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Abstract: A series of homoleptic rare earth (RE) complexes bearing phosphino-aryloxide ligands
(1-RE, 2-La) has been prepared. The complexes have been characterised using multinuclear NMR and
IR spectroscopy, X-ray crystallography and elemental analysis. Structural characterisation highlighted
the different RE–P interactions as a result of differing Lewis acidity and ionic size across the series,
hinting at the possibility of FLP-type activity. The potential reactivity of these complexes has been
tested by reacting them with small molecules (H2, CO, CO2). A series of side-products (3-RE) has
also been observed, isolated and characterised, featuring the incorporation of a phosphonium-
aryloxide ligand.
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1. Introduction

Since the seminal report by Stephan and co-workers in 2006 [1], research on Frustrated
Lewis Pairs (FLPs) has been extensive. The interest in FLP reactivity arises from the great
appeal of utilising cheap, earth-abundant main group elements (e.g., B, N, Al, P) in reactions
classically performed using expensive and scarce precious metals (e.g., Rh, Ir, Pd, Pt) [2–6].
Such remarkable reactivity derives from the simultaneous presence of a Lewis acid and a
Lewis base, which are unable to form an adduct, thus leaving unquenched reactivity which
can be exploited to activate small molecules such as H2 [7–10], CO [11], CO2 [12,13] and
N2O [14,15], as well as larger organic molecules [16–19]. Investigations into this type of
reactivity have led to developments within the field of homogeneous catalysis [4], polymer
chemistry [20] and material science [21].

Wass and co-workers extended this approach to closed shell metals La3+ and Zr4+,
such as the cationic zirconocene complex incorporating a phosphino-aryloxide ligand,
[Zr(Cp*)2{tBu2P(C6H4)O}(C6H5Cl)][B(C6F5)4] (I, Figure 1), which displayed reactivity
towards H2, CO, CO2, THF, acetone, alkenes, alkynes and alkyl halides [22,23]. Piers
and co-workers further expanded this approach to lighter rare earth (RE) elements, re-
porting an FLP system consisting of a scandocenium cation and a hydroborate anion,
[Sc(Cp*)2{HB(C6F5)3}] (II, Figure 1), which is capable of activating CO and CO2 [24,25].
Arnold and co-workers also developed an NHC-based scandium complex, [Sc{C[N(iPr)CH-
CHN(CH2CMe2O)]}3] (III, Figure 1), that activates CO2 and CS2 [26].

Over the last decade, Xu and co-workers have further expanded the scope of RE FLPs
to include lanthanide metals. Examples of such compounds include complex [RE{N(Dipp)-
C(Me)CHC(Me)N(CH2CH2PPh2)}][B(C6F5)4] (IV, Figure 1; RE = Sc, Y, Lu), which has
been shown to act as an intramolecular FLP due to the combined properties of the Lewis
acidic metal centre with a weakly-coordinating, Lewis basic phosphine ligand [27–32].
Similarly, the homoleptic tris-aryloxide complex [RE{O(2-6-tBu2C6H3)}3] (RE = Sc, Y, La,
Sm) can act as a Lewis acid in collaboration with a bulky Lewis base [33–38]. These RE FLP
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systems have been reported to activate small molecules but can also participate in organic
transformations, and even act as catalysts for the synthesis of polymers.

Despite this remarkable progress in transition metal FLPs, research on RE analogues is
still in its infancy [39,40]. Crucially, no studies have been reported on the differing reactivity
which can be unlocked owing to the variations in Lewis acidity of the metal centres
across the RE and lanthanide (Ln) family. Taking inspiration from Wass’ work on group 3
and group 4 phosphino-aryloxide complexes (I), we were intrigued by the possibility of
incorporating multiple Lewis acid/base pairings within the same complex. Recently, Hlina
and co-workers reported the synthesis of homoleptic RE complexes stabilised with the
2,4-di-tert-butyl-6-(diphenylphosphanyl)phenolate (OArP) ligand, [RE(OArP)3] (V, RE = Y,
La, Sm, Yb, Figure 1), which were employed for the preparation of bimetallic complexes
with late transition metals binding the phosphorus donors [41]. Herein we present our
attempts to synthesise homoleptic phosphino-aryloxide complexes [RE{R2P(C6H4)O}3]
(R = tBu, iPr) and our investigation of their reactivity with H2, CO and CO2.
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Figure 1. Examples of Zr (I) and RE complexes (I–IV) that display FLP-like reactivity, and selected
phosphino-aryloxide complexes (V) [22,24,26,27,41].

