
Citation: Wang, A.; Fu, L.

Nano-Functional Materials for Sensor

Applications. Molecules 2024, 29, 5515.

https://doi.org/10.3390/

molecules29235515

Received: 12 November 2024

Accepted: 21 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Editorial

Nano-Functional Materials for Sensor Applications
Aiwu Wang 1,* and Li Fu 2,*

1 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced
Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University,
Shenzhen 518118, China

2 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: wangaiwu@sztu.edu.cn (A.W.); fuli@hdu.edu.cn (L.F.)

The rapid development of nanotechnology and materials science has led to remark-
able advances in sensor applications across various fields [1–5]. Nano-functional materials,
with their unique physical and chemical properties at the molecular level, have become
increasingly important in designing and fabricating high-performance sensors [6–11]. This
Special Issue of Molecules focuses on the latest developments in nano-functional materials
for sensor applications, particularly emphasizing their molecular-level interactions and
chemical properties. Over the past decade, the field of nano-functional materials for sen-
sors has experienced significant growth, driven by the increasing demands in healthcare
monitoring [12–16], environmental protection [17–21], and security applications [22–25].
These materials offer unprecedented advantages in terms of sensitivity, selectivity, and
response time, making them ideal candidates for next-generation sensing platforms [26–33].
For instance, carbon nanotubes have been integrated into sensors, harnessing their abil-
ity to enhance signal transduction and improve detection limits [34,35], while quantum
dots have been employed in optical sensors for their high specificity and low detection
thresholds [36–38].

The molecular-level engineering of these materials has enabled new possibilities in
areas such as wearable sensors, biosensors, and environmental monitoring devices [39–42].
Researchers have leveraged self-assembly and nanoscale fabrication techniques to optimize
the material’s interaction with target analytes [43–50]. In healthcare, sensors based on
nano-functional materials are being designed to monitor glucose levels without the need
for traditional blood draws, providing continuous and non-invasive health metrics [51–53].
Similarly, in environmental monitoring, these sensors can detect air pollutants [54–56]
or waterborne contaminants [57–59] with high precision, facilitating early intervention
and improved environmental management. These interdisciplinary efforts have led to
innovative sensor technologies that address critical challenges in sensor development.
Furthermore, advances in materials fabrication have led to the development of sensors that
are not only highly sensitive but also cost-effective and scalable, making them suitable for
widespread deployment [60–62].

This Special Issue contains eleven papers, including two comprehensive reviews and
nine research articles, covering various aspects of nano-functional materials in sensor
applications. The collected works represent contributions from leading research groups
worldwide, offering insights into the current state and future directions of this dynamic
field. These papers address critical challenges in sensor development, from molecular
recognition mechanisms to practical applications in real-world scenarios. By delving into
the molecular-level interactions and chemical properties of nano-functional materials,
researchers are paving the way for the next generation of sensors that will revolutionize
industries ranging from healthcare to environmental monitoring. The interdisciplinary
nature of this research ensures that the advances in sensor technology continue to push the
boundaries of what is possible, ultimately leading to better health outcomes, environmental
protection, and enhanced security measures.
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The two review articles in this Special Issue provide valuable insights into the current
developments in sensing applications. The first review by Lu et al. [63] comprehensively
discusses recent progress in drug-doping and gene-doping control analysis. This timely re-
view examines various detection methods, including mass spectrometry-based techniques,
fluorescence methods, electrochemical approaches, and emerging biosensor technologies.
The authors provide a critical analysis of each method’s advantages and limitations, offer-
ing valuable guidance for future developments in doping detection. The second review
by Zheng et al. [64] presents a detailed analysis of electrochemical sensing methods for
detecting lung cancer biomarkers. The authors systematically examine recent advances in
nanomaterial-based sensors, conducting polymers, and various recognition elements for
detecting specific cancer markers. Their work particularly emphasizes the importance of de-
veloping sensitive and selective detection methods for early cancer diagnosis. Both reviews
demonstrate excellent scholarship and provide comprehensive overviews of their respec-
tive fields, serving as valuable references for researchers working in sensor development
and analytical chemistry.

