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Abstract: This study deals with the separation and detection methods for 12 synthetic musk com-
pounds (SMCs), which are some of the emerging contaminants in fish samples, are widely present
in environmental media, and can be considered serious risks due to their harmful effects. For the
separation of co-extracted substances and the target SMCs in fish samples after ultrasonic extraction,
four solid-phase extraction (SPE) sorbents were investigated. The recoveries of SMCs from 10 mL
of eluent, as optimized by the elution profile, were within the acceptable range of 80–120% in all
SPE types, and it was found that nitro musk and polycyclic musk compounds were separated more
clearly in Florisil SPE than others (Aminopropyl, Alumina-N, PSA). Furthermore, the results of
measuring the matrix effects by each SPE through the spiking experiments showed that Florisil
SPE was superior. The comparison of a gas chromatograph-single quadrupole mass spectrometer
(GC-SQ/MS) with selected ion monitoring (SIM) mode and GC-triple quadrupole mass spectrometer
(GC-QqQ-MS/MS) with multiple reaction monitoring (MRM) modes regarding the detection method
of SMCs showed that the method detection limits (MDLs) of SMCs were on average ten times lower
when GC-QqQ-MS/MS with MRM mode was used. The differences between the two methods can
provide essential information for selecting an analytical method in related research fields that require
appropriate detection levels, such as risk assessment or pollution control.

Keywords: synthetic musk compounds (SMCs); solid-phase extraction (SPE) cleanup; gas
chromatograph-single quadrupole mass spectrometer (GC-SQ/MS); gas chromatograph-triple
quadrupole mass spectrometer (GC-QqQ-MS/MS); carp fish samples

1. Introduction

Synthetic musk compounds (SMCs) are consumer chemicals manufactured as fra-
grances and consumed in vast quantities worldwide [1,2]. As the global economy continues
to grow, the consumption of SMCs is on the rise [3]. Accordingly, their use and release
into the environment are becoming more frequent, and they are recognized as compounds
that need attention [4]. These compounds are discharged into domestic sewage through
human activities such as showering, bathing, and washing [5–7], are not completely re-
moved from sewage and wastewater treatment facilities, and are released into the aquatic
environment [8,9].
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Comprehensive monitoring of SMCs has been performed in river waters worldwide
since 2004, and the primary source has been reported to be effluents from wastewater treat-
ment plants (WWTPs) [10–13]. Also, their concentrations detected in the rivers of many
countries were ranged from 0 to 10,000 µg/L depending on the type of SMCs, and the main
compounds were HHCB (4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene),
AHTN (1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone), and MK (1-(4-tert-
butyl-2,6-dimethyl-3,5-dinitrophenyl)ethanone) [14–17]. As the bioaccumulation and adverse
health reactions of SMCs became known, several compounds were banned and limited from
use [18,19], but they are still detected in fish living in rivers, requiring constant monitoring
and management [20–23].

The bioaccumulation potential and ecological risks resulting from the worldwide
production, intensive use, and proven widespread distribution of SMCs have been in-
creasingly studied in recent years. Like other well-known compounds, such as phthalates,
polychlorinated biphenyls, and brominated flame retardants, SMCs are also evaluated as
synthetic endocrine disruptors found in fragranced products and as molecules that can
interfere with the proper functioning of the endocrine system, which can lead to harmful
effects in living organisms [24]. In terms of health effects, they have been reported to be
associated with dermatitis, photosensitivity, and DNA damage [25]. Moreover, they are
lipophilic and have a high potential to accumulate in the body fat of organisms, so a recent
attempt has been made to evaluate the metabolic impact of SMCs on obesity together with
endocrine-disrupting compounds [26]. The toxicity and long-term ecological effects of SMC
emission from direct (e.g., human activities) and indirect sources (e.g., WWTP effluent)
extend to the marine, and studies evaluating the exposure levels of SMCs in marine organ-
isms have raised the need to pay attention to the trophic transition of SM in the marine
food chain [27]. Research on toxicity and hazards is continuously being conducted for each
SMC component. Current toxicology or risk assessment research for marine organisms,
including fish, is constantly undertaken for each SMC [28–30].