2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterisation

The proligands 2-di-tert-butylphosphinophenol and 2-di-isopropyl-phosphinophenol
were synthesised in good yields (62% and 64% respectively) by minor modification of previ-
ously reported methods [42]. In order to target [RE{R2P(C6H4)O}3] complexes, we reacted
the proligands with selected RE tris-amides [RE{N(SiMe3)2}3] (RE = Y, La, Ce, Pr, Sm) in
a 3:1 stoichiometric ratio. The outcome of the reactions varied significantly depending
on the RE metal employed (Scheme 1). From the reaction between [La{N(SiMe3)2}3] and
the proligands, i.e., 2-di-tert-butylphosphinophenol or 2-di-isopropyl-phosphinophenol,
dimeric, homoleptic complexes [{La[R2P(C6H4)O]2[µ2-R2P(C6H4)O]}2] (1-La: R = tBu;
2-La: R = iPr) were obtained. Conversely, the heaviest Ln metal studied, Sm, afforded
the target homoleptic complex [Sm{tBu2P(C6H4)O}3]. Interestingly, analogous species
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could not be obtained when performing the same reactivity with Y, Ce and Pr, as, in
these cases, complexes of general formula [RE{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-RE;
RE = Y, Ce, Pr) were isolated, which incorporate the phosphonium-aryloxide ligand
{tBu2P+H(C6H4)O−}. Complex 3-Ce could not be isolated in pure form, as it could not
be separated from co-crystallised free ligand and [Ce{N(SiMe3)2}3]. Additionally, when
reacting [La{N(SiMe3)2}3] with 2-di-tert-butylphosphinophenol in an attempt to synthesise
1-La, a 1H and 31P{1H} NMR analysis of the crude reaction mixture showed that more
than one species was present (Figure S46). Therefore, from the crude reaction mixture,
compound [La{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-La) was recrystallised from toluene,
as confirmed by X-ray crystallography. Similarly, [Sm{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}]
(3-Sm) was obtained from fractional crystallisation during the synthesis of 1-Sm. All
complexes were authenticated using single crystal X-ray studies (vide infra) and further
analysed via multinuclear NMR spectroscopy, IR spectroscopy and elemental analysis.
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spectroscopic yield).

The 1H NMR spectra of compounds 1-La and 2-La each contained four characteristic
peaks of equal integration in the aromatic region (1-La: δH = 6.65, 6.91, 7.28 and 7.39 ppm;
2-La: δH = 6.68, 6.80, 7.12 and 7.25 ppm), each corresponding to an individual proton in the
aromatic ring. The ortho-substitution pattern of the aromatic ring made the multiplicity
of each peak difficult to analyse due to the presence of multiple coupling patterns and
second order effects. Besides the aromatic peaks, the aliphatic region of 1-La contained a
doublet corresponding to the CH3 protons coupling to the phosphorus atom (δH = 1.27,
3JHP = 12 Hz). The aliphatic region of the 1H NMR spectrum of 2-La showed a complex
multiplet corresponding to the tertiary proton (δH = 2.08), as well as two doublets of
doublets (δH = 1.04, 1.18, 3JHP = 12.5, 15.5 Hz, 3JHH = 7 Hz), corresponding to two pairs
of CH3 protons coupling to the tertiary proton (3JHH) and the phosphorus atom (3JHP).
Interestingly, in the aryl region of the 1H spectrum of 1-La, some additional smaller signals
were observed (Figure S1A) which we attributed to different states of aggregation of the
compound in solution, and possibly an interconversion between terminal and bridging
ligands of the dimeric structure. The 1H spectrum recorded for a sample of 1-La in THF-d8
showed a more simplified aryl region with no additional signals (Figure S1B); it is therefore
reasonable to assume that the dimeric structure of 1-La was broken in coordinating solvents,
likely leading in this case to a THF-adduct of monomeric ‘La{tBu2P(C6H4)O}3’. It is also
very likely that 2-La could display similar behaviour in the presence of coordinating
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solvents, and it is worth pointing out that both 1-La and 2-La are only sparingly soluble in
benzene-d6, requiring use of a few drops of THF-d8 to prepare concentrated samples for
13C NMR analysis.

