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Abstract: Constructing highly efficient catalysts for the degradation of organic pollutants driven by
solar light in aquatic environments is a promising and green strategy. In this study, a novel hexagonal
sheet-like Pt/SnS2 heterojunction photocatalyst is successfully designed and fabricated using a
hydrothermal method and photodeposition process for photocatalytic tetracycline (TC) degradation.
The optimal Pt/SnS2 hybrid behaves with excellent photocatalytic performance, with a degradation
efficiency of 91.27% after 120 min, a reaction rate constant of 0.0187 min−1, and durability, which
can be attributed to (i) the formation of a metal/semiconductor interface field caused by loading Pt
nanoparticles (NPs) on the surface of SnS2, facilitating the separation of photo-induced charge carriers;
(ii) the local surface plasmon resonance (LSPR) effect of Pt NPs, extending the light absorption range;
and (iii) the sheet-like structure of SnS2, which can shorten the transmission distance of charge
carriers, thereby allowing more electrons (e−) and holes (h+) to transfer to the surface of the catalyst.
This work provides new insights with the utilization of sheet-like structured materials for highly
active photocatalytic TC degradation in wastewater treatment and environmental remediation.

Keywords: sheet structure; Pt/SnS2; tetracycline; photodegradation; heterogeneous junction

1. Introduction

Antibiotics are crucial for preventing and treating bacterial infections in humans and
infectious diseases in livestock [1,2]. Tetracycline (TC), as a broad-spectrum antibiotic, is
renowned for its potent antibacterial properties and better cost-effectiveness [3,4]. Unfor-
tunately, due to the chemical stability and resistance to biodegradation of TC, the residual
TC will eventually be released into the soil and aquatic environments, causing serious pol-
lution to the environment, and then posing significant threats to ecosystems and human
health [5,6]. Despite various wastewater treatment methods such as adsorption, biologi-
cal treatment, membrane separation, and advanced oxidation processes, the drawbacks of
secondary pollution, high energy consumption, low efficiency, and complicated treatment
processes restrict the widespread application of these strategies [7,8]. Therefore, develop-
ing effective, environmentally friendly, and economical strategies to remove TC antibiotic
residues in aquatic environments is an important and urgent issue of crucial significance to the
ecological environment, people’s health, and the achievement of sustainable development [9].

So far, photocatalytic TC degradation driven by inexhaustible green solar energy is
considered one of the most promising solutions owing to its high efficiency and stability,
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low toxicity and cost, sustainability, and recyclability [10–12]. In a nutshell, photocata-
lysts generate photo-generated e−/h+ pairs with redox properties under light illumination,
which can transfer to the surface of the photocatalyst and react with H2O and O2 to produce
active species such as hydroxyl radicals (·OH) and superoxide anion radicals (·O2

−), and
then the radicals are exploited to degrade TC to form harmless products [13,14]. The key
factors enhancing the photodegradation efficiency include increasing light capture and
absorption, hindering the fast recombination of photo-induced charge carriers, and improv-
ing mass transport. Thus, the delicate design of the macro-structure and elaborate choice of
micro-composition are highly required to achieve satisfactory degradation efficiency.