The nine research articles in this Special Issue demonstrate significant advances in the
development and application of nano-functional materials for sensing applications. Several
papers focus on electrochemical sensing platforms. Xu et al. [65] developed an innovative
Fabry–Pérot cavity-based optical fiber sensor using suspended palladium membranes for
hydrogen detection, achieving high sensitivity with a detection limit in the ppm range.
This work provides valuable insights for developing miniaturized gas sensors. Guo [66]
presented a groundbreaking approach involving the production of sea buckthorn juice with
pectinase treatment, demonstrating how enzymatic processes can be monitored through
electrochemical fingerprinting. Their work offers new perspectives for quality control in
food-processing applications. Liu and Shi [67] demonstrated significant advances in using
a β-cyclodextrin functionalized platform for monitoring changes in potassium content
in perspiration. The research presented an innovative enzymatic method that enabled
the real-time monitoring of potassium levels in sweat samples. Their approach showed
excellent sensitivity and reproducibility, with practical applications in non-invasive health
monitoring. Yu et al. [68] reported a nanoporous-gold-based electrochemical sensor for
detecting the anti-tumor drug etoposide in biological samples. Their sensor showed excel-
lent sensitivity and selectivity, with practical applications in therapeutic drug monitoring.
Liang et al. [69] developed an in situ derived N-doped ZnO from ZIF-8 for enhanced
ethanol sensing in ZnO/MEMS devices. Their innovative approach combined the advan-
tages of metal–organic frameworks and semiconductor materials, resulting in a sensor with
improved sensitivity (a response value of 80 towards 25 ppm ethanol) and stability. Deng
and Yang [70] developed an innovative silver nanoparticle-embedded hydrogel for the
electrochemical sensing of sulfamethoxazole residues in meat. Their approach combines
the advantages of hydrogels and metal nanoparticles to create a robust sensing platform
for food safety applications. Bianco et al. [71] presented a membrane-based pressure sensor,
utilizing advanced materials engineering to achieve precise measurements. Their work
demonstrates the potential of integrating nano-functional materials in pressure-sensing
applications. Lenar et al. [72] developed an ion-selective electrode for nitrates based on
a black PVC membrane, showing how materials engineering at the molecular level can
enhance sensor performance. Their approach offers new possibilities for environmental
monitoring. Villalonga et al. [73] designed a sandwich-type electrochemical aptasensor
with a supramolecular architecture for prostate-specific antigen detection. Their work show-
cases the integration of molecular recognition elements with nanomaterials for biosensing
applications. Each of these contributions demonstrates innovative approaches to sensor de-
velopment, combining advanced materials science with practical applications. The diverse
range of applications—from medical diagnostics to environmental monitoring and food
safety—highlights the versatility of nano-functional materials in sensing technologies.

The collection of articles in this Special Issue illustrates the significant advances and
versatility of nano-functional materials in sensing applications. From electrochemical
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biosensors for disease biomarkers and therapeutic drug monitoring, to gas sensors for
environmental monitoring and food safety applications, these contributions showcase
innovative approaches in materials design, synthesis, and integration. The diverse range
of sensing platforms—including MEMS devices, optical fibers, membrane-based sensors,
and electrochemical aptasensors—highlights how nano-functional materials can enhance
sensitivity, selectivity, and reliability in various sensing applications. The practical demon-
strations in real sample analysis further underscore the translational potential of these
technologies. We are pleased to announce that the second volume of this Special Issue,
“Nano-Functional Materials for Sensor Applications”, is now open for submissions. We
welcome high-quality research papers and reviews that address the current challenges and
emerging opportunities in the development and application of nano-functional materials
for sensing technologies.
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