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Abstract: The far-infrared absorption spectrum of monodeuterated water vapor, HD16O, is analyzed
using three high-sensitivity absorption spectra recorded by high-resolution Fourier transform spec-
troscopy at the SOLEIL synchrotron facility. The gas sample was obtained using a 1:1 mixture of H2O
and D2O leading to a HDO abundance close to 50%. The room temperature spectra recorded in the
50–720 cm−1 range cover most of the rotational band. The sensitivity of the recordings allows for
lowering by three orders of magnitude the detectivity threshold of previous absorption studies in
the region. Line centers are determined with a typical accuracy of 5 × 10−5 cm−1 for well-isolated
lines. The combined line list of 8522 water lines is assigned to 9186 transitions of the nine stable
water isotopologues (H2

XO, HDXO, and D2
XO with X = 16, 17, and 18). Regarding the HD16O

isotopologue, a total of 2443 transitions are presently assigned while about 530 absorption transitions
were available prior to our SOLEIL recordings. The comparison with the HITRAN list of HD16O
transitions is discussed in detail. The obtained set of accurate HD16O transition frequencies is merged
with literature sources to generate a set of 1121 accurate empirical rotation–vibration energies for
the first five vibrational states (000), (010), (100), (020), and (001). The comparison to the previous
dataset from an IUPAC task group illustrates a gain in the average energy accuracy by more than one
order of magnitude. Based on these levels, a recommended list of transitions between the first five
vibrational states is proposed for HD16O in the 0–4650 cm−1 frequency range.

Keywords: water vapor; deuterated water; far infrared; rotational spectrum; deuterium; line list

1. Introduction

We are involved in a long-term project aiming at improving our knowledge of the
spectrum of the nine stable isotopologues of water vapor in the far infrared (50–720 cm−1).
This work relies on a series of high-quality spectra recorded during a one-week mea-
surement campaign in October 2021, at the AILES beam line of the SOLEIL synchrotron
near Paris (https://www.synchrotron-soleil.fr/en accessed on 10 April 2024). A total of
twenty-one spectra of water vapor samples with a variety of isotopic compositions (natural,
17O-enriched, D2O, H2O:D2O mixture, and a mixture of the 17O-enriched sample with D2O)
were recorded by high-resolution Fourier transform spectroscopy (FTS) at room temper-
ature. The experimental conditions are listed in Table 1 where the isotopic composition
of the sample injected in the cell is indicated. [In fact, due to the statistical exchange of
the oxygen and hydrogen atoms between the various water molecules and to exchanges
between the gas phase and water molecules adsorbed on the walls of the cell, the nine
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stable isotopologues (H2
XO, HDXO, and D2

XO with X = 16, 17, and 18) are present in each
sample and may contribute to the recorded spectra.]

Table 1. Experimental conditions of the room temperature FTS spectra of the various isotopic samples
of water vapor recorded at the SOLEIL synchrotron. The absorption pathlength was 151.75 m.

Label Sample a Max. Pressure (mbar) Nb of P b Ref.

#1–5 Natural 6.7 5 [1]

#6–9
41% H2

17O,
27% H2

18O,
22% H2

16O
3.85 4 [2]

#10–14

50% D2O
20.5% H2

17O
13.5% H2

18O
11% H2

16O

8.0 5

#15–18 D2O 8.0 4 [3]

#19–21 50% H2
16O

50% D2O
4.0 3 This work

Notes: a rough isotopic composition of the water sample injected in the cell. b number of different pressure values
used for the recordings.

The present contribution is devoted to the analysis of the spectra #19–21 corresponding
to a 1:1 mixture of H2O and D2O providing a maximum relative abundance in HDO
(50%). It follows the analysis of the natural sample spectra (#1–5) [1], 17O-enriched spectra
(#6–9) [2], and D2O spectra (#15–18) [3]. These studies indicated that as a result of the
brightness of the synchrotron radiation and of the long pathlength (151.75 m), the sensitivity
of the SOLEIL absorption spectra improves by about three orders of magnitude that of
all the previous absorption studies available in the region. Our detectivity threshold
corresponds typically to line intensities of 10−25 cm/molecule while the most sensitive
previous observations were at the 10−22 cm/molecule level [1–3]. From the large sets of
newly measured line positions, energy levels can be newly determined, and a general
improvement in the energy level accuracy has been achieved for H2

16O [1], H2
17O and

HD17O [2], D2
XO (X = 16–18) [3], and H2

18O and HD18O [4]. These previous works
included systematic comparisons to the current water line lists provided by spectroscopic
databases [5–7] and proposed a number of improvements.

The studied FIR region corresponds to the purely rotational transitions in the (000)
ground vibrational state and weaker rotational transitions in the first vibrational states
which are slightly populated at room temperature. It is worth noting that the lower and
upper states of the observed FIR transitions are the lower states of transitions observed
in all the spectral ranges. Thus, the correction of energy levels based on the studied FIR
spectra propagates over the whole frequency range of the water vapor spectrum. This gives
particular importance to the FIR region in the elaboration of spectroscopic databases.