Notably, 31P NMR (I = ½, 100% abundant) spectroscopy is of particular diagnostic
value for these systems; it can be used to offer a qualitative estimate of the interaction
between the phosphorus atom and the metal centre. In principle, the more downfield the
chemical shift of the 31P peak for a metal complex relative to that for a proligand (assuming
that the metal centre is the only entity that interacts with the phosphorus atom upon
complexation), the stronger the interaction. This is particularly notable, as the extent of
interaction between a Lewis acid and a Lewis base tends to have an impact on FLP-type reac-
tivity [5]. The 31P{1H} NMR spectra of the proligands 2-di-tert-butylphosphinophenol and 2-
di-isopropyl-phosphinophenol showed a single peak at −6.62 and −24.42 ppm respectively,
whereas the 31P{1H} NMR spectra of 1-La and 2-La in C6D6 showed one peak at 30.11 ppm
and 1.21 ppm respectively; these resonances were significantly shifted compared to corre-
sponding signals of the proligands (∆δP = 36.81 ppm and 25.63 ppm respectively). Analo-
gous differences in the 31P NMR chemical shift between free proligand and metal-bound
phosphino-aryloxide were reported by Wass and co-workers; notably the largest difference
(∆δP = 71.06 ppm) was measured for complex [Zr(Cp)2{tBu2P(C6H4)O}(C6H5Cl)][B(C6F5)4]
and the corresponding proligand [22], and that complex was shown to activate CO2 via
FLP-type reactivity [23]. Both 1-La and 2-La exhibited a higher chemical shift compared to
compound V, as reported by Hlina and co-workers (δ (C6D6) = −0.3 ppm) [41]. The 31P{1H}
NMR spectrum of 1-Sm showed a peak at −56.71 ppm (Figure S7), likely broadened due to
paramagnetic effects.

The 1H NMR spectra of 3-La showed some notable changes compared to 1-La
(Figure S25). The four peaks within the aromatic region corresponding to the four hy-
drogen atoms of the aryl moiety were still present, but three of them were broadened.
A similar broadening was also observed for the signals of the methyl groups of the
tert-butyl substituents. Furthermore, an additional broad signal could be observed at
8.40 ppm, which corresponded to the phosphonium hydrogen. This signal was likely to be
a doublet; however, the signal partially overlapped with other peaks in the aromatic region.
This line-broadening was also observed with all signals in the 13C{1H} NMR spectrum of
3-La to varying extent (Figure S15). The 1H NMR spectrum of 3-Y was very similar to that
of 3-La (Figure S10), with two key differences. Firstly, two broad signals could be observed
for the methyl groups of the tert-butyl substituents with a 3:1 integration ratio. Secondly,
the phosphonium signal resonated with a broad signal at 7.58 ppm (1JPH = 276 Hz). The
31P NMR spectra of 3-Y displayed two signals resonating at 10.55 ppm and 18.25 ppm
(Figure S13), which we ascribed to the phosphine and phosphonium groups, respectively.

Due to the paramagnetic nature of 3-Ce and 3-Pr, it was difficult to extract any
information from the 1H NMR spectra of these complexes. Nonetheless, in the case of
3-Pr, a broad doublet was observed at 96.78 ppm (Figure S19B), which could be tentatively
assigned to the phosphonium proton (1JPH = 474 Hz). Similar to what was observed with 1-
Sm, the 1H NMR spectrum of 3-Sm was decipherable (Figure S20B), displaying four broad
peaks in the aromatic region and, like in the case of 3-Pr, a broad doublet (1JPH = 488 Hz)
at 15.32 ppm corresponding to the phosphonium proton. There were also two broad CH3
alkyl signals with a relative integration of 1:3. In this case, the CH3 alkyl peak of the
tert-butyl group bound to the phosphonium P atom had been shifted downfield relative to
the other tert-butyl group. For 3-Ce and 3-Sm, we were also able to acquire 31P NMR data.
The spectrum of 3-Ce showed a single weak resonance at 40.54 ppm (Figure S18), whilst in
the case of 3-Sm, two broad signals were detected at −44.34 and −21.95 ppm (Figure S21).

The problems encountered when targeting 1-RE complexes related to the formation
of unexpected side-products 3-RE may have arisen from the choice of starting materials;
it is likely that the OH proton of the phosphinophenol provided a pathway for the for-
mation of the phosphonium-phenolate ligand via intra- or intermolecular protonation of
the phosphine functionality. To prove this, we attempted an NMR-scale reaction between
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[La{N(SiMe3)2}] and four equivalents of di-tert-butylphosphinophenol, resulting in the
formation of 3-La as the major product and 1-La as the minor product (8:1 ratio, Figure S29).
Therefore, an alternative route was explored involving a salt metathesis reaction between
the potassium salt K[tBu2P(C6H4)O] and [LaI3(THF)4] (Scheme 2). However, a 1H and
31P NMR analysis of the crude mixture obtained from the reaction revealed the presence
of traces of 3-La (which was also confirmed via X-ray crystallography studies on recrys-
tallised material), together with another species which was identified as the ‘ate’ complex
[La{tBu2P(C6H4)O}6K3] (4) via X-ray crystallography (see SI).
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2.2. Structural Characterisation