Two-dimensional (2D) sheet-like materials possess unique merits in the field of pho-
tocatalysis [15–25], such as shortening the transport path of charge carriers to make more
photo-excited e− and h+ pairs to participate in reactions on the surfaces of the catalysts, ex-
posing specific crystal planes to provide more reactive sites, and preventing catalysts from
aggregating together during the reaction process [26–37]. Additionally, the semiconductors
with 2D structures, such as TiO2 [38], g−C3N4 [39], Fe2O3 [40], ZnO [41], and SnS2 [42],
etc., are considered to be promising candidates for the efficient photocatalytic degrada-
tion of TC. Among them, SnS2, an n-type semiconductor with a fascinating band gap of
~2.2 eV and the advantages of being non-toxic, harmless, easy to prepare, inexpensive,
and environmentally friendly, has been extensively studied for the photodegradation of
water pollutants [43,44]. However, pure SnS2 tends to suffer from the weakness of rapid
carrier recombination, restricting its photocatalytic efficiency. In view of this, constructing
heterojunctions as well as decorating noble metal NPs is an effective method to overcome
this intrinsic limitation. Noble metals, such as Ag, Au, Pt, and Pd, have been verified
to display unique LSPR effects and are extensively employed as co-catalysts to enhance
photocatalytic efficiency [45]. The noble metal NPs can absorb and scatter visible light,
causing a strong local electromagnetic field, which benefits the excitation, separation, and
transfer of photo-induced carriers, improving the photocatalytic activity. Vishal et al. [46]
successfully designed and synthesized a novel ternary Z-Scheme Ag/HAp/SnS2 catalyst
for the photodegradation of metronidazole, which behaved with excellent photodegrada-
tion efficiency because of the formation of heterogeneous junctions and Ag NPs acting as a
charge transfer medium and e− accumulators delaying e−/h+ recombination. Li et al. [47]
successfully prepared a hollow-structured Pt/TiO2 hybrid as a catalyst for photocatalytic
TC degradation, exhibiting great photodegradation performance and durability attributed
to the formation of Schottky junctions and the LSPR effect of Pt.

In this work, Pt NPs loaded on sheet-like-structured SnS2 hybrids were designed and
synthesized through a simple hydrothermal process and photodeposition reaction toward
TC photodegradation. Pt NPs extended the light absorption range due to the LSPR effect as
well as captured the e− of SnS2 with plasmonic hot h+ caused by tough electron oscillation
of LSPR excitation. Additionally, Pt NPs also played the role of e− grooves, which could
promote the separation of charge carriers and enrich e−. Benefiting from the Schottky junction
constructed between Pt and SnS2 and the natural advantages of the sheet-like structure of
a short carrier transfer path and more exposed active reaction sites, the optimal specimen
showed outstanding photocatalytic TC degradation activity with a degradation efficiency of
91.27% under light illumination for 120 min, a rate constant of 0.0194 min−1, and durability in
five cycles without apparent activity reduction. Thus, we believe that the sheet-like-structured
Pt/SnS2 heterogeneous junction catalyst provides a different strategy for the construction of
highly efficient photocatalysts for the degradation of water pollutants.

2. Results and Discussion
2.1. Morphological and Structural Characterization

The synthesis procedure of a sheet-like Pt/SnS2 hybrid is illustrated in Figure 1a.
Briefly, the hard template method was used to synthesize the SnO2 hollow sphere, with CMS
and SnCl4 as a sacrificial template and metal ion precursor, and then sheet-like-structured
SnS2 was obtained through sulfuration treatment in the presence of TAA. After that, 2D
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heterogeneous junction Pt/SnS2 hybrids were prepared via a subsequent photodeposition
process. As shown in the transmission electron microscopy (TEM) image (Figure 1b),
the SnO2 hollow spheres display a coarse surface with an outer diameter of 600–700 nm.
After sulfuration, it could be obviously observed that the SnO2 hollow sphere became the
hexagonal sheet-like-structured SnS2 (Figure 1c). It must be pointed out that the structure
has changed from three-dimensional (3D) to two-dimensional (2D), resulting in a significant
increase in size. Figure 1d demonstrates the TEM of the Pt/SnS2 hybrid, and the Pt NPs
with an average diameter of 10.56 nm are uniformly dispersed on the surface of the SnS2
sheet. The high-resolution TEM (HRTEM) image of the Pt/SnS2 hybrid displayed in
Figure 1e indicates that the heterojunction formed by SnS2 and Pt and the Pt NPs are tightly
anchored at the surfaces of SnS2. Two lattice fringes were measured with the interplanar
distances of 0.18 and 0.23 nm, which corresponded to the (110) plane of SnS2 [48] and the
(111) plane of Pt [49], respectively. Furthermore, the corresponding high-angle annular
dark-field scanning transmission electron microscopy (HAADF−STEM) and elemental
mapping images (Figure 1f–i) of the Pt/SnS2 hybrid verified that the elements of Sn, S,
and Pt were well dispersed throughout the catalyst and further confirmed the uniform
distribution of Pt nanoparticles loaded on the surfaces of sheet-like Pt/SnS2, indicating the
formation of ample intimate heterointerfaces between Pt and SnS2.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. (a) Schematic illustration of the synthesis process of sheet-like-structured SnS2 and Pt/SnS2 
hybrids; TEM images of (b) SnO2 hollow sphere, (c) SnS2 and (d) SnS2-2.0Pt with inset of particle 
size distribution of Pt NPs; HRTEM image of (e) SnS2-2.0Pt; (f) HAADF−STEM and (g–i) elemental 
distribution images of SnS2−2.0Pt; and (j) XRD patterns of SnS2 and SnS2−2.0Pt with standard dif-
fraction peaks of SnS2 and Pt (vertical lines). 