Furthermore, the FIR region is of first importance for the Earth’s radiation budget. The
thermal radiation mission FORUM (Far-infrared-Outgoing-Radiation Understanding and
Monitoring; https://www.forum-ee9.eu/ accessed on 10 September 2024) of the European
Space Agency (ESA) to be launched in 2027 will be dedicated to the “observational gap
across the far-infrared (from 100 to 667 cm−1), never before sounded in its entirety from
space”. Water vapor absorption being very strong in this region (line intensities up to
3 × 10−18 cm/molecule), a prerequisite for remote sensing is an accurate characterization
of the water vapor spectrum including the weak lines due to the minor isotopologues as
they may overlap the absorption features used to monitor other species of interest.

As mentioned above, the present work is mainly dedicated to the HD16O species which
is the fourth most abundant isotopologues in natural water (abundance of 3.1 × 10−4).
Although a large number of new HD16O transitions was identified in the analysis of the

https://www.forum-ee9.eu/
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D2O spectra (#15–18) [3], the set of observations will be significantly enlarged using spectra
#19–21 which correspond to the maximum possible HD16O abundance of 50%. In the
next section, we present shortly the recordings, the line list retrieval, and the frequency
calibration of spectra #19–21. The rovibrational assignments are presented in Section 3.
Although the nine stable water isotopologues are found to contribute to the analyzed
spectra, a detailed analysis will be mostly focused on the HD16O species. In Section 4, we
propose a new set of HD16O empirical energy levels for the first five vibrational states:
(000), (010), (100), (020), and (001) based on the HD16O line positions derived from spectra
#19–21, from spectra #15–18 analyzed in Ref. [3] and a selection of previous works by
absorption spectroscopy. The comparison to the previous set of energy levels derived ten
years ago by a task group (TG) of the International Union of Pure and Applied Chemistry
(IUPAC-TG) will be discussed. As the main output of the present work, an empirical line
list will be generated for HD16O in the 0–4650 cm−1 region using as a basis the results of
the variational calculations by Schwenke and Partridge (SP) [8,9], most of the line positions
being adjusted according to the accurate empirical values of the lower and upper energy
levels derived in this work.

2. Experiment and Line List

The unique properties of the AILES beam line at the SOLEIL synchrotron source in
terms of brightness, broad-band emission, and stability make it an ideal tool for high-
resolution FTS in the FIR. This applies not only to absorption lines but also to weak
absorption continua, in particular the water vapor continuum [10–12].

2.1. FTS Recordings

The twenty-one FTS spectra listed in Table 1 were recorded following a mostly identical
procedure which has been described in detail in Refs. [1–3] and will not be repeated here.
Briefly, a Bruker 125 interferometer with a 6 µm mylar-composite beam splitter and a
4 K cooled Si bolometer detector were used for the recordings covering the 50–720 cm−1

range. The multipass absorption cell is used in a White-type configuration and has a
252 cm length. The total absorption pathlength was set to 151.75 ± 1.5 m corresponding to
60 passes. For spectra #19–21 under analysis, the cell was filled with a 1:1 mixture of H2O
and D2O in order to maximize the HDO abundance at 50%. The used D2O sample (from
Sigma-Aldrich, St. Louis, MO, USA) has a stated enrichment in deuterium larger than
99.96%. The sequence of the recordings and the corresponding experimental conditions are
detailed in Table 2. The first spectrum (#19) was recorded at a pressure of 4 mbar, and then
part of the sample was evacuated and a second spectrum was recorded at 0.3 mbar. The last
spectrum (#21) was acquired by pumping continuously on the cell in order to measure part
of the stronger lines which are saturated at higher pressure (see Figure 1). The used gauge
does not allow measuring pressures in those conditions. The #21 pressure value of 10 µbar
is an estimated value obtained from a comparison with variational intensities performed
after the rovibrational assignment of the spectrum (see below). Spectrum #19 at 4 mbar
was recorded with a spectral resolution of 0.002 cm−1 while, for the two others at lower
pressure, the maximum spectral resolution of 0.00102 cm−1 was adopted. About 200 scans
were co-added corresponding to an acquisition time of about 10 h at 0.001 cm−1 spectral
resolution. The baseline fluctuations were corrected by division by a spectrum acquired at
a lower resolution (0.05 cm−1), prior to or after each high-resolution recording (see Table 2).
During the recordings, the temperature was found to vary in the 295.5 ± 0.3 K interval.
An overview of spectrum #19 recorded at 4 mbar is displayed in Figure 1, which includes
successive zooms illustrating the spectral congestion and the sensitivity.
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Table 2. Experimental conditions of the three FTS spectra of HDO under analysis.

Label Recording Pressure Resolution, cm−1 Number of Scans

#19 Sample ≈4 mbar 0.002 160
Baseline Pumping on the cell 0.05 200

#20 Sample ≈0.3 mbar 0.001 100
Baseline Pumping on the cell 0.05 200

#21 Sample ≈10 µbar a 0.001 160
Baseline Pumping on the cell 0.05 200

a the used pressure gauge does not allow measuring so low pressure value and the given 10 µbar value is an
approximate value obtained by intensity comparison with calculations.
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Figure 1. Successive zooms of the FTS spectrum #19 of deuterated water recorded at the SOLEIL
synchrotron with a pressure of 4 mbar between 50 and 700 cm−1.

The transmittances of spectra #19–21 obtained after baseline correction are provided
as a Supplementary Material (SM0).