Compounds 1-La and 2-La both crystallised in the P-1 space group and displayed an
analogous dimeric arrangement in the solid state, with two phosphinophenolate ligands
bridging between the metal centres via the oxygen donor atoms (Figure 2). As a result, the
La–O distances of bridging ligands [1-La: La–O 2.418(6)–2.526(5) Å; 2-La: La–O 2.458(2)-
2.477(2) Å] were elongated slightly with respect to those of terminal donors [1-La: La–O
2.235(6)–2.250(6) Å; 2-La: La–O 2.255(2)–2.297(2) Å]. The distances between the metal
centres and the coordinated phosphorus atoms for 1-La were larger than those for 2-La
(Table 1), ranging from 3.223(2) Å to 3.459(3) Å for 1-La, and 3.1653(10) Å to 3.3466(7) Å
for 2-La. Both metal centres in 1-La exhibited a six-coordinate distorted trigonal prismatic
geometry; in each half of the dimer, one of the ligands acts as a monodentate O-donor,
with the phosphorus atom positioned away from the metal centre [La···P 3.662(2) Å and
4.701(2) Å]. A similar arrangement was also observed for 2-La, but in this case, the geometry
of each metal centre was trigonal prismatic, with an inversion centre position between the
two La atoms. The distance between the non-coordinating P atom and the respective La
centre for 2-La was found to be 3.4732(7) Å.

Complex 1-Sm crystallised in the P21/n space group and exhibited a six-coordinate
distorted trigonal prismatic geometry (Figure 3). As expected, Sm was coordinated by three
oxygen donors [Sm–O 2.184(2)–2.205(3) Å] and all phosphorus donors were also interacting
with the metal centre [Sm–P 3.0552(8)–3.1503(8) Å]. This was reminiscent of the structure
of [Sm(OArP)3], as reported by Hlina and co-workers, where the Sm–P bond distance
[3.1132(8) Å] was within the range of those measured for 1-Sm. [Sm(OArP)3] also features a
distorted trigonal prismatic geometry, where the vertexes of each trigonal face are occupied
by either three oxygen atoms or three phosphorus atoms [41]. The conformation of 1-Sm is
significantly different, where one of the ligands was flipped and the two vertexes of the
trigonal prism were either PPO or OOP, likely to minimise the steric clash between the
bulky tert-butyl substituents on the phosphine groups. This coordination motif was also
reminiscent of the homoleptic phosphino-alkoxide complexes [RE{OC(tBu)2CH2PMe2}3]
(RE = Y, Nd), as reported by Lappert and co-workers [43].
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Table 1. Selected Bond Lengths for 1-RE (RE = La, Sm) and 2-La.

Complex M–P M···P M–O M–µO

1-La 3.223(2)–3.459(3) 3.662(2)–4.701(2) 2.235(6)–2.250(6) 2.418(6)–2.526(5)
2-La 3.1653(10)–3.3466(7) 3.4732(7) 2.255(2)–2.297(2) 2.458(2)–2.477(2)

1-Sm * 3.0552(8)–3.1503(8) - 2.184(2)–2.205(3) -
* Data extracted from one of the polymorphs isolated.
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Complex 3-Y crystallised in the P-1 space group, with two of the four phosphorus
donors not coordinating to the metal centre, one of which was the protonated phosphorus
atom (Figure 4). The Y–P distances were in the range between 3.0963(11) Å and 3.1926(10) Å,
a phosphine group unbound [Y···P 3.627(3)–4.5242(9) Å] and the phosphonium centres
were also positioned away from the metal centre [Y···PH 4.093(2)–4.2902(14)]. As a result,
the overall coordination geometry of this compound was a distorted trigonal prismatic.
This solid-state arrangement was similar to that exhibited by 3-Pr (Figure 4), which features
a phosphonium P–H bond far from the metal centre [Pr···P(1) 4.040(6)Å—Table 2] and a
free phosphine group not-coordinating [Pr···P 3.451(5)]; this gave overall a coordination
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number of six for the complex and a very distorted octahedral geometry. The only other
crystallographically authenticated Pr-phosphine complex was the phosphine-supported
anilide [Pr{N(Mes)[C6H3(Me)(PiPr2)]}2(OCP)] reported by Yu and co-workers [44], in which
both Pr–P interactions were shorter [Pr–P 3.0647(7) Å and 3.1093(7) Å] than those measured
in 3-Pr.
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Figure 4. Crystal structures of 3-Y and 3-Pr. Ellipsoids are shown at 30% probability level, hydrogen
atoms are omitted and tert-butyl groups are shown as wireframe for clarity, with the exception of
phosphonium proton.

