsorbed after adsorption equilibrium of the adsorbent, in mg/g; k1 and k2 are the pseudo-
first and pseudo-second order kinetic rate constants; t is the contact time between the
adsorbent and the sorbate.

The fitting curves and parameters derived from the pseudo-first-order and pseudo-
second-order kinetics models, as presented in Figure 7a,b, and Table 2, demonstrate signifi-
cant discrepancies between the theoretical (Qe) values of the pseudo-first-order model and
the experimental data. In contrast, the theoretical (Qe) values from the pseudo-second-order
model align closely with the experimental results. Moreover, the pseudo-second-order
model exhibits a higher correlation coefficient (R2), approaching unity, compared to the
pseudo-first-order model. Consequently, these findings indicate that the adsorption of
the three metal ions by the composite hydrogel is accurately simulated by the pseudo-
second-order kinetic model, underscoring that the adsorption process is predominantly
chemisorption [36].
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Table 2. Kinetic adsorption model parameters for Cu2+, Pb2+, and Cd2+.

Pseudo-First-Order Pseudo-Second-Order

K1 Qe1 R2 K2 Qe2 R2

Cu2+ 0.1257 78.83 0.8889 0.0043 176.37 0.9984
Pb2+ 0.4575 137.04 0.9199 0.0018 450.45 0.9996
Cd2+ 0.2126 240.65 0.9752 0.0017 336.70 0.9979

2.2.7. Regenerative Performance of Prepared Hydrogels

The regenerative performance of hydrogel adsorbents is a crucial parameter for as-
sessing their potential for recycling. The development of hydrogels with outstanding
regenerative capabilities is not only an urgent challenge for current researchers but also
aligns with the pressing needs of modern sustainable development. This study examined
the regeneration performance of the CD/CMC–PAA–MBA composite hydrogel through
five cycles of desorption–adsorption experiments, as depicted in Figure 8. The results
indicated that even after five cycles, the hydrogel maintained a high adsorption capac-
ity, demonstrating excellent repeatability [37]. The cyclic morphology of hydrogel after
adsorption of heavy metals is shown in Figure 9.
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2.2.8. Competitive Adsorption of Metal Ions

Various heavy metal ions including Cu2+, Pb2+, and Cd2+ are frequently used and
found in industrial wastewater. Therefore, in this study, individual and mixed solutions
containing Cu2+, Pb2+, and Cd2+ metal ions were prepared to investigate the selective
adsorption of metal ions on CD/CMC–PAA–MBA composite hydrogels. To adsorb specific
metal ions, the hydrogels were immersed in individual metal ion solutions. The results
showed that the adsorption capacity of the hydrogel for Pb2+ was about 393.56 mg/g,
whereas the adsorption capacity for Cu2+ and Cd2+ was 158.12 and 290.12 mg/g, respec-
tively (Figure 10). Compared with other divalent metal ions, the hydrogel surface may
contain more groups that can form stable complexes with Pb2+, such as hydroxyl (-OH),
carboxyl (-COOH), etc., which have a stronger coordination capacity with Pb2+ than Cu2+

and Cd2+. It is known that the amount of adsorption is affected by the size of the metal ions,
and the pore structure and pore size distribution of the hydrogel may be more suitable for
the diffusion and adsorption of Pb2+, making it easier for Pb2+ to enter and be immobilized
in the pores [38].
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3. Materials and Methods
3.1. Materials and Instruments

β–cyclodextrin (CD, A.R.) and carboxymethyl cellulose (M.W. 90,000, 50–100 mPa.s)
were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Acrylic acid (AA), ammonium persulfate (APS), and N, N-Methylenebisacrylamide (MBA)
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were purchased from J&K Scientific Co., Ltd. (Beijing, China). Sodium hydroxide (NaOH,
A.R.), hydrochloric acid (HCl, A.R.), copper chloride (CuCl2, A.R.), lead nitrate (PbNO3,
A.R.), and chromic chloride (CdCl2, A.R.) were obtained from National Pharmaceutical
Group Chemical Reagent Co., Ltd. (Shanghai, China). All reagents used were as received,
not purified, and all solutions used were prepared with deionized water.

In this study, the following equipment was used in the experimental process: an
atomic absorption spectrophotometer (Shimadzu Instruments Japan Ltd., Kyoto, Japan,
model: AA AA 6300), laboratory analytical balance (Sartorius Lab Instruments GmbH £t
Co. KG, Goettingen, Germany, model: GL1241-1SCN), collecting magnetic stirrer with
constant temperature heating (Gongyi City Zihua instrument Co., Ltd., Zhengzhou, China,
model: DF-101S), lyophilizer (BUCHI Labortechnik AG, model: BUCHI-L200), pH meter
(Mettler Toledo Instruments Co., Ltd., Shanghai, China, model: S220), electrothermal blast
drying oven (Shanghai Boxun Industry Co., Shanghai, China, model: GZX-9070MBE), and
UV spectrophotometer (Hitachi (China) Ltd., Beijing, China, model: U-3900).

3.2. Preparation of CD/CMC-PAA-MBA Hydrogel Materials

First, 1 g of CMC powder was dissolved in 50 mL of deionized water in a 250 mL
three-necked flask equipped with a mechanical stirrer, reflux condenser, and nitrogen tube,
sonicated and stirred to form a clear viscous solution, and 0.5 g of β-cyclodextrin powder
was added with continued stirring until completely dispersed. The solution was heated
to 70 ◦C, and nitrogen was introduced for 20 min to completely remove oxygen from the
solution. Then, 8.2 g, MW% = 70% of AA monomer was added, 0.2 g of MBA cross-linker
was added, and the mixed solution was mechanically stirred for about 1 h until complete
dissolution while keeping the temperature at 70 ◦C constant and nitrogen gas was passed
through. After cooling to room temperature, the initiator APS (MW% = 5%, 5 mL) was
added, stirred well, poured into the mold, and placed in the oven to be heated to 70 ◦C for
30 min to become a hydrogel, named CD/CMC-PAA-MBA.