The crystallographic properties and phase composition of the SnS2 and SnS2−2.0Pt 
hybrids were investigated by X-ray diffraction (XRD) patterns (Figure 1j). The typical 
diffraction spectrum with specific peaks of pure SnS2 is indexed by hexagonal SnS2 
(PDF#23-0677) [48], and the diffraction peaks located at 15.029, 28.199, 32.124, 41.886, 
49.960, 52.451, 54.960, 60.619, 67.152, and 70.333° are well attributed to (001), (100), (101), 
(102), (110), (111), (103), (201), (202), and (113) crystal facets with lattice constants of a = b 
= 3.6486 Å and c = 5.8992 Å. The absence of no impurity peaks demonstrates that pure 
SnS2 has been successfully fabricated. As for SnS2−2.0Pt, loading Pt NPs does not influ-
ence the crystalline structure of SnS2. The deposition of Pt NPs at SnS2−2.0Pt concentra-
tions was not detected in the XRD pattern with JCPDS card no. 4−802 because of the small 
particle size of Pt NPs with highly uniform dispersion onto the sheet-like SnS2. Never-
theless, the energy-dispersive spectroscopy of SnS2−2.0Pt illustrated in Figure S1 displays 
that Pt NPs do exist. 

2.2. XPS Analysis 

Figure 1. (a) Schematic illustration of the synthesis process of sheet-like-structured SnS2 and Pt/SnS2

hybrids; TEM images of (b) SnO2 hollow sphere, (c) SnS2 and (d) SnS2-2.0Pt with inset of particle
size distribution of Pt NPs; HRTEM image of (e) SnS2-2.0Pt; (f) HAADF−STEM and (g–i) elemental
distribution images of SnS2−2.0Pt; and (j) XRD patterns of SnS2 and SnS2−2.0Pt with standard
diffraction peaks of SnS2 and Pt (vertical lines).

The crystallographic properties and phase composition of the SnS2 and SnS2−2.0Pt hy-
brids were investigated by X-ray diffraction (XRD) patterns (Figure 1j). The typical diffraction
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spectrum with specific peaks of pure SnS2 is indexed by hexagonal SnS2 (PDF#23-0677) [48],
and the diffraction peaks located at 15.029, 28.199, 32.124, 41.886, 49.960, 52.451, 54.960, 60.619,
67.152, and 70.333◦ are well attributed to (001), (100), (101), (102), (110), (111), (103), (201), (202),
and (113) crystal facets with lattice constants of a = b = 3.6486 Å and c = 5.8992 Å. The absence
of no impurity peaks demonstrates that pure SnS2 has been successfully fabricated. As for
SnS2−2.0Pt, loading Pt NPs does not influence the crystalline structure of SnS2. The deposition
of Pt NPs at SnS2−2.0Pt concentrations was not detected in the XRD pattern with JCPDS card
no. 4−802 because of the small particle size of Pt NPs with highly uniform dispersion onto the
sheet-like SnS2. Nevertheless, the energy-dispersive spectroscopy of SnS2−2.0Pt illustrated in
Figure S1 displays that Pt NPs do exist.