We have studied the distribution characteristics of 12 SMCs in the Han River estuary
and coastal areas of Korea for several years to understand the marine environment and
ecosystem [31,32]. Furthermore, an appropriate quantitative method for separation and
sensitivity to measure SM concentrations in fish is needed to understand the impact on the
aquatic ecosystem. To analyze different types of SMCs in various environmental matrices,
several sample preparation methods such as liquid–liquid extraction, solid-phase extraction
(SPE), and solid-phase microextraction (SPME) have been used to remove and separate
interfering substances [33–35], and gas chromatography (GC) coupled with a detector such
as a mass spectrometer (MS) or a tandem mass spectrometer (MS/MS), has been utilized
for qualitative and quantitative analysis [1]. In the case of sample preparation using SPE or
SPME, the amount of organic solvent used is small compared to the liquid–liquid extraction
and is relatively simple. Still, there are limitations to the types of compounds that can
be used depending on the solid cartridge or fiber [36]. This study aimed to compare and
analyze the SPE sample cleanup and two detection methods for quantifying 12 SMCs in
fish and to provide the analytical performance according to each approach to laboratories
planning to monitor SMCs. The conditions for separating target SMCs and interfering
substances well using four SPE sorbents after the ultrasonic extraction of fish samples were
investigated for the sample preparation. The comparison of quadrupole MS, which is most
commonly used in laboratories, and triple quadrupole MS/MS [37], which has recently
been excellently used for quantitative analysis regarding the detection method, could help
establish a test method to prepare for SMCs.

2. Results and Discussion
2.1. Comparison of Solid-Phase Extraction (SPE) Clean-Up

The elution conditions were investigated using four SPE sorbents to separate co-
extracted substances and 12 target SMCs after ultrasonic extraction of the fish sample. The
elution patterns for each of the four sorbents using dichloromethane (DCM) as the elution
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solvent are shown in Figure 1. After loading 50 ng of SM standard mixture onto each SPE
sorbent, the recoveries were investigated for every 2 mL of eluent.
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Figure 1. Elution patterns of 12 SMCs using four types of SPE sorbents: (a) Aminopropyl, (b) Florisil,
(c) Alumina-N, and (d) Primary Secondary Amine (PSA) SPE.

For Alumina-N and PSA SPE, 12 SMCs were eluted directly into the 4 mL of solvent
without being retained on the sorbents. In the case of Aminopropyl SPE, although all
compounds were retained longer in the sorbent, the separation between the groups of
nitro musk and polycyclic musk compounds was not clear. However, in the case of Florisil
SPE, the separation between the groups of nitro musk and polycyclic musk compounds
was shown more distinctly compared with the three other SPEs, while polycyclic musk
compounds, especially DPMI (1,1,2,3,3-pentamethyl-2,5,6,7-tetrahydroinden-4-one) tended
to be more retained in the sorbent than nitro musk compounds. From the elution pattern
analytical results, it was found that 12 SMCs were completely eluted when 10 mL of DCM
eluent was used in all SPE sorbents. Additionally, the recoveries for each SMC on four SPE
sorbents by 10 mL of DCM eluent were investigated using 1 ng/µL of SM standard mixture.

Figure 2 shows the mean recoveries of SMCs obtained by triplicate measurements
according to the elution conditions of each SPE sorbent. The mean recoveries and rela-
tive standard deviations (RSDs) of Σ12 SMCs were 100.6 ± 6.5% for Aminopropyl SPE,
102.6 ± 6.4% for Florisil SPE, 95.6 ± 2.7% for Alumina-N SPE, and 100.4 ± 3.7% for PSA
SPE, respectively. The mean recoveries ranged from 83.8% to 115.2% for all types of
SPE, and RSD showed high reproducibility within 13%. Although the recovery of DPMI
was relatively low at 83.8–87.5%, all SMCs met the acceptable limits of 80–120%. One
of the critical factors in selecting SPE sorbents is to evaluate the matrix effects (MEs) of
fish samples according to the four types of SPE cleanup. Fish samples contain lipids,
proteins, amino acids, and other biomolecules, which can be extracted simultaneously
during extraction [38–40]. Because co-extracted substances can interfere with the analysis
of target chemicals, a cleanup process is essential to remove them before instrumental
analysis [41–43].
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sorbents (n = 3).

Figure S1 compares the chromatograms obtained by the GC-SQ/MS analysis of the
carp extract and 12 SMCs standard solutions. This results from overlaying the total ion
chromatogram (TIC) and selected ion monitoring (SIM) chromatograms of the carp extract
and 12 target SMCs to investigate the separation of target SMCs and interfering substances.
The mass spectra for the major peaks of co-eluting substances with SMCs in carp extracts
were shown in Figure S1a,b (lower panel), and they were identified through the NIST 2.0
library search. The main interfering substances were fatty acids, which were identified
as tetradecanoic acid with retention times on GC between 8.5 and 9.3 min, pentadecanoic
acid between 9.5 and 10 min, and n-hexadecanoic acid between 11 and 12 min, respectively.
It can be shown that the significantly high contents of fatty acids are extracted compared
to the target analytes existing at the sub-nanogram level, and in particular, the substance
most likely to be affected by n-hexadecanoic acid was MK. In particular, the interferences
eluted between 11 and 12 min in GC were minimized. PSA sorbent is mainly used to
remove sugars, fatty acids, organic acids, lipids, and specific pigments [23,44]. Additionally,
Aminopropyl, Florisil, and Alumina-N sorbents are excellent for removing lipids and
effectively minimizing interfering substances in the matrix [45–47]. Although the results of
all SPE cleanup showed the effect of removing interference substances, the Florisil sorbent
exhibited lower abundances of interference peaks compared to the others. To evaluate the
influence of matrix substances in the detector’s response according to four SPE sorbents,
MEs were determined based on the analyte response in the presence of matrix and the
analyte response in the absence of matrix. MEs are known to be caused by the loss (negative
value) or enhancement (positive value) of signals for target analytes due to the competition
with interferences in the active sites of the GC liner, column, and detector [48,49].