3.3. Characterization

All the prepared hydrogel samples were cold dried with a BUCHI-L200 lyophilizer for
subsequent testing. The functional groups of the hydrogel samples were characterized via
Fourier transform infrared spectroscopy ATR (PerkinElmer FTIR Spectrometer Spectrum
Two, Shelton, CT, USA) in the scanning range of 4000–400 cm−1 with a resolution of
4 cm−1. The crystal structures were characterized through powder X-ray diffraction (XRD)
analysis, utilizing a Rigaku Smart Lab X-ray diffractometer (Rigaku, Tokyo, Japan) at
5–80◦. The fracture surface morphologies were examined using a JEOL-JSM-6700F scanning
electron microscope (SEM) (JEOL Company, Tokyo, Japan) with an accelerated voltage of
5.0 kV. A simultaneous thermal analyzer (HITACHI STA200, Tokyo, Japan) measured the
weight change of the hydrogel samples under heating conditions, with a heating rate of
10 ◦C/min from room temperature to 500 ◦C in a (N2, Air, Ar) atmosphere. The compression
resistance of the hydrogel samples was tested using a universal testing machine (Jilin
Guanteng Automation WDW-1, Changchun, China) at a testing rate of 1 mm/min at room
temperature. The viscoelastic properties of the hydrogel samples were tested using a
rheometer (Anton Paar MCR92, Graz, Austria).

3.4. Adsorption Experiments

The initial mass concentration of heavy metal ions and pH were taken as variables,
respectively, and other conditions were kept consistent to investigate the effects of different
factor conditions on the adsorption of heavy metal ions on hydrogels.

In the isothermal adsorption experiments, the initial concentrations of Cu2+ and
Pb2+ solutions were set at 50–500 mg/L and the initial concentrations of Cd2+ were set at
50–2000 mg/L.

The adsorption experiments were carried out at a constant temperature of 25 ◦C and
150 rpm on a water bath shaker: 15 mL of a certain mass concentration of CuCl2 solution,
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PbNO3 solution, CdCl2 solution, and 10 mg of hydrogel samples were added into a 100 mL
conical flask sequentially and then reacted for several hours in the water bath shaker
until the adsorption reached the equilibrium, and the supernatant in the flask was sucked
up to quantitatively determine and dilute the solution. The solution was quantitatively
determined and diluted. The concentrations of heavy metal ions Cu2+, Pb2+, and Cd2+

in the measured supernatant were determined via Shimadzu AA-6880 atomic absorption
spectrometry (flame method). The adsorption capacity of the hydrogel for Cu2+, Pb2, and
Cd2+ was calculated according to Equations (1) and (2), respectively [39].

qe =
(C0 − Ce)V

m
(6)

qt =
(C0 − Ct)V

m
(7)

qt (mg/g) is the adsorbed amount of hydrogel at moment t; qe (mg/g) is the adsorbed
amount of hydrogel when the adsorption reaches equilibrium; Co (mg/L) is the initial
concentration of Cu2+, Pb2+, and Cd2+; Ce (mg/L) is the Cu2+, Pb2+, and Cd2+ solutions at
the time the adsorption reaches equilibrium; Ct (mg/L) is the concentration of Cu2+, Pb2+,
and Cd2+ solutions at the moment t; V (L) is the volume of the metal ion solutions; m (mg)
is the mass of the substance.

3.5. Reusability Test of CD/CMA-PAA-MBA Hydrogel

In order to realize the reusability of the hydrogel materials, the hydrogel materials
that had completed the adsorption experiments were placed in a 1 M hydrochloric acid
solution for metal ion desorption, and the reaction time was 1 h. They were washed five
times repeatedly with deionized water until the pH reached neutrality. Subsequently, the
hydrogel material was lyophilized, weighed, and used in the next round of adsorption
experiments [36]. The above adsorption experiments were repeated five times to examine
the regenerative properties of the hydrogel materials.

4. Conclusions

In this study, we synthesized an environmentally friendly CD/CMC-PAA-MBA com-
posite hydrogel through radical polymerization cross-linking, showcasing superior me-
chanical properties and an elevated recycling efficiency. This hydrogel retains the essential
frameworks of CD and CMC and was utilized for the adsorption of Cu2+, Pb22, and Cd2+

from wastewater. Characterization via FTIR-ATR, XRD, TGA, and SEM confirmed the
successful grafting of AA and MBA monomers onto the CD and CMC backbones, creating
a dual-network structure. The newly synthesized hydrogels exhibit a coarse, irregular, and
porous surface, coupled with excellent thermal stability. We investigated the effects of four
key parameters—pH, temperature, contact time, and initial concentration—on the adsorp-
tion of metal ions by the hydrogel. Results indicated that under optimal conditions—a
pH of 4, a temperature of 25 ◦C, a contact time of 15 min, and an initial concentration of
400 mg/L—the maximum adsorption capacities were 158.12 mg/g for Cu2+, 393.56 mg/g
for Pb2+, and 290.12 mg/g for Cd2+, respectively. Using isothermal adsorption models and
kinetic adsorption models, we elucidated the mechanism by which the composite hydrogel
adsorbs metal ions. Notably, after undergoing five cycles, the hydrogel maintained a
relatively high adsorption capacity, demonstrating its excellent cyclic stability and robust
mechanical properties. These findings suggest that the composite hydrogel is well-suited
for the efficient treatment of metal ion-contaminated wastewater.
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