2.2. XPS Analysis

An X-ray photoelectron spectroscopy (XPS) test was used to investigate the element
composition and valence state of as-prepared samples. Figure 2a depicts the survey XPS
spectra of SnS2 and SnS2−2.0Pt, and the peaks of Pt only can be observed in SnS2−2.0Pt,
proving once again the successful modification of Pt onto SnS2. The peaks at 486.9 and
495.3 eV in Figure 2b mainly focus on Sn 3d5/2 and Sn 3d3/2, belonging to the binding
energies of Sn4+ states [50]. And the high-resolution XPS scans of the S 2p spectrum exhibit
two peaks with the binding energies of 161.9 and 163.1 eV (Figure 2c), corresponding to S
2p3/2 and S 2p1/2, respectively, confirming the chemical state of S with −2 valence in the
SnS2 sheet. However, compared to the pure SnS2, the binding energies of S 2p and Sn 3d
for SnS2−2.0Pt showed a slightly negative shift toward a lower direction of 0.5 eV (S 2p)
and 0.5 eV (Sn 3d), indirectly confirming the closed interaction between Pt NPs and SnS2,
which shows that the e− of SnS2 migrate to Pt at the interface. As shown in Figure 2d, the
Pt 4f XPS spectrum of SnS2−2.0Pt can be divided into two double peaks. The peaks located
at 71.7 eV and 75.1 eV belong to the Pt 4f7/2 and Pt 4f5/2 of metal Pt0, while the peaks at
73.0 eV and 76.3 eV correspond to the Pt 4f7/2 and Pt 4f5/2 of Pt2+ [51–54], existing in the
interfaces of Pt and SnS2 or the oxidized Pt atoms [55]. Moreover, the ratio of Pt0/Pt is
70.18% (Table S1), demonstrating that Pt is mainly presented in the metallic form.
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2.3. Photocatalytic TC Degradation Evolution

The photocatalytic property tests of TC degradation for all as-prepared samples were
carried out under 300 W Xe lamp irradiation. The standard curve of absorbance vs. varied
concentrations of TC is displayed in Figure S2. The initial TC solution containing catalysts
was stirred for 30 min in a dark environment, aiming to achieve adsorption/desorption
equilibrium between TC and the catalyst before illumination. Firstly, the blank experiment
was conducted. The test result (Figure 3a) showed that the TC was difficult to degrade under
the condition of no light irradiation, while the concentration of TC significantly decreased in
the existence of light and the catalyst. The pure SnS2 demonstrated a degradation efficiency
of 52.15% for TC within 120 min. And for Pt/SnS2 hybrids, there was a rise in the Pt NP
amount loaded on the SnS2 sheet. The degradation activity was improved; however, the
excess loading amount of Pt NPs caused a decrease in the performance of TC degradation.
The degradation efficiency of TC was 76.32%, 84.76%, 91.27%, and 83.65% for SnS2−1.0Pt,
−1.5Pt, −2.0Pt, and −2.5Pt, respectively, and SnS2−2.0Pt showed optimal photocatalytic
TC degradation performance behaviors.
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Then, the reaction kinetics of the catalytic process for all as-prepared samples was
studied using the first-order reaction kinetic equation of −ln(Ct/C0) = kt, where t is re-
action time, Ct stands for the concentration of TC after t min light irradiation, C0 is the
concentration of TC after adsorption/desorption equilibrium in a dark environment, and
k is the reaction rate constant (min−1). The fitting data (Figure 3b) demonstrate a very
good linear relationship between −ln(Ct/C0) and t, and the R2 values of SnS2, SnS2−1.0Pt,
−1.5Pt, −2.0Pt, and −2.5Pt are 0.9301, 0.9619, 0.9845, 0.9927, and 0.9699. And the slopes
of the fitted lines are represented by the value of k, which is 0.0057, 0.0111, 0.0149, 0.0187,
and 0.0142 min−1 for SnS2, SnS2−1.0Pt, −1.5Pt, −2.0Pt, and −2.5Pt (Figure 3c). Notably,
SnS2−2.0Pt demonstrates the best performance of TC photodegradation among all samples
and also possesses strong competitiveness compared with the published papers with the
SnS2-based materials under similar reaction conditions [48,56–60] (Table 1). In addition,
Figure 3d shows the recyclability and stability of SnS2−2.0Pt, in which the degradation
rate of TC has no obvious change during five cycles, suggesting the stability of SnS2−2.0Pt
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for photocatalytic TC degradation. And the high stability of the SnS2-2.0Pt sample crystal
structure and morphology can also be proved by the XRD pattern and TEM image (Figure
S3). Furthermore, the pH value of the initial TC solution as a major effect parameter was
studied during the process of TC degradation. As shown in Figure S4, SnS2−2.0Pt demon-
strated excellent performance under a wide pH range with a TC degradation efficiency of
92.50%, 91.56%, 88.17%, and 83.28 under the initial solution pH values of 3, 5, 9, and 11,
respectively. The degradation rate decreased slightly but not significantly in an alkaline
environment, indicating that SnS2−2.0Pt could exhibit good performance in a wide range
of pH values.