Table 2. Selected Bond Lengths for 3-RE (RE = Y, La, Pr, Sm).

Complex M–P M···P M···PH M–O

3-Y * 3.0963(11)–3.1926(10) 3.627(3)–4.5242(9) 4.093(2)–4.2902(14) 2.122(2)–2.184(2)
3-La 3.2937(6)–3.3646(8) 4.3034(8) 2.303(2)–3.351(2)

3-Pr § 3.2984(12)–3.3849(14) 3.451(5) 4.040(6) 2.232(5)–2.357(9)
3-Sm # 3.2328(13)–3.3483(12) - 4.2693(13) 2.206(3)–2.269(3)

* Two independent molecules present in the asymmetric unit. § Data extracted from major disorder component.
# Data extracted from one of the polymorphs isolated.

Unlike 3-Y and 3-Pr, in 3-Sm, the metal centre was coordinated by three phosphorus
donors (Figure 5), with the phosphonium group exhibiting no interaction with the metal
centre [Sm···P(3) 4.2693(13) Å]. This afforded a seven-coordinate distorted pentagonal
bipyramidal geometry, with the Sm–P bond distances for the coordinating phosphorus
atoms ranging from 3.2328(13) Å to 3.483(12) Å. Like in 3-Sm, the phosphonium group
in 3-La was not interacting with the metal centre [La···P(4) 4.3034(8) Å]. As a result, the
compound adopted a seven-coordinate distorted pentagonal bipyramidal geometry, with
the La–P distances for the coordinating phosphorus atoms ranging from 3.2937(6) Å to
3.3646(8) Å. Unlike other 3-RE analogues, 3-Ce contains three non-coordinating phos-
phine groups. However, due the poor quality of the dataset, it was not possible to make
meaningful comparisons with other complexes reported in this work.
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3. Reactivity Studies

The original aim of our work was to test the reactivity of target compounds [RE{R2P-
(C6H4)O}3] with small molecules. However, only three of these compounds could be
obtained, i.e., 1-La, 2-La and 1-Sm, and amongst these, only 2-La was isolated in reasonable
quantities and purity for further reactivity studies. The issues with complex 1-La became
more evident when we tested its reactivity with CO and CO2, affording in all cases 1-La and
phosphonium complex 3-La (one of the trace impurities present in the samples). Complex
2-La was then chosen as a better candidate for more in-depth small molecule activation
studies, and its reactivity was tested with H2, CO or CO2 gas. In all cases, 1H and 31P NMR
analysis confirmed that no reaction had taken place, as no changes were observed in the
chemical shifts of complex 2-La. These observations were further evidenced by obtaining
a crystalline solid from the reaction mixture with the same unit cell as the RE starting
material, as confirmed by X-ray crystallography. We also decided to test the reactivity of
one of the phosphonium derivatives and chose 3-Y because of: (1) the diamagnetic nature of
Y and possibility of performing reaction monitoring via NMR spectroscopy; (2) the highest
Lewis acidity of the metal centre across the 3-RE family; and (3) the potential for different
reactivity and cooperativity due to the presence of phosphonium group. Complex 3-Y was
tested for the activation of H2, CO and CO2, but no reaction was observed in all cases, as
evidenced by 1H and 31P NMR, as well as X-ray crystallography.