ME exhibited negative values for most of the SMCs obtained by four types of SPE
sorbents, except MK, corresponding to PSA and Florisil sorbents, as shown in Figure 3.
The differences in ME among the four types of SPE were examined using ANOVA, and
a statistically significant difference was found with p < 0.05. Following the ANOVA test,
pairwise comparisons were conducted using the Tukey post-hoc test to determine whether
there were statistically significant differences among the types of SPE sorbents. The ME
results obtained with the PSA sorbent were statistically different from those obtained with
the three other types of SPE sorbents. When ME (%) values are 0%, there is no ME, and the
values between 20% and this value are considered to be within the acceptable range [50].
For PSA sorbent, MEs ranged from −21% to −27% for nine SMCs, excluding DPMI, OTNE,
and MK. The remaining three types of SPEs showed less than 20 % (−19% to 6.4%) weak
MEs for all SMCs. To summarize the results, ME (%) of Σ12 SMCs was low in the following
order: PSA SPE (−21%) > Alumina-N SPE (−14%) > Aminopropyl SPE (−13%) > Florisil
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SPE (−8.8%). Florisil SPE was found to be the best cleanup when considering the reduction
of interfering substances and the appropriate recovery and ME value in this study.
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2.2. Comparison of Detection Methods

A GC-SQ/MS (single quad mass spectrometer) is the most commonly found lab
instrument for targeted and untargeted analysis because it is easy to handle, robust, and
cost-effective. Additionally, the SIM mode has been commonly used as a detection method
for targeted analysis to quantify SMCs in GC-SQ/MS [51–53]. Recently, the multiple
reaction monitoring (MRM) mode detection method, which provides improved sensitivity
and specificity of GC-QqQ-MS/MS, has become a preferred choice as an advanced and
precise quantitative detection method in various fields [52,54,55]. SMCs, which are causing
concern as emerging contaminants, exist in a wide range of concentrations in environmental
media, and more studies are expanding on their chemical type, geographical distribution
characteristics, and toxic effects over the long term [56–58]. Therefore, from a monitoring
perspective, comparing the two detection methods can help in selecting a quantitative
analytical method.

Table 1 shows the quantitative evaluation of 12 SMCs in the pooled blank samples
using two detection methods: GC-SQ/MS with SIM mode and GC-QqQ-MS/MS with
MRM mode. Linearities, limits of detection and quantitation (LOD and LOQ) for each
instrument detection limit and method detection limit (MDL), accuracies, and precisions
were compared. To confirm the linearity of the calibration curve, the relative response factor
(RRF) and the coefficient of determination (R2) values were compared. RRF was used to
evaluate linearity by calculating RSD % from the RRF values at each concentration obtained
from the calibration curve. The RSD % for RRF of the calibration curves prepared using
the two instrumental analysis methods demonstrated good linearity, remaining within
10%. The R2 value was high in both methods, at 0.997 or above. The linear range was
also different since there was a variance in ILOD depending on each detection method.
ILOD in GC-SQ/MS with SIM mode for SMCs ranged from 0.0791 ng/g to 0.151 ng/g and
from 0.00935 ng/g to 0.166 ng/g in GC-QqQ-MS/MS with MRM mode, respectively. The
linear range of SMCs was 10–500 ng/mL in GC-SQ/MS analysis, and the minimum and
maximum concentrations in GC-QqQ-MS/MS analysis were 1–100 ng/mL, which were
10 and 5 times lower than those of GC-SQ/MS analysis. ILOD and ILOQ, representing
instrumental detection limits, differed for each analyte. However, concentrations up to
15.9 times lower (in the case of HHCB) could be detected in GC-QqQ-MS/MS analysis
than in GC-SQ/MS analysis. For MDL and method quantification limit (MQL) obtained
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by matrix spike analysis, GC-SQ/MS measurement results for each analyte were 1.03
to 4.61 ng/g and 3.10 to 18.1 ng/g, respectively. For GC-QqQ-MS/MS measurements,
MDL and MQL could be measured at concentrations 10 times lower on average and up to
33 times (in the case of MK) lower than GC-SQ/MS measurement. In general, detection
by QqQ-MS/MS is known as a technology that can lower the detection limit by reducing
the baseline and improving the signal-to-noise ratio through double mass filtering [59].
This study compared the numerical values between the two detection methods for each
SMC. QqQ-MS/MS enhances the selectivity over SQ/MS by more effectively eliminating
interferences, and the results of the chromatographic comparison are shown in Figure 4.