Table 1. Comparison of TC photodegradation activity of previously published papers with SnS2-
based catalysts.

Catalyst
Initial

Concentration of
TC (mg/L)

Dosage
(g/L)

Reaction Time
(min)

Degradation
(%)

Kinetic
Constant
(min−1)

Ref.

Pt/SnS2 20 0.33 120 91.27 0.0187 This work
Fe/SnS2/Kaolinite

a 40 0.50 60 80.38 0.0257 48

Zn2SnO4/SnS2 10 0.10 120 83.00 0.0176 56
BiVO4/SnS2 10 0.20 150 80.80 0.0100 57

LaFeO3/SnS2 50 0.33 120 28.80 0.0028 58
Bi2MoO6-x/SnS2 20 0.20 90 89.00 0.0139 59

Ti3C2/SnS2 10 0.50 90 87.70 0.0156 60
a A total of 8 mM of H2O2 was added to the reaction system.

2.4. Photoelectronic Tests

In order to investigate the reasons why the SnS2−2.0Pt sample behaved with such
properties during the photodegradation of TC, a series of photoelectronic characterizations
were carried out. Figure 4a shows the steady-state photoluminescence (PL) spectra of SnS2
and SnS2−2.0Pt with the peak position located at ~550 nm. And SnS2−2.0Pt displays a
weaker peak intensity compared to that of pure SnS2, suggesting that the heterogeneous
structures constructed between SnS2 and Pt NPs hinder the recombination of photo-induced
e−/h+ pairs [61]. In addition, time-resolved PL was used to study the characteristics of
photo-excited charge carriers. As illustrated in Figure 4b, the average lifetimes (τAve.) of
SnS2 and SnS2−2.0Pt were calculated to be 0.30 and 0.26 ns using the biexponential func-
tion, respectively. The shorter average fluorescence lifetime of SnS2−2.0Pt demonstrated
the improved transfer and separation efficiency of charge carriers [62]. Moreover, the
electrochemical impedance spectra (EIS) exhibited in Figure 4c show the fitted semicircle
diameter values of 69.66 and 19.99 kΩ for SnS2 and SnS2−2.0Pt, respectively, and smaller
semicircles of SnS2−2.0Pt indicate lower charge carrier transfer resistance. Furthermore,
SnS2−2.0Pt shows higher photocurrent density than that of SnS2 (Figure 4d), demonstrat-
ing a promotion of the generation and separation efficiency of charge carriers due to the
heterojunctions in SnS2−2.0Pt. All these characterization results confirm that the genera-
tion, separation, and transfer of photo-induced e−/h+ pairs can be enhanced in SnS2−2.0Pt
during photocatalytic TC degradation [63,64], resulting in higher photocatalytic activity.
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2.5. Mechanism Analysis

Free-radical trapping experiments were implemented to examine the main active species
in TC photodegradation. Normally, the active substances, e−, hydroxyl radicals (·OH), h+,
superoxide radicals (·O2

−), and singlet oxygen (1O2), were generated during the process of
photocatalytic TC degradation, which could be captured using the scavengers of IPA, K2S2O8,
EDTA, BQ, and FFA, respectively. As displayed in Figure 5a,b, the TC degradation efficiency
decreased after adding IPA, K2S2O8, EDTA, BQ, and FFA, with the degradation efficiency
of 75.30%, 82.72%, 76.11%, 17.56%, and 28.60%, respectively. BQ was a great obstacle to TC
degradation, followed by FFA, and IPA, K2S2O8, and EDTA illustrated a relatively small
impact on TC degradation. Thus, ·O2