2.2. Global Experimental Line List

Let us first indicate that considering the high quality of the ab initio intensity values
in the considered low energy region, the experimental accuracy required for valuable tests
of the intensity calculations (1% or below) seems to be out of reach with the FTS spectra
at disposal. Our uncertainties on the experimental intensities are related to the fact that
(i) even at the highest resolution of the recordings (0.001 cm−1), the apparatus function
gives a dominant contribution to the line profile; (ii) the line profile is described by a too
small number of points [typically, four points at full width at half-maximum (FWHM)];
and (iii) an accurate determination of the isotopic composition of our samples is difficult.
The goal of the line parameter retrieval was, thus, mainly to determine accurately the line
centers and provide reasonable intensity values (which are valuable in the assignment
process). From comparisons to the ab initio values, we estimate that our intensity values are
accurate within 10% in the best cases (dominant isotopologues, spectrum #19 or #20, inter-
mediate line intensity, and unblended lines). Each of the #19–21 transmittance spectra was
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fitted independently assuming the standard Voigt line profile as line shape (with adjusted
Gaussian and Lorentzian widths) and no particular care was taken for the treatment of the
apparatus function. The line parameters were obtained using a homemade multiline fitting
program written in LabVIEW with DLL written in C++. Figure 2 illustrates the line profile
fitting of the three spectra in a small spectral interval near 356.4 cm−1. The large range of the
pressures of the recordings (about a factor of 400) and small noise level allowed retrieving
line intensities spanning nearly five orders of magnitude. Saturated lines (transmittance at
center less than a few %) were omitted from the fit when a lower pressure spectrum was
available. The (obs. − calc.) residuals of the transmittance included in Figure 2 are close to
the noise level [(αminL) ~ 1% root mean square (RMS)]. Taking into account the absorption
pathlength, L = 151.75 m, this value corresponds to a noise equivalent absorption, αmin,
of 7 × 10−7 cm−1. At the highest pressure (4 mbar), the achieved noise level allows for
the detection of lines with an intensity as low as 2 × 10−25 cm/molecule, as illustrated by
the D2O line with an intensity of 4.0 × 10−25 cm/molecule observed at 356.34175 cm−1 in
Figure 2.
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Figure 2. Line parameter retrieval from the FTS spectra #19–21 of deuterated water near 356.4 cm−1.
The line profile fit was performed in narrow spectral intervals around the lines that were not too
saturated. Upper panel: Recorded spectra at about 10 µbar, 0.3 mbar, and 4 mbar (#21, #20, and #19,
respectively) with corresponding best-fit spectra (blue, red, and green, respectively). Lower panel:
Corresponding (obs. − calc.) residuals in %.

The global line list obtained by combining the three individual lists counts a total of
about 8600 entries and is provided as a Supplementary Material (SM1). Depending on the
line intensity, for each line, the parameters retrieved from the spectrum corresponding to
the best condition were selected. The source (#19, 20, or 21) is indicated for each line. The
spectra at 10 µbar (#21), 0.3 mbar (#20), and 4 mbar (#19) were used for about 3140, 3420,
and 2030 lines, respectively. The HD16O lines are plotted in Figure 3 with distinct symbols
according to the used spectrum. The variational spectrum (SP) calculated by Tashkun
using the results of Schwenke and Partridge [8,9] and available at https://spectra.iao.ru/
accessed on 10 September 2024, is plotted as background. As obvious from Figure 3, the
intensity values of the strongest lines are underestimated by a factor that can be larger
than 10. These intensity values were retrieved from spectrum #21 at the lowest pressure
(~10 µbar). Even at this residual pressure obtained by evacuating the cell by continuously
pumping during the recording, the lines with intensity larger than 10−20 cm/molecule
remain strongly saturated leading to inaccurate intensity values. The accuracy of the

https://spectra.iao.ru/
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corresponding line position is also affected. The position uncertainty as provided by the
fit and included in the SM1 global list will be taken into account in the derivation of the
energy level values (see below).
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Figure 3. Overview of the HD16O lines retrieved from spectra #19–21 of deuterated water between
50 and 720 cm−1. The global experimental line list was obtained by combining the lists at about
10 µbar (#21), 0.3 mbar (#20), and 4 mbar (#19) (green, orange, and yellow dots, respectively). Note
that the strongest lines retrieved from the lowest pressure spectrum are measured with strongly
underestimated intensities (see text). The gray dots correspond to the SP variational list [8,9].

The experimental intensities of the global line list include the isotopic abundance
factor which depends on the spectra. The variation in the isotopic composition is due
to exchanges between the gas phase and water adsorbed in the walls of the cell which
has a different isotopic composition reflecting the “history” of the cell (see Table 1). After
the assignment of the spectra (see next section), it was possible to estimate the relative
abundances for the nine isotopologues in each spectrum by intensity comparison with SP
variational intensities [8,9]. The obtained abundance values can be found in the headings
of the SM1 global list while the minimum and maximum abundances are given in Table 3.
Overall, the H2O:HDO:D2O abundance ratio remains close to 1:2:1 in the three spectra
#19–21 but the small abundances of the 17O and 18O isotopologues vary greatly according
to the spectrum. The highest concentration of these isotopologues is found in spectrum
#21 at the lowest pressure. This is probably due to the continuous desorption of 17O- and
18O-enriched water from the walls of the cell which has a larger impact at the low 10 µbar
pressure of spectrum #21.

The SP variational intensities are included for comparison in the global experimental
line list. For each isotopologue, SP intensities were multiplied by a factor independent
of the spectrum and roughly corresponding to the maximum abundance value of the
considered isotopologue (see Table 3).
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Table 3. Statistics of assigned water transitions.