Table 1. Linearities, slopes of solvent and matrix, instrumental limits of detection and quantification,
and method limits of detection and quantification of 12 analytes in fish samples analyzed using
(a) GC-SQ/MS and (b) GC-QqQ-MS/MS.

(a) GC-SQ/MS

Analyte
Linearity

Solvent
Slope

Matrix
Slope

Matrix Slope
/Solvent Slope

ILOD
(ng/g)

ILOQ
(ng/g)

MDL
(ng/g)

MQL
(ng/g)Range

(ng/mL)
RRF *

RSD (%) R2

DPMI 10–500 6.1 0.998 0.405 0.339 0.837 0.151 0.504 1.46 4.37
OTNE 10–500 10 0.998 0.161 0.144 0.895 0.0955 0.318 1.23 3.68
ADBI 10–500 9.5 0.998 0.282 0.258 0.914 0.0869 0.290 1.20 3.59
AHDI 10–500 11 0.998 0.435 0.406 0.933 0.0828 0.276 1.34 4.02
MA 10–500 6.8 0.999 0.181 0.188 1.037 0.265 0.884 2.18 6.55
ATII 10–500 7.0 0.999 0.370 0.356 0.962 0.0979 0.326 1.67 5.01

HHCB 10–500 8.8 1.000 0.105 0.113 1.079 0.228 0.759 3.44 10.3
MX 10–500 5.8 0.998 0.213 0.207 0.970 0.190 0.634 3.29 9.87

AHTN 10–500 6.8 0.999 0.124 0.121 0.981 0.109 0.364 4.61 13.8
MM 10–500 8.1 0.998 0.342 0.348 1.019 0.0791 0.264 1.33 3.98
MT 10–500 5.6 0.997 0.289 0.279 0.965 0.114 0.381 1.03 3.10
MK 10–500 4.1 0.997 0.211 0.210 0.998 0.246 0.820 6.02 18.1

(b) GC-QqQ-MS/MS

Analyte
Linearity

Solvent
Slope

Matrix
Slope

Matrix Slope
/Solvent Slope

ILOD
(ng/g)

ILOQ
(ng/g)

MDL
(ng/g)

MQL
(ng/g)Range

(ng/mL)
RRF

RSD (%) R2

DPMI 1–100 9.0 1.000 2.536 2.144 0.846 0.0116 0.0388 0.087 0.262
OTNE 2–100 8.8 0.997 0.701 0.720 1.027 0.0282 0.0940 0.552 1.66
ADBI 1–100 19 0.999 0.422 0.402 0.953 0.0126 0.0421 0.161 0.483
AHDI 1–100 12 0.998 0.411 0.450 1.094 0.0127 0.0424 0.175 0.525
MA 5–100 8.0 1.000 0.200 0.226 1.126 0.0188 0.0627 0.280 0.841
ATII 5–100 2.0 1.000 0.313 0.357 1.140 0.0315 0.105 1.02 3.05

HHCB 1–100 17 0.999 3.092 3.452 1.117 0.0143 0.0478 0.665 1.99
MX 8–100 11 1.000 0.088 0.094 1.066 0.166 0.553 0.944 2.83

AHTN 1–100 11 0.999 5.703 6.496 1.139 0.00935 0.0312 0.171 0.512
MM 5–100 13 0.999 0.278 0.315 1.133 0.046 0.153 0.350 1.05
MT 5–100 9.7 1.000 1.095 1.208 1.103 0.0150 0.0499 0.193 0.579
MK 5–100 14 0.999 0.025 0.023 0.918 0.106 0.354 0.183 0.550

* RRF: Relative response factor.
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To investigate the impact of the ME within the linear range, the slopes of the matrix
and solvent, along with their ratio, were calculated and presented in Table 1. The slope
ratios of the ME and solvent were 0.837–1.079 for GC-SQ/MS and 0.846–1.140 for GC-QqQ-
MS/MS. Since these values fall within the acceptable range for MEs (±20%), the MEs can
be disregarded [60].