− played a dominant role in the degradation process of
TC, followed by 1O2, and e−, ·OH, and h+ played an auxiliary role [65,66].
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To unveil the catalytic reaction mechanism, corresponding tests were conducted to
define the energetic band structure. The UV−Vis light absorption spectra of SnS2 and
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SnS2−1.0Pt, −1.5Pt, −2.0Pt, and −2.5Pt are revealed in Figure 6a. The light absorption
edge is approximately 580 nm for pure SnS2. After loading Pt NPs on SnS2, the light
absorption of Pt/SnS2 hybrids is significantly enhanced compared to that of pure SnS2,
which contributes to the LSPR effect of Pt. The Tauc plots can be obtained through the
UV−Vis light absorption data. And then the energy band gap (Eg) of as-prepared samples
can be determined according to the intercept of the straight lines of the Tauc curves on
the x-axis. As exhibited in Figure 6b, the Eg values of SnS2 and SnS2−2.0Pt are 2.14 and
1.98 eV, respectively. In addition, the Mott−Schottky measurement is used to confirm
the location of the flat band (Ef). Figure 6c demonstrates the Mott−Schottky plots under
various frequencies of SnS2, whose slopes are positive, indicating an n-type semiconductor
of SnS2. As for the n-type semiconductor, compared to the position Ef, the conduction band
(ECB) potential is negative 0.1 V [67]. According to the intercept of the straight section of
the Mott−Schottky curves with various frequencies on the x-axis, the Ef potential of SnS2 is
−0.60 V (vs. NHE). And the position of the ECB of SnS2 is −0.70 V (vs. NHE). The valence
band potential (EVB) of SnS2 is calculated to be 1.44 V (vs. NHE) from the following formula:
EVB = Eg + ECB [68]. Thus, the proposed main mechanism of TC photodegradation for the
Pt/SnS2 hybrid is illustrated (Figure 6d) and the related reactions are as follows: Under
light irradiation, the e− are excited and move from the valence band (VB) to the conduction
band (CB) of SnS2; in the meantime, an equal quantity of h+ is produced in the VB of SnS2
(Reaction 1). Because of the tough electron oscillation induced by LSPR excitation, the
generated plasmonic hot h+ can capture the e− in the CB of SnS2, which can effectively
suppress the recombination of photo-excited e−/h+ pairs. Then, the oxygen is reduced to
·O2

− (Reaction 2) by the e−. Subsequently, the 1O2 can be generated through ·O2
− reacting

with h+ (Reaction 3). Finally, TC is degraded by the active species (Reaction 4).

Pt/SnS2 + light → e− + h+ (1)

O2 + e− → ·O2
− (−0.33 V vs. NHE) (2)

·O2
− + h+ → 1O2 (0.67 V vs. NHE) (3)

·O2
−/1O2 + TC → CO2 + H2O + other products (4)
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3. Materials and Methods
3.1. Materials

Thioacetamide (TAA) and sodium sulfate anhydrous (Na2SO4) were purchased from
Shanghai Aladdin Biochemical Technology CO., Ltd., Shanghai, China. Tin (IV) chloride
pentahydrate (SnCl4·5H2O), chloroplatinic acid (H2PtCl6), absolute ethanol, methyl alcohol,
isopropyl alcohol (IPA), TC, potassium persulfate (K2S2O8), ethylene diamine tetraacetate
dehydrate (EDTA), furfuryl alcohol (FFA) and p-ben-zoquinone (BQ) were purchased
from Shanghai Macklin Biochemical Technology CO., Ltd., Shanghai, China. Sucrose was
supplied from Xilong Science Co., Ltd., Shantou, China. All the above chemicals were
analytical reagent grade and were utilized directly without further purification.

3.2. Preparation of Photocatalysts
3.2.1. Preparation of Carbonaceous Microsphere (CMS) Templates

The details can be seen in Supporting Information.

3.2.2. Preparation of SnO2 Hollow-Structured Microspheres

The synthesis process can be found in Supporting Information.