Molecule Abundance,
Min–Max, in %

Factor a

(%)
Number of

Transitions b Jmax Kamax
c Region, cm−1

H2
16O 24.650–24.910 25.0.0 1035 21 13 51.434–718.657

H2
17O 0.025–0.140 0.15 356 16 11 53.509–667.815

H2
18O 0.070–0.210 0.2 406 17 11 53.569–702.589

HD16O 49.250–49.785 50 2443 25 14 50.277–719.550
HD17O 0.045–0.320 0.3 701 19 11 50.134–631.440
HD18O 0.170–0.430 0.45 851 20 12 52.187–654.961
D2

16O 24.330–25.865 25 2152 29 17 50.210–690.430
D2

17O 0.025–0.200 0.52 538 21 14 50.425–490.178
D2

18O 0.070–0.470 0.2 704 23 14 51.538–516.600
a the calculated intensity values included in the global list were obtained by multiplying the SP variational
intensity of the pure species by this factor. Note that the sum of these factors is larger than 100%. b number
of assigned transitions. c J is the rotational angular momentum quantum number and Ka corresponds to the
projection of the angular momentum onto the a axis.

The absolute frequency calibration of the global list was performed considering the
line positions of spectra #20 and #21 which are not significantly affected by the self-pressure
shift [13,14]. The experimental positions of about 290 H2

16O lines (νobs) were compared
to reference values reported in Ref. [15] with accuracy better than 1 × 10−6 cm−1. The
differences between the experimental line centers and the reference values were fitted as a
linear function. The obtained empirical correction of the frequencies is dνcorr = +8.5 × 10−5

– 7.0× 10−7νobs. An RMS deviation of 2.76× 10−5 cm−1 was obtained for the linear fit, thus
mostly determined by the experimental uncertainty on the line centers. This value gives
an estimate of our accuracy on the reported positions of “good” lines. It is worth noting
the consistency of the present frequency calibration with those performed in Refs. [2,3]
following the same procedure. The differences between the correction laws are at most
2 × 10−5 cm−1 for the whole spectral region, confirming the stability of the experimental
set up over the measurement period.

In the SM1 global line list, the fit error on the line position determination is included.
For a significant fraction of the lines, the fit uncertainty was found to be smaller than
3 × 10−5 cm−1 and is believed to underestimate the real uncertainty on the line position.
For all these lines, we replaced the fit uncertainty with a value of 3 × 10−5 cm−1. Note that
the position uncertainty of the weakest, highly blended lines or saturated lines can reach a
value of 8 × 10−4 cm−1 in the worst cases.

3. Rovibrational Assignments

Over a total of more than 8600 lines, 8522 were assigned to 9186 transitions belonging
to the nine stable water isotopologues. The number of transitions, maximum values of
the J and K quantum numbers, and range of observations are given in Table 3 for each
isotopologue. [In the following, we will use the standard normal-mode–rigid-rotor notation
( V′1V′2V′3

)
J′K′aK′c ←

(
V ′′1 V ′′2 V ′′3

)
J ′′K′′a K′′c to designate the transitions, where V1, V2, and V3

are the vibrational quantum numbers for the symmetric stretch, bend, and asymmetric
stretch modes, respectively, and J, Ka, and Kc are rigid-rotor asymmetric-top quantum
numbers. The single and double primes correspond to the final (upper) and initial (lower)
transition states, respectively.] After the assignment of a few impurity lines (50, 5, and
3 lines of CO2, HF, and DF, respectively), 48 very weak lines were left unassigned at the
end of the assignment procedure.

3.1. H2
XO (X = 16, 17, and 18)

Detailed reviews of the literature studies of vibrational–rotational spectra of H2
16O,

H2
17O, and H2

18O in our spectral region have been included in Ref. [1], Ref. [2], and Ref. [4],
respectively. The SOLEIL spectra recorded with suitable isotopic enrichment (see Table 1)
made it possible to significantly increase the number of observed lines of these H2

XO
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isotopologues, especially for H2
18O [4] and H2

17O [2]. Since the H2
XO concentrations of the

presently analyzed #19–21 spectra are lower than in Refs. [1,2,4], no new H2
XO transitions

were detected and the number of observed lines is smaller: 1035, 356, and 406 compared to
1310 in Ref. [1], 1206 in Ref. [2], and 1150 Ref. [4] for H2

16O, H2
17O, and H2

18O, respectively.
A systematic comparison of the present H2

XO line positions (νTW) to their values in
Refs. [1,2,4] (νRef) gives a very good agreement with the root mean square

RMS =

√
N
∑

i=1
(νTW

i − ν
Re f
i )

2
/N values of 15.8 × 10−5, 12.8 × 10−5, and 13.7 × 10−5 cm−1

for 917, 1773, and 1777 positions from Ref. [1], Ref. [2], and Ref. [4], respectively. A similar
comparison with the W2020 line list [7] gives an RMS = 30.2 × 10−5 cm−1 for a total of
1797 transitions.