Figure 4 compares the results of measuring the pooled blank samples spiked with
HHCB (10 ng/g) and MM (1,1,3,3,5-pentamethyl-4,6-dinitro-2H-indene, 5 ng/g) obtained
by two detection methods. HHCB and MM show differences in sensitivity related to peak
area and selectivity associated with the separation from nearby interferences depending on
the detection method used at the same concentration. The left panel for each analyte is the
SIM chromatogram, and the right panel is the MRM chromatogram, containing each peak
of quantitative (green peaks of the upper panel) and qualitative (gray peaks of the lower
panel) ions. In both HHCB and MM, the peak area of the quantitative ion in MRM mode
was tens to hundreds of times higher than that in SIM mode. In the case of the qualitative
ion, the separation from the nearby peaks was clear, allowing for accurate identification.

The MDLs of the proposed analytical method are presented in Table S1, compared
with those reported in other studies. Although the MDL varies depending on fish species,
fat content, and sample size, the MDLs were comparable to or lower than those obtained
using Pressurized Liquid Extraction (PLE) and QuEChERS methods [23,61,62].

Apparent recovery (Rapp %) and precision were measured in triplicate by spiking the
corresponding concentration four times higher than the ILOQ of each SMC into the pooled
blank samples, and the results are shown in Table 2.

Table 2. Accuracy (Rapp %) and precision (RSD %) of 12 SMCs in spiked pooled blank samples
obtained by GC-SQ/MS and GC-QqQ-MS/MS.

Analyte
GC-SQ/MS (n = 3) GC-QqQ-MS/MS (n = 3)

Spking Level (ng) Rapp (%) RSD (%) Spking Level (ng) Rapp (%) RSD (%)

DPMI 4.0 113 14 0.40 83.0 3.4
OTNE 4.0 114 4.8 2.0 108 9.3
ADBI 4.0 82.1 1.9 0.40 102 17
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Table 2. Cont.

Analyte
GC-SQ/MS (n = 3) GC-QqQ-MS/MS (n = 3)

Spking Level (ng) Rapp (%) RSD (%) Spking Level (ng) Rapp (%) RSD (%)

AHDI 4.0 97.0 5.4 0.40 96.1 7.7
MA 10 105 10 1.0 100 5.5
ATII 4.0 103 3.3 4.0 91.4 17

HHCB 10 88.9 22 0.40 81.9 12
MX 10 94.9 13 4.0 117 10

AHTN 10 79.9 16 0.20 115 13
MM 4.0 94.1 17 4.0 102 9.5
MT 4.0 94.1 9.0 1.0 89.3 15
MK 10 112 8.0 4.0 84.2 1.4

Σ12 SMCs 97.8 3.9 97.6 2.6

The apparent recoveries of all SMCs were 79.9–113% (RSD 5.4–22%) in GC-SQ/MS
analysis and 83.0–117% (RSD 1.4–17%) in GC-QqQ-MS/MS analysis. In both detection
methods, all SMCs show acceptable accuracy and precision with recoveries within 70–120%
and RSD less than 25%. The mean recoveries of 12 SMCs were 97.8% (RSD 3.9%) in GC-
SQ/MS analysis and 97.6% (RSD 2.6%) in GC-QqQ-MS/MS analysis. The mean difference
in Rapp (%) values in both analytical methods, as determined by a t-test, showed no
statistically significant difference (p = 0.889 > 0.05). From these results, the proposed
optimal sample preparation can be combined with both detection methods; however, since
the detection limits are different, it suggests that the selection of the detection method
should depend on the purpose of the analysis, such as the monitoring for regulation and
risk assessment.

2.3. Application to Real Samples

Two optimized detection methods combined with Florisil cleanup were used to de-
termine the level of SMCs in fish collected from the estuary and coastal areas near the
Han River in South Korea. To compare the two methods, a positive fish sample con-
taining various compounds and having concentrations above a certain level (>MQL) of
SMCs was selected and collected between Nanji and Seonam wastewater treatment plants.
Figure S2a–c illustrate the comparison results between the two methods for SMCs detected
over various concentrations in a positive sample.

When the quantifying concentration was categorized into low (−20 ng/g), medium
(75–120 ng/g), and high (2000–3000 ng/g) levels, there were compounds detected only in
GC-QqQ-MS/MS analysis, such as AHDI 1-(6-tert-butyl-1,1-dimethyl-2,3-dihydroinden-
4-yl)ethenone), at low concentrations, and the agreement between the two methods for
five compounds was evaluated excluding those compounds (Figure S2d). The agreement
between the two methods for the five compounds ranged from 80.3% to 116%, as shown in
Figure S2d, indicating that the methods were interchangeable. The agreement (%) shown
in Figure S2d was calculated based on the values measured by GC-QqQ-MS/MS analysis.
The difference between SMC concentrations measured from the two detection methods was
analyzed using a nonparametric Wilcoxon Signed-Rank test. This approach is commonly
used to statistically compare two matching results and is considered significant when the
p-value is less than 0.05 [63]. The two paired data of SMCs detected in the sample obtained
by the two methods were compared, and the p-value was greater than 0.05, indicating that
there was no significant difference.