Providing an accurate explanation for the lack of reactivity in these species is not
straightforward. Typically, FLP-type reactivity is more often observed when interactions
between the Lewis acid and the Lewis base are minimised to allow the Lewis acid and Lewis
base to react with a different molecule [5]. The complexes investigated herein displayed
a variety of metal-phosphorus interactions, some of which were particularly elongated,
which could be a desirable feature for FLP-type reactivity. Nonetheless, 1-La, 2-La and
all 3-RE compounds had very high coordination numbers and displayed a high degree
of electronic and steric saturation of the metal centres, which likely posed a significant
thermodynamic and kinetic barrier towards the association with small molecules and
their activation. Should this be the reason for the lack of FLP-type reactivity, future RE
complexes based on phosphino-aryloxides should either have different steric properties or
be employed in conjunction with ligands that could reduce the electronic saturation of the
RE metal, in a similar vein to what was reported by Wass and co-workers [23].
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We also investigated the possibility of abstracting the zwitterionic phosphonium
ligands from 3-RE with a secondary Lewis acid. The reactivity of 3-RE (Ln = Y, La) with
one equivalent of B(C6F5)3 was investigated on an NMR-scale (Scheme 3). In the case of the
reaction between 3-La and B(C6F5)3, 1H and 31P NMR analysis revealed the presence of 1-La
(Figures S31–S35). Similarly, 3-Y also reacted with B(C6F5)3, forming what is likely to be 1-Y
(Figures S36–S40). In both reactions, the same side-product was also formed, as proven by
multinuclear NMR spectroscopy. This side-product was found to be the zwitterionic adduct
{tBu2PH(C6H4)O}B(C6F5)3 (5) formed between B(C6F5)3 and tBu2P+H(C6H4)O−. This was
further confirmed by reacting 2-tert-butylphosphinophenol and B(C6F5)3, which led to
the quantitative formation of 5. The presence of a phosphonium group was confirmed
via 1H, 31P and 31P{1H} NMR spectroscopy (1JPH = 480 Hz) (Figures S41, S44 and S45).
These results further support the occurrence of proton transfer between the hydroxyl and
phosphine group, likely facilitated by the presence of a Lewis acid. Therefore, the reactivity
of 3-RE with B(C6F5)3 could potentially offer an alternative approach to obtain the target
homoleptic complexes 1-RE.
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4. Conclusions and Future Work

In summary, a series of RE complexes containing phosphino-aryloxide ligands has
been synthesised and characterised by NMR spectroscopy, IR spectroscopy, CHN elemental
analysis and X-ray crystallography. In some cases, the ligands acted as monodentate
O-donors and the phosphine groups did not coordinate to the metal centre, likely as a
result of steric congestion of the metal coordination sphere or electronic saturation. The
synthesis of homoleptic phosphino-aryloxide RE complexes (1-La, 2-La and 1-Sm) tended
to be low-yielding, which can be attributed to the additional formation of the heteroleptic
side-products 3-RE. Additionally, 1-La and 1-Sm exhibited similar solubility to their 3-RE
counterparts, making the isolation of either product through recrystallisation challenging.
Although it could be predicted that weak RE–P interactions could promote FLP-type
activity, experimental evidence suggests that the complexes reported herein do not show
any reactivity with H2, CO or CO2, likely due to the high degree of saturation of the metal
coordination sphere. Interestingly, reactivity of 3-Y and 3-La with B(C6F5)3 led to the
formation of 1-Y and 1-La, respectively, together with the borate-phosphonium adduct 5.
Future work will aim to synthesise novel RE complexes with differing steric features and
the incorporation of ancillary ligands, aimed at reducing the electronic saturation of the
rare earth metal centres.

5. Experimental
5.1. General Methods

THF and toluene were passed through columns containing molecular sieves, then
stored either over a potassium mirror (toluene) or over 4 Å molecular sieves (THF) and
thoroughly degassed prior to use. Hexane and diethyl ether were purchased anhydrous
from Tokyo Chemical Industry (TCI-UK, Oxford, UK), dried over activated molecular
sieves for 7 days, then stored over a potassium mirror. For NMR spectroscopy, C6D6 and
C4D8O were dried by refluxing over potassium and then vacuum transferred and degassed
by three freeze-pump-thaw cycles before use. nBuLi was purchased from Merck (Rahway,
NJ, USA) and used as received. [RE{N(SiMe3)2}3] complexes (RE = Y, La, Ce, Pr, Sm) were
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prepared according to literature procedures [45]. LaI3(THF)4 was synthesised according to
a procedure described in the literature [46]. NMR spectra were recorded on either a Bruker
Avance III HD 400 or Bruker Avance III 500 spectrometer (Bruker, Karlsruhe, Germany)
operating at 400.07/500.13/800.19 (1H), 100.60/125.78/201.21 (13C{1H}), 79.48 (29Si{1H})
and 161.98/202.45 (31P{1H}) MHz. NMR spectra were recorded at 298 K unless otherwise
stated and were referenced to residual solvent signals. FTIR spectra were recorded on a
Bruker Alpha II spectrometer (Bruker, Karlsruhe, Germany) with Platinum-ATR module.
Elemental microanalyses were carried out by the Elemental Analysis Service at London
Metropolitan University.