3.2.3. Preparation of Sheet-Like SnS2

Firstly, 1.0 g TAA and 100.0 mg SnO2 hollow spheres were gradually added into
30.0 mL deionized (DI) water, and the suspension was vigorously stirred with a magnetic
stirrer for 30 min at room temperature to form a mixed homogeneous solution. Next, the
obtained suspension was placed in a 50 mL stainless steel autoclave and crystallized in a
180 ◦C oven for 3 days. After the stainless steel autoclave was naturally cooled to room
temperature, the product was separated by centrifugation and washed several times with
deionized water and ethanol in sequence. Finally, the product was dried in a 60 ◦C oven
for 24 h to obtain the yellow powder.

3.2.4. Synthesis of Pt/SnS2 Hybrids

Firstly, 2 mg/mL H2PtCl6 aqueous solution was prepared. Subsequently, 40 mL of
deionized water, 10 mL of methanol, and different volumes of H2PtCl6 solutions of 1.05,
1.57, 2.10, and 2.62 mL were poured into the beakers in sequence, and this was stirred for
30 min to form a uniform solution. Then, 100 mg of SnS2 (Pt/SnS2 mass ratios were 1.00,
1.50, 2.00, and 2.50%, respectively) was added to the above solution with constant magnetic
stirring for 2 h under a Xe lamp. Finally, after centrifugal separation, the obtained gray
solid powder was washed with deionized water and ethanol, collected, and then dried in
a 60 ◦C oven for 24 h. According to the different deposition amounts of Pt on SnS2, the
synthesized samples are denoted as SnS2−1.0Pt, SnS2−1.5Pt, SnS2−2.0Pt, and SnS2−2.5Pt.

3.3. Characterization

This part can be seen in Supporting Information.

3.4. Evolution of Photocatalytic TC Degradation

Under the irradiation of a 300 W Xe lamp (HF−GHX−XE−300, Shanghai Hefan Instru-
ment Co., Ltd., Shanghai, China), the photocatalytic reactions of the as-prepared samples
were evaluated by photodegradation of TC aqueous solution (20 mg/L). The synthesized
sample (20 mg) was dispersed into an aqueous TC solution (60 mL), and the suspension
was stirred in a dark environment for 30 min to reach adsorption/desorption equilibrium
before turning on the light. Subsequently, the photocatalytic suspension system was sam-
pled (3 mL) at specific time intervals during the process of light illumination and then
centrifugated to remove the photocatalyst (10,000 rpm/min, 2 min). Finally, the absorbance
of the residual TC was measured using a UV−Vis spectrophotometer at 357 nm [42]. For
comparison, the degradation of TC under light illumination without a photocatalyst, the
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degradation of TC with a photocatalyst under no light, and the degradation of TC in the
absence of a photocatalyst and light were also investigated.

4. Conclusions

In summary, Pt NPs loaded on SnS2 sheet hybrids were successfully designed and
synthesized via a simple hydrothermal approach and photodeposition process for photocat-
alytic TC degradation. Benefiting from the formation of a metal/semiconductor interface
field between SnS2 and Pt enhancing the separation of photo-induced charge carriers, the
LSPR effect of Pt strengthening the light absorption, and the sheet-like structure shortening
the transfer path of charge carriers, the best catalyst displayed an excellent photocatalytic
activity of TC degradation with a degradation efficiency of 91.27%, and a reaction rate
constant of 0.0187 min−1, and durability. Our finding not only proposes a feasible strategy
for utilizing the combined capabilities of sheet-like structures and the LSPR effect of Pt NPs
but also paves a new avenue for the design of efficient and sustainable photodegradable
materials for wastewater treatment technologies.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29225423/s1: Figure S1: The energy-dispersive spectroscopy of
SnS2−2.0Pt; Figure S2: The standard curve of absorbance vs. various concentrations of TC; Figure S3:
(a) XRD patterns of fresh and used SnS2−2.0Pt and (b) a TEM image of used SnS2−2.0Pt; Figure S4:
Photocatalytic TC degradation curves under various pH values of initial of TC; Table S1: A summary
of peak area ration and the full width at half maximum of each peak for SnS2−2.0Pt according to XPS
peak-fitting results.
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