Due to the difference in MDL between the two methods, AHDI was not detected
by GC-SQ/MS analysis but was quantified by GC-QqQ-MS/MS analysis. As shown in
Figure S3, the chromatogram of AHDI showed a low signal below the MDL in GC-SQ/MS
with SIM mode, while it was quantified at a concentration of 0.357 ng/g in GC-QqQ-MS/MS
with MRM mode.
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3. Materials and Methods
3.1. Reagents and Standards

The SMCs analyzed in this study were six types of nitro musk compounds and
six types of polycyclic musk compounds, and their information (name, abbreviation,
CAS No., molecular weight, molecular formula, log Kow, and chemical structure) were
as shown in Table S2. The neat standards of nitro musk compounds and AHTN were
purchased from Sigma Aldrich (St. Louis, MO, USA). MX (1-tert-butyl-3,5-dimethyl-2,4,6-
trinitrobenzene) and MK were the standard solutions dissolved in acetonitrile (ACN) at
100 µg/mL concentration. Polycyclic musk compounds, except HHCB and AHTN, were
purchased from Toronto Research Chemicals (Toronto, ON, Canada). HHCB was purchased
from HPC Standards GmbH (Cunnersdorf, Germany) and supplied in cyclohexane at
100 µg/mL concentration. Fluoranthene-d10 (Fla-d10) was used as an internal standard
purchased from Sigma-Aldrich (St. Louis, MO, USA). Anhydrous sodium sulfate (Na2SO4)
from Fuji-film Wako Pure Chemical Corporation (Osaka, Japan) was used. The ACN, DCM,
and n-hexane (n-Hex) were of HPLC grade (Fisher Scientific, Loughborough, UK).

3.2. Sample Pretreatment

The crucian carp is a representative fish species widely distributed and consumed
in Korea. It has been commonly used as an indicator to evaluate the bioaccumulation
impact on aquatic organisms of pollutants with bioaccumulation potential, such as cyclic
and linear siloxanes [64], hexabromocyclododecanes (HBCDs) [65], phenolic compounds,
polychlorinated naphthalenes (PCNs) [66], and polychlorinated biphenyls (PCBs) [67]. The
edible parts of the crucian carps, which did not contain the 12 SMCs, were homogenized to
prepare a 500 g pooled sample (pooled blank sample) collected from a clean environment
and used in the spiking experiment for the development, optimization, and validation of the
analytical method. The fat content of the crucian carp was 1.20 ± 0.27% in triplicate analysis.
A 50 ng of Fla-d10 was spiked into a 2 g homogenized sample, and ultrasonic extraction was
performed with 10 mL of ACN. ACN was selected as the extraction solvent to minimize
matrix interference, as it effectively reduces the extraction of lipophilic substances, waxes,
fats, and pigments [68,69]. Compared with 20, 30, 40, and 60 min for the extraction, the
optimum extraction time was 30 min when considering the best extraction efficiency and
other interferences. After extraction, the solvent containing the target SMCs was filtered
through 5 g of anhydrous Na2SO4 using qualitative filter paper (No. 2, ADVANTEC
Toyo Kaisha, Ltd., Tokyo, Japan). The ultrasonic extraction and filtration process was
repeated three times to collect 30 mL of ACN. The collected solvent was evaporated using
a rotary evaporator (Eyela, Tokyo, Japan) until the ACN was completely dry. Four SPE
sorbents for cleanup were evaluated: Aminopropyl, Florisil, Alumina-N, and PSA. The
main characteristics of the four SPE sorbents are summarized in Table S3. First, the PSA
was conditioned with 6 mL of MeOH, followed by 6 mL of DCM. Other types of three SPE
were conditioned with 6 mL of n-Hex and 6 mL of DCM. The concentrated extract was
loaded onto the upper surface of the conditioned SPE sorbents and eluted with 10 mL of
DCM at a rate of 1 mL/min. Finally, the elution was evaporated and then reconstituted
with 50 µL before GC injection. The entire sample preparation is illustrated in the flow
chart (Figure 5).
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3.3. Instrumental Analysis