3.2. D2
XO (X = 16, 17, and 18)

We have dedicated Ref. [3] to the analysis of the spectra #15–18 recorded with a highly
enriched D2O sample. The literature review of the FIR studies of the D2

XO isotopologues
is included in this reference. The sensitivity of the SOLEIL spectra allowed a considerable
extension of the observations for these species. For instance, more than 2057 energy levels
were newly reported for D2

16O. The D2
XO concentrations in spectra #19–21 under study

are about four times lower than in Ref. [3] (see above Table 3 and Table 2 of Ref. [3]) and
only a subset of the observations of Ref. [3] is presently detected: 2152, 538, and 704 for
D2

16O, D2
17O, and D2

18O, respectively, compared to 2886, 1088, and 1169. Nevertheless,
twenty-eight transitions that were not reported in Ref. [3] are presently measured. All but
one corresponds to transitions between levels empirically determined in Ref. [3]. The new
transitions are listed in Table 4 which includes their assignment and a comparison to the
empirical positions recommended in Ref. [3]. The overall agreement is satisfactory with
position differences exceeding 4 × 10−4 cm−1 for only four transitions which are close to
our detection level (line intensity smaller than 4 × 10−25 cm/molecule).

Table 4. Comparison of newly observed D2
XO (X = 16, 17, and 18) absorption line positions with

their empirically calculated values from Ref. [3].

Position dF Int_SP Iso V ′ J′ Ka
′ Kc

′ V′′ J′′ Ka′′ Kc′′ Pos_calc dν

50.21024 21 2.129 × 10−23 D2
16O 010 3 3 0 010 3 2 1 50.21043 −19

124.23846 3 1.338 × 10−23 010 7 7 1 010 7 6 2 124.23852 −6
124.25938 13 7.880 × 10−25 000 20 6 15 000 20 5 16 124.25936 2
124.31025 12 2.093 × 10−24 010 14 3 12 010 14 2 13 124.31029 −4
140.98902 32 2.371 × 10−23 000 15 9 6 000 15 8 7 140.98887 15
167.54655 22 2.078 × 10−25 010 12 10 3 010 12 9 4 167.54651 4
212.70450 30 3.205 × 10−25 020 9 5 4 020 8 4 5 212.70449 1
231.59471 3 5.643 × 10−25 020 9 6 4 020 8 5 3 231.59484 −13
252.97401 8 2.135 × 10−25 020 8 8 1 020 7 7 0 252.97418 −17
261.54655 6 2.118 × 10−25 000 27 0 27 000 26 1 26 261.54785 −130
261.78073 6 2.006 × 10−25 000 26 2 25 000 25 1 24 261.78130 −57
262.52074 50 8.240 × 10−26 000 13 8 6 000 14 3 11 262.52090 −16
265.59588 10 1.397 × 10−25 020 9 8 1 020 8 7 2 265.59627 −39
328.10894 10 1.818 × 10−24 010 12 11 2 010 11 10 1 328.10904 −10
365.73560 12 1.967 × 10−25 010 15 11 4 010 14 10 5 365.73541 19
460.35106 81 5.608 × 10−26 000 23 7 16 000 22 6 17
462.29782 79 5.180 × 10−26 000 17 11 7 000 17 8 10 462.29779 2
544.67069 22 1.538 × 10−24 000 10 10 1 000 9 7 2 544.67053 16
656.61455 38 1.844 × 10−25 000 13 12 1 000 12 9 4 656.61476 −21
683.17223 47 1.504 × 10−25 000 15 12 3 000 14 9 6 683.17338 −115

62.28061 35 5.340 × 10−23 D2
17O 000 4 4 1 000 4 3 2 62.28059 2

78.61542 9 6.384 × 10−23 000 9 5 5 000 9 4 6 78.61536 6
99.78119 15 9.088 × 10−25 000 14 5 9 000 13 6 8 99.78101 18
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Table 4. Cont.

Position dF Int_SP Iso V ′ J′ Ka
′ Kc

′ V′′ J′′ Ka′′ Kc′′ Pos_calc dν

96.21984 14 1.755 × 10−22 D2
18O 000 9 2 7 000 8 3 6 96.22005 −21

103.97704 17 2.675 × 10−25 010 6 6 1 010 6 5 2 103.97646 58
177.97477 6 9.695 × 10−24 010 6 6 0 010 5 5 1 177.97499 −22
285.06436 46 2.464 × 10−25 010 11 9 2 010 10 8 3 285.06453 −17
312.95597 21 2.174 × 10−25 010 11 5 7 010 10 2 8 312.95560 37

Notes: Position—measured line position (cm−1); dF—position uncertainty (10−5 cm−1); Int_SP—variational [8,9]
line intensity (cm/molecule) multiplied by the maximum value of the isotopic abundances (D2

16O—0.25;
D2

17O—0.002; D2
18O—0.005); Iso—isotopologue; V′J′Ka′Kc′—vibration and rotation numbers of the upper state;

V′′J′′Ka′′Kc′′—vibration and rotation numbers of the lower state; Pos_calc—calculated line position (recommended
line lists) of Ref. [3]; dν—position difference νTW—νRef. [3] (10−5 cm−1).

The 23 7 16–22 6 17 pure rotational transition at 460.35106 cm−1 has its 23 7 16 upper level
newly detected by absorption. From the measured position value, the corresponding term
value is calculated at 3875.90790 cm−1. Note that our transition assignment coincides with
that given by Mellau et al. [16] and Zobov et al. [17] in their analysis of emission spectra.
The IUPAC-TG [18] energy value of the (000) 23 7 16 level (3875.90782(53) cm−1) relies
exclusively on emission data and is found in perfect agreement with our determination
by absorption.