5.2. Synthesis of 2-Di-tert-butylphosphinophenol

First, 2-Bromoanisole (2.2 mL, 17.5 mmol) was added to a flame-dried Schlenk flask
and dissolved in diethyl ether (50 mL). The flask was cooled to 0 ◦C and, while stirring,
nBuLi (8 mL, 2.5 M in hexanes, 20 mmol) was added dropwise. The reaction mixture
was stirred for a further 2 h at room temperature. The flask was cooled again to 0 ◦C
and di-tert-butylchlorophosphine (3.4 mL, 17.9 mmol) was added. The resulting mixture
was allowed to warm to room temperature and stirred for a further 2 h. The resulting
suspension was filtered through celite and the volatiles were removed in vacuo, affording
an orange oily residue which was identified by 1H and 31P{1H} NMR spectroscopy as di-
tert-butyl(2-methoxyphenyl)phosphane. The oil was dissolved in dichloromethane (50 mL)
and the solution was cooled to 0 ◦C. BBr3 (3.6 mL, 37.9 mmol) was added dropwise, and the
resulting mixture was warmed to room temperature and stirred for 18 h. The volatiles were
removed in vacuo and methanol (20 mL) was added. The resulting solution was transferred
to a flame-dried ampoule fitted with a Rotaflo valve and stirred under reflux for 5 h. The
solution was transferred to a flame-dried Schlenk flask and dried in vacuo. The residue was
dissolved with diethyl ether (70 mL), and triethylamine (5 mL) was added. The resulting
suspension was stirred at room temperature for 1 h, and the volatiles were removed in vacuo
to afford a colourless solid and an oil. The oil was extracted with hexane (3 × 10 mL), and
the filtrate was dried in vacuo to afford a yellow oil, which crystallised at room temperature
upon standing to yield the product 2-di-tert-butylphosphinophenol as an off-white solid
(2.522 g, 11.0 mmol, 62%). NMR spectroscopic data were previously recorded in the
literature from samples in CD2Cl2 [42]. 1H NMR (C6D6, 298 K, 400 MHz): δ/ppm = 1.07
(18 H, d, 3JPH = 13 Hz, C(CH3)3), 6.74 (1 H, m, Ar-CH), 7.11 (2 H, m, Ar-CH), 7.47 (1 H,
m, Ar-CH), 8.10 (1 H, broad, OH). 13C{1H} NMR (C6D6, 298 K, 100 MHz): δ/ppm = 30.57
(d, 2JPC = 13 Hz, C(CH3)3), 32.6 (d, 1JPC = 14 Hz, C(CH3)3), 115.6 (d, 3JPC = 1 Hz, Ar-CH),
119.4 (Ar-CH), 131.9 (Ar-CH), 134.6 (d, 3JPC = 2 Hz, Ar-CH). 31P{1H} NMR (C6D6, 298 K,
162 MHz) δ/ppm = −6.62. FT-IR:

∼
v/cm−1 = 3261, 3075, 2958, 2894, 2960, 1601, 1571, 1469,

1446, 1386, 1359, 1280, 1230, 1208, 1170, 1155, 1125.