The performance of two instrument systems, GC-SQ/MS with SIM mode and GC-
QqQ-MS/MS with MRM mode, was compared for the quantification of 12 SMCs in fish
samples. A GC-SQ/MS was performed by an Agilent 7890B gas chromatograph equipped
with a 5977A mass selective detector spectrometer system (Agilent, Palo Alto, CA, USA).
The column used was a DB-5MS UI capillary column (5% diphenyl, 95% dimethylsiloxane
phase, 30 m × 0.25 mm × 0.25 µm) from J&W Scientific (Folsom, CA, USA). The sample
was injected at 1 µL in splitless mode at 280 ◦C. Helium as carrier gas (99.999%) flow
was 1 mL/min. The following GC-SQ/MS oven temperature program was applied: the
initial temperature was set to 60 ◦C, ramped up at 20 ◦C/min to 200 ◦C, then increased at
20 ◦C/min to 220 ◦C, and finally ramped up at 20 ◦C/min to 320 ◦C, where it was held for
10 min. A GC-QqQ-MS/MS used a model that combines Agilent’s 7890B GC and 7010 Triple
Quad MSD. The analytes were separated using the same column and oven conditions as in
GC-SQ/MS. High-purity helium was used as the carrier gas, and nitrogen was used as the
collision gas, with flow rates of 1 mL/min and 1.5 mL/min, respectively. The analytes were
measured using SIM mode for qualitative and quantitative ions in GC-SQ/MS analysis.
The selection of quantifier and qualifier ions was based on the fragmented ions of the first
and second most abundance ions, respectively, for GC-QqQ-MS/MS with MRM mode;
optimal precursor ion and product ions were selected by adjusting the appropriate collision
energy (CE) values. Product ions for quantification and qualification were selected based
on their abundance in a composite product ion scan spectrum obtained for the precursor
ion of each analyte at multiple CEs. The optimized acquisition parameters for each of the
12 SMCs in GC-SQ/MS with SIM mode and GC-QqQ-MS/MS with MRM mode are shown
in Table 3.

Table 3. Optimized acquisition parameters of GC-SQ/MS with SIM mode and GC-QqQ-MS/MS
with MRM mode for 12 target SMCs analysis.

Analyte
GC-SQ/MS with SIM Mode GC-QqQ-MS/MS with MRM Mode

Qualifier Ion
(m/z)

Quantifier Ion
(m/z)

Precursor Ion
(m/z)

Qualifier Ion (m/z)
[CE * (V)]

Quantifier Ion (m/z)
[CE (V)]

DPMI 206.0 191.0 206.1 191.1 (5) 163.1 (5)
OTNE 119.0 191.0 191.1 109.2 (15) 121.0 (15)
ADBI 244.0 229.0 244.0 173.1 (15) 229.2 (15)
AHDI 244.0 229.0 244.1 187.1 (15) 229.2 (15)
MA 268.0 253.0 268.1 91.0 (50) 253.1 (5)
ATII 258.0 215.0 258.2 131.1 (30) 173.1 (15)
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Table 3. Cont.

Analyte
GC-SQ/MS with SIM Mode GC-QqQ-MS/MS with MRM Mode

Qualifier Ion
(m/z)

Quantifier Ion
(m/z)

Precursor Ion
(m/z)

Qualifier Ion (m/z)
[CE * (V)]

Quantifier Ion (m/z)
[CE (V)]

HHCB 213.0 243.0 258.1 213.2 (15) 243.2 (5)
MX 128.0 282.0 297.2 77.1 (50) 282.1 (5)

AHTN 201.0 159.0 258.1 187.1 (15) 243.2 (5)
MM 278.0 263.0 278.1 216.3 (15) 263.2 (5)
MT 266.0 251.0 266.1 91.1 (50) 251.1 (5)
MK 294.0 279.0 294.3 91.0 (50) 189.1 (5)

Fla-d10 106.0 212.0 106.2 78.0 (15) 92.1 (15)

* CE: Collision energy.

The IS and 12 SMCs measured under the instrumental analysis conditions described
above were detected within the retention time ranges of 7.04–13.01 min (GC-SQ/MS) and
7.37–13.92 min (GC-QqQ-MS/MS) (Figure S4).

3.4. Quality Assurance and Quality Control (QA/QC)

All analytical results conducted to assess method validation were equally applied to
GC-SQ/MS and GC-MS/MS-QqQ equipment and then compared.

The linearity of the calibration curve was verified by checking the coefficient of
determination (R2) and the RSD value of RRF. The acceptable range for the RSD value of
RRF was set to be within ±20%. The detection and quantification limits of the instrument
(ILOD and ILOQ) were calculated by measuring the standard substance at the lowest
concentration level on the calibration curve 6 times and multiplying the standard deviation
of the measured values by 3 and 10, respectively. To calculate the MDL, a low concentration
of the standard substance, approximately 3 to 5 times the ILOD, was spiked into fish
samples and analyzed in seven replicates. The MDL was determined by multiplying the
standard deviation of the seven spiked concentrations by 3.14 (the t-test value for 6 degrees
of freedom) [70]. The MQL was calculated by multiplying the MDL value by 3 [71]. The
recoveries (Figure 2) were not done using the samples according to the elution condition
of SPE sorbents. They were assessed by comparing the theoretical concentration with
the solution eluted with 10 mL of DCM after loading the standard into each SPE sorbent
without the internal standard. This was done to ensure all analytes were eluted with 10 mL
of DCM. To measure apparent recovery, 2 g of pooled blank samples spiked with the known
amount of the analytes were prepared (Table 2) and determined by the analytical procedure,
as shown in Figure 5.

The ME was assessed using the following equation [72]:

ME (%) = (CPost-Extr/CSTD − 1) × 100

CPost-Extr represents the analyte concentration obtained from the spiked extract minus
the analyte concentration in the non-spiked extract after ultrasonication and SPE without
IS spiking. CSTD is the standard solution of the same concentration.

3.5. Statistical Analysis

Statistical analysis was performed using the SPSS version 25.0 software program (IBM,
Inc. Chicago, IL, USA). One-way analysis of variance (ANOVA), t-test, and Wilcoxon
rank-sum test were used to evaluate the significance of the measured differences. After
conducting the ANOVA analysis, a Tukey post-hoc test was performed. The statistical data
employed the ME (%), Rapp (%), and the measured results obtained from the two analytical
methods. All statistical analyses were two-sided, with significance at p < 0.05. A p-value
lower than 0.05 was accepted as statistically significant.
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4. Conclusions

For the quantification of SMCs in fish samples, four SPE sorbents were examined as
cleanup methods, and GC-SQ/MS with SIM mode and GC-QqQ-MS/MS with MRM mode
were investigated as detection methods. When the appropriate elution volume was set
to 10 mL of each sorbent, and the elution profiles were compared, it was found that SPE
cleanup that could clearly separate nitro musk and polycyclic musk compounds was Florisil
sorbent. The recovery results of each SPE satisfied the acceptable range of 80–120% for all
types of SPE, the ME results of PSA sorbent showed statistically significant differences from
other SPEs. However, Florisil SPE, which had the lowest ME value (%) of SPE sorbents
among the three groups, was selected as a cleanup method.

The information in the analysis of data related to detection limits (ILOD, ILOQ, MDL,
MQL) of two mass spectrometric methods for quantifying SMCs helps determine which
analytical method to apply in research fields (risk assessment or pollution control, etc.). The
linear ranges were determined using two methods, and although they differed depending
on the compounds, MDL and MQL were measured to be up to 33 times lower when GC-
QqQ-MS/MS was used than in GC-SQ/MS analysis. The limitations of GC-SQ/MS analysis,
which is commonly used, were confirmed through the analysis of real samples, and the
adequate range for monitoring was presented in this study. However, the MDL obtained
by the proposed GC-QqQ-MS/MS method was superior to the results of previous studies.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29225444/s1, Table S1: Comparison of MDLs of the proposed
method with previous literature for the SMC analysis in fish samples; Table S2: Chemical names,
abbreviations, CAS numbers, molecular formulas, molecular weights, log Kow and chemical structures
of the 12 SMCs classified into two groups; Table S3: List and the properties of the four SPE sorbents used
in this study; Figure S1: TIC (a) and SIM (b) overlay chromatograms obtained by the GC-SQ/MS analysis
of the carp extract (scan mode, black color) and 12 SMCs standard solutions (SIM mode, blue color).
The red boxes in the lower panel indicate the three major interferences that were eluted at similar times
on the GC column as the target analytes. Each interfering substance was identified by NIST 2.0 library
searching of its individual mass spectrum; Figure S2: Comparison of individual SMCs quantifying
results detected in a positive sample obtained by GC-SQ/MS with SIM mode and GC-QqQ-MS/MS
with MRM mode. (a), (b) and (c) compare the results of detected SMCs according to the concentration
range. (d) represents the percentage of agreement between two methods for the concentration results
of the mainly detected SMCs; Figure S3: Chromatograms of AHDI obtained by (a) GC-SQ/MS with
SIM mode (not detected < MDL) and (b) GC-QqQ-MS/MS with MRM mode at the concentration of
0.357 ng/g; Figure S4: Typical chromatograms of the standard solutions with 12 SMCs and Fla-d10 (IS)
obtained by GC-SQ/MS with SIM mode and GC-QqQ-MS/MS with MRM mode. Refs. [73–75] are cited
in the Supplementary Materials.
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