3.3. HD16O

Although the SM1 global list includes all the HDXO (X = 16, 17, and 18) assignments,
we will limit our detailed analysis to the HD16O isotopologue because the relative abun-
dance of the HD17O and HD8O species is more than one order of magnitude larger in
the spectra #10–14 which remain to be treated (see Table 1). Extended new observations
are expected from these spectra and a separate contribution will be dedicated to HD17O
and HD18O.

In Ref. [3] dedicated to the D2O species (spectra #15–18), due to exchanges with water
adsorbed in the cell, the HD16O abundance was relatively high (up to 25% in spectrum #15)
and a large number of new HD16O absorption lines were assigned but not discussed in
details. In the following, these observations will be considered together with the present
results, in particular for the derivation of the energy levels.

The literature review indicates that previous studies of the HD16O spectrum in the ro-
tational range are limited: (i) the line positions of 60 transitions between 151 and 420 cm−1

were published by Kaupinen et al. from absorption spectrum analysis of natural abundance
water sample [19]; (ii) the absorption spectra of water vapor enriched in deuterium by
Johns [20], Paso and Horneman [21], and Toth [22] expanded the range of observed lines to
the 50.27–719.55 cm−1 interval and the number of transitions to 532; and finally, (iii) our
recent analyses of the SOLEIL spectra [1,2,4] have increased to 781 the number of (dis-
tinct) transitions observed by absorption, all belonging to the (000)–(000) and (010)–(010)
rotational bands.

Regarding emission spectroscopy, Janca et al. reported more than 1400 transitions
in the 381–720 cm−1 region from their high-temperature emission spectra [23]. These
transitions involve levels of the eight lowest vibrational states: (000), (010), (100), (020),
(001), (110), (030), and (011). Among the 1422 transitions of Ref. [23], 765 belong to the
(000)–(000) and (010)–(010) rotational bands but they involve high rotational levels, and
only 62 of these emission transitions are observed in absorption.

In the analysis of spectra #15–18 [3], we measured 1924 absorption transitions of
HD16O, 1039 of them being newly reported compared to both the absorption [1,2,4,19–22]
and emission [23] literature studies. A total of 2443 transitions are presently measured
from spectra #19–21. They belong to the four rotational bands of the first four vibrational
states: (000), (010), (100), and (020). The transitions of the (020)–(020) and (100)–(100)
rotational bands are observed for the first time in absorption. The band-by-band statistics
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and Jmax and Ka max values are given in Table 5. A total of 533 of these 2443 transitions are
new compared to all the previously reported data, including Ref. [3]. An overview of the
literature and SOLEIL observations is presented in Figure 4 where new observations are
highlighted. Overall, 1572 transitions observed in the SOLEIL spectra #15–18 and #19–21
are new compared to previous studies.

Table 5. General information on the HD16O transitions assigned in the three analyzed spectra between
50 and 720 cm−1.

Band NTa Jmax Ka max Region, cm−1

(000)–(000) 1778 25 14 50.27–719.55
(010)–(010) 617 18 11 50.73–698.49
(020)–(020) 18 9 6 145.53–310.23
(100)–(100) 30 9 8 96.60–350.15

Total 2443 25 14 50.27–719.55
a number of assigned transitions.
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Figure 4. Overview of the HD16O transitions observed by absorption and by emission below
720 cm−1 [23]. The line intensities from Schwenke and Partridge [8,9] were attached to the transi-
tion wavenumbers.

The dν = νTW − νRef. [3] differences between the present line positions and those of
Ref. [3] are illustrated in Figure 5. We obtain an RMS value of 13.8 × 10−5 cm−1 for
1907 position differences. The position differences exceed 0.001 cm−1 for four lines, three of
them being highly blended. The examination of the spectrum indicates that the present
determinations should be preferred.

Let us now consider the position comparison to the HITRAN2020 data [5]. The source of
the HITRAN line positions of HD16O is the variational line list elaborated by Kyuberis et al. [24].
In the considered region, all the transition frequencies were adjusted according to the IUPAC-
TG empirical energy levels [25]. The RMS value of the dν = νTW− νHITRAN2020 differences is
57.2× 10−5 cm−1 for 2402 positions (see Figure 5). The deviation exceeds 0.001 cm−1 for more
than 130 positions, the largest one (−0.00815 cm−1) corresponds to the 19 2 18–19 1 19 pure
rotational transition at 235.76381 cm−1. Finally, more than 40 observed transitions with
upper rotation number J′ between 21 and 25 are missing in the HITRAN line list [5,24].
Their line intensities range between 7 × 10−29 and 1.4 × 10−26 cm/molecule (taking into
account the HD16O natural abundance of 3.10693 × 10−4), which is largely higher than the
HD16O intensity cut-off in the range under study (see below).
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Figure 5. Differences between the HD16O line positions measured from the SOLEIL spectra in the
present study and in Ref. [3] (24MiKaKoCa) (red dots) and differences between the present and
HITRAN2020 values [5] (cyan dots).