5.3. Synthesis of 2-Di-isopropylphosphinophenol

First, 2-Bromoanisole (2.2 mL, 17.5 mmol) was added to a flame-dried Schlenk flask
and dissolved in diethyl ether (50 mL). The flask was cooled to 0 ◦C and, while stirring,
nBuLi in hexanes (7 mL, 2.5 M, 17.5 mmol) was added dropwise. The reaction mixture
was stirred for a further 2 h at room temperature. The flask was cooled again to 0 ◦C
and di-iso-propylchlorophosphine (2.8 mL, 17.6 mmol) was added. The resulting mixture
was allowed to warm to room temperature and stirred for a further 2 h. The resulting
suspension was filtered through celite and the volatiles were removed in vacuo, affording an
orange oily residue which was identified by 1H and 31P{1H} NMR spectroscopy as di-iso-
propyl(2-methoxyphenyl)phosphane. The oil was dissolved in dichloromethane (30 mL)
and the resulting solution was cooled to −78 ◦C. Next, BBr3 (4 mL, 41.5 mmol) was added
dropwise, and the resulting mixture was warmed to room temperature and stirred for
18 h. The volatiles were removed in vacuo and methanol (18 mL) was added. The resulting
solution was transferred to a flame-dried ampoule fitted with a Rotaflo valve and stirred
under reflux for 5 h. The solution was transferred to a flame-dried Schlenk flask and dried
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in vacuo. The residue was dissolved in diethyl ether (40 mL) and triethylamine (3.6 mL).
The resulting suspension was stirred at room temperature for 1 h, and the volatiles were
removed in vacuo to afford a colourless solid and an oil. The oil was extracted with hexane
(3 × 10 mL), and the filtrate was dried in vacuo to afford 2-di-isopropyl-phosphinophenol
as a dark orange oil (2.302 g, 11.0 mmol, 64%). NMR spectroscopic data were previously
recorded in the literature from samples in CD2Cl2 [42]. 1H NMR (C6D6, 298 K, 400 MHz):
δ/ppm = 0.80 (6 H, dd, 3JPH = 12 Hz, 3JCH = 7 Hz, CH(CH3)2), 0.96 (6 H, dd, 3JPH = 16 Hz,
3JCH = 7 Hz, CH(CH3)2), 1.86 (2 H, m, CH(CH3)2), 6.79–6.75 (1 H, m, Ar-CH), 7.10–7.07 (3 H,
m, Ar-CH), 8.34 (1 H, broad, OH). 13C{1H} NMR (C6D6, 298 K, 100 MHz): δ/ppm = 19.1 (d,
1JPC = 7 Hz, CH(CH3)2) 20.4 (d, 2JPC = 18 Hz, CH(CH3)2), 23.4 (d, 1JPC = 7 Hz, CH(CH3)2),
116.0 (d, 2JPC = 1 Hz, Ar-CH), 120.4 (Ar-CH), 131.8 (Ar-CH), 133.2 (d, 2JPC = 2 Hz, Ar-CH).
31P{1H} (C6D6, 298 K, 162 MHz): δ/ppm = −24.48; FT-IR:

∼
v/cm−1 = 3371, 3069, 3025, 2952,

2926, 2867, 1598, 1573, 1470, 1448, 1381, 1363, 1348, 1282, 1197, 1153.

5.4. Synthesis of [{La[tBu2P(C6H4)O]2[µ-tBu2P(C6H4)O]}2] (1-La)

A flame-dried Schlenk flask was charged with [La{N(SiMe3)2}3] (0.745 g, 1.2 mmol)
and 2-(di-tert-butylphosphino)phenol (0.858 g, 3.6 mmol). Toluene (60 mL) was added,
and the reaction mixture was stirred at room temperature for 18 h. The volatiles were
removed in vacuo and the solid residue was washed with hexane (2 × 10 mL). The solid was
recrystallised from toluene (10 mL, room temperature), affording 1-La as a white crystalline
solid, with an additional crystalline crop obtained from the hexane washings (0.096 g,
0.11 mmol, 9%). 1H NMR (C6D6, 298 K, 400 MHz): δ/ppm = 1.27 (54 H, d, 3JPH = 12 Hz,
C(CH3)3), 6.65 (1 H, m, Ar-CH), 6.91 (3 H, m, Ar-CH), 7.28 (3 H, t, 3JHH = 8 Hz, Ar-CH),
7.39 (3H, m, Ar-CH). 13C{1H} NMR (C6D6/C4D8O, 298 K, 100 MHz): δ/ppm = 30.7 (broad,
C(CH3)3), 33.7 (broad, C(CH3)3), 115.2 (Ar-CH), 119.0 (Ar-CH), 123.4 (Ar-CO), 131.5 (Ar-
CH), 134.8 (Ar-CH), 173.6 (d, 1JPC = 26 Hz, Ar-CP); 31P{1H} (C6D6, 298 K, 162 MHz):
δ/ppm = 30.19. A satisfactory elemental analysis could not be achieved due the presence
of by-products (3-La, vide infra), which could not be separated from the starting material.
FT-IR:

∼
v/cm−1 = 2985, 2955, 2936, 2921, 2892, 2858, 1579, 1454, 1427, 1363, 1287, 1257, 1243,

1230, 1164, 1119, 1033, 853.

5.5. Synthesis of [{La[iPr2P(C6H4)O]2[µ-iPr2P(C6H4)O]}2] (2-La)

A flame-dried Schlenk flask was charged with [La{N(SiMe3)2}3] (1.797 g, 2.9 mmol) and
dissolved in toluene (50 mL). In a separate Schlenk flask, 2-(di-isopropylphosphino)phenol
(1.829 g, 8.7 mmol) was dissolved in toluene (15 mL), and the resulting solution was added
to the toluene solution of [La{N(SiMe3)2}3]. The combined mixture was stirred at room
temperature for 18 h. The volatiles were removed in vacuo and the residue was triturated
with pentane (5 mL), causing the formation