The complete line-by-line comparison of the present HD16O line positions with those
of Ref. [3] and HITRAN2020 [5] is provided as a Supplementary File (SM2). Some examples
of significant position shifts between the SOLEIL spectra and the HITRAN2020 database
are illustrated in Figure 6.
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4. Empirical Energy Levels and a Recommended Line List for HD16O

The present SOLEIL line positions of HD16O and those of Ref. [3] were combined with
previous absorption studies to determine accurate empirical values of the energy levels
for the first vibrational states of HD16O. In the set of HD16O levels obtained in 2010 by an
IUPAC-TG [25], the large set of emission data by Janca et al. [23] (more than 11,000 positions)
played a determining role. Their declared experimental uncertainty of 1.0 × 10−3 cm−1 [23]
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was considered as underestimated by the IUPAC-TG (only 67.9% of the 7592 lines were
validated within the declared uncertainty) [25]. A value of 0.002 cm−1 seems to be more
reasonable for the position uncertainty of these high-temperature emission data. Since
our SOLEIL positions have a more than 10 times smaller uncertainty, the emission line
positions of Ref. [23] were not used for the present determination of the empirical energy
levels which, thus, relies exclusively on absorption data.

The collected dataset of line positions includes about 12800 entries from 0.016 to
4368.7 cm−1. In addition to the present HD16O positions and those of Ref. [3], 36 sources
involving the first eight vibrational levels—(000), (010), (100), (020), (001), (110), (030), and
(011)—were selected from the literature. All the available microwave measurements [26–45]
and infrared absorption measurements below 4400 cm−1 associated with the lowest vi-
brational states [19–22,46–57] were taken into account. Since all the HD16O transitions
reported in Refs. [1,2,4] were observed under better conditions in spectra #15–18 [3] and
#19–21 (present study), they were not used for the energy determination. The empirical
term values of the rotation–vibration levels were recovered using the Ritz combination
principle. The RITZ computer code developed by S.A. Tashkun [58–60] was used for this
purpose. The obtained set of 1121 empirical rotation–vibration energies for the first five
vibrational states (000), (010), (100), (020), and (001) is given as a separate Supplementary
Material (SM3).

Although no new energy level is determined compared to the IUPAC-TG [25], our
set of energy levels represents an important gain in terms of accuracy (see the comparison
in the SM3 Supplementary). The use of about 2500 high-precision positions retrieved
from the SOLEIL spectra together with the rejection of the emission data [23] leads to a
significant improvement in the confidence intervals. It is illustrated in Figure 7 where the
histograms of the level uncertainties are compared. For 1121 levels, the mean uncertainty
is 1.41 × 10−3 cm−1 with an RMS of 1.91 × 10−3 cm−1 for the IUPAC-TG to be compared
to 3.93 × 10−5 cm−1 and 4.97 × 10−5 cm−1, respectively, in our case. We have included in
Figure 7 the histogram of the ETW–EIUPAC energy differences. On average, the IUPAC-TG
values are larger by 1.92 × 10−4 cm−1 and the standard deviation (1.11 × 10−3 cm−1) is
consistent with the IUPAC-TG error bars. The systematic overestimation of the IUPAC-TG
energy values is illustrated in Figure 8 where the energy differences are plotted versus the
energy of the rotational levels of the (000), (010), and (001) vibrational states. This figure
shows that the accuracy improvement concerns not only the four rotational bands observed
in the SOLEIL spectra (Table 5) but also the (001)–(001) band for which no transitions were
observed in the SOLEIL spectra.
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Figure 8. Energy differences, ETW–EIUPAC, of the energy levels of the ground, (010), and (001)
vibrational states of HD16O determined in this work (TW) and recommended by the IUPAC-TG [25].

According to Figure 8, the overestimation of the IUPAC-TG energies is negligible at
low rotational energy and increases mostly linearly with the energy [up to 5 × 10−4 cm−1

for rotational energies around 3000 cm−1 in the (000) ground state]. The deviations have
similar amplitude for the different vibrational levels which might indicate that the energy
differences in the ground state are propagated in the excited levels. We tried to trace the
origin of this observation by considering a possible calibration error of the emission spectra
of Janca et al. [23] used by the IUPAC-TG [25]. The transition frequencies reported by Janca
et al. were calculated using our energy levels and compared to their original values but no
clear systematic trends could be evidenced. Note that the observed deviations are clear but
well below the uncertainty of Janca et al.’s positions (~10−3 cm−1).

For ten levels (not considered in the above comparison and excluded from the SM3
Supplementary Material), our derived energy value differs from the IUPAC-TG value by
more than 0.06 cm−1. None of these problematic levels is involved in the FIR transitions
observed in the SOLEIL spectra. Thus, our energy values rely exclusively on one of the
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thirty-six sources of absorption line positions that we selected in the literature, more
specifically from Refs. [46,48,53]. While all the IUPAC-TG energies were determined from
several (from 3 to 9) emission line positions reported by Janca et al. [23], all but one of our
values rely on a single transition from Refs. [46,48,53], as detailed in the following:

(i) The (010) 20 0 20 and (010) 20 1 20 energies (dE = −0.096 cm−1) were obtained from the
1643.8755 cm−1 line position assigned by Toth to the 20 0 20–19 1 19 and 20 1 20–19 0 19
transitions of the ν2 band [53],

(ii) The (100) 13 7 7 and (100) 15 2 14 levels with the dE values of −0.097 and −0.061 cm−1,
respectively, were determined on the basis of the results of Papineau et al. [46]. The
(100) 13 7 7 energy relies on the 3078.740 cm−1 wavenumber assigned to the 13 7 7–126 6
transition of the ν1 band. The (100) 15 2 14 energy was obtained from the 2904.200 and
2904.655 cm−1 wavenumbers assigned to the 15 2 14–14 2 13and 15 2 14–141 13 transitions
of the same ν1 band,

(iii) (The 9 9 1, 9 9 0, 10 8 3, 10 9 2, 10 9 1, and 15 2 14 levels of the (001) vibrational states have
dE values of −0.097, −0.097, 0.081, −0.140, −0.140 and 0.266 cm−1, respectively. Our
energy value relies on line positions of ν3 transitions given by Toth and Brault [48]:
9 9 1–8 8 0 and 9 9 0–8 8 1 at 4007.7146 cm−1, 10 8 3–9 7 2 at 4012.5627 cm−1, 10 9 2–9 8 1
and 10 9 1–9 8 2 at 4021.6755 cm−1, 15 2 14–14 2 13 at 3895.4251 cm−1.

In order to resolve these conflictive situations, we performed a comparison of the
empirical energy (Eemp) (obtained in this work and given by the IUPAC-TG) with the
corresponding SP variational values (ESP) from Ref. [8]. Indeed, it is well known that the
dE = Eemp–ESP energy differences show a smooth dependency on the rotational numbers
J and Ka (see, for example, Figure 6 in Ref. [16] or Figure 7 in Ref. [61]). For example, the
smooth J dependence of the dE energy difference in the (010) E(J Ka = 0 Kc = J) series allows
for predicting the energy of the (010) 20 0 20 level within typically 5 × 10−3 cm−1 and thus
discriminating the correct value between our energy and the IUPAC-TG value which differ
by nearly 0.1 cm−1. In this case and for the nine other levels, the IUPAC-TG energy values
obtained from emission transitions [23] were confirmed and thus found preferable to those
obtained from the absorption transitions of Refs. [46,48,53], indicating a probable erroneous
assignment in those references.

The overview of the 4451 HD16O transitions provided by the HITRAN2020 database in
the 50–720 cm−1 range is presented in Figure 9. The HITRAN intensity cut-off (including the
HD16O natural abundance factor of 3.10693 × 10−4) varies from 1.8 × 10−30 cm/molecule
at 50 cm−1 to 16 × 10−30 cm/molecule at 720 cm−1. The HITRAN maximum value of the
rotational quantum number is J = 20 but in the present SOLEIL spectra, transitions with
J values up to 25 were assigned and have intensities larger than the HITRAN intensity
cut-off. In Figure 9, we have superimposed to the HITRAN list the SP variational transitions
with J > 20 [8,9]. Overall, about 400 J > 20 transitions are predicted with an intensity larger
than 1 × 10−30 cm/molecule. About 160 have an intensity larger than the HITRAN cut-off
(the maximum intensity value of these missing transitions is above 1× 10−26 cm/molecule).

A recommended absorption line list at 296 K for the different bands of HD16O in-
volving the (000), (010), (020), (001), and (100) vibration states is provided as a Supple-
mentary Material (SM4). This list uses as a basis the SP variational line list calculated
by Tashkun using the VTET program of Schwenke [62]. The intensity cut-off was fixed
to 1 × 10−27 cm/molecule for pure HD16O at 296 K (3 × 10−31 cm/molecule if the abun-
dance factor is included). The line list includes about 31000 transitions belonging to a
total of fourteen bands and spans the 0–4650 cm−1 range. For all the transitions involving
lower and upper levels with known empirical energy values, the variational frequency has
been substituted by its empirical value using our energy values when available and the
IUPAC-TG values otherwise. For a small fraction of transitions, empirical energy values
are missing and the SP variational frequency was kept unchanged. The overview of the
recommended list is given on the upper panel of Figure 10 where transitions with the
empirical and variational frequencies are presented with different symbols. Note that while
in our region corresponding to the rotation bands (0–700 cm−1), it has been possible to
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empirically correct most of the line positions using our energy values; at higher frequencies,
a significant fraction of the transitions have their frequencies relying on the IUPAC-TG
energy levels.
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5. Concluding Remarks

Three long-pass FTS spectra recorded in the far infrared at the SOLEIL synchrotron
have been analyzed to extend the set of HD16O lines measured by absorption. Overall, the
previous [1–4] and present analyses of different SOLEIL spectra have increased the number
of absorption line positions measured between 50 and 720 cm−1 from about 530 available
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in the literature to more than 2350. For the first time, rotational absorption lines in the (010),
(100), and (020) excited states were detected. The typical line position accuracy (better than
10−4 cm−1) has allowed for the reduction in the error bars of the energy levels of the first
five vibrational states of HD16O. Compared to the most relevant previous set elaborated by
an IUPAC task group fifteen years ago [25], the average energy uncertainty is reduced from
1.4 × 10−3 cm−1 to about 4 × 10−5 cm−1. As the considered states are the lowest states of
most of the rovibrational transitions, this improvement will impact the accuracy of the line
positions in all the frequency regions of the HD16O spectrum.

As the main output of the present work, a recommended line list is provided for the
fourteen HD16O bands involving the first five vibrational levels. This list covering the
0–4650 cm−1 frequency range is proposed for improving the line list of natural water vapor
in the far-infrared region, of particular importance for atmospheric applications.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29235508/s1. The three analyzed FTS spectra (SM0),
the complete line list of the analyzed FTS spectra (SM1), HD16O line position comparison to the
literature (SM2), the derived set of HD16O energy levels (SM3), and recommended line lists elaborated
for HD16O (SM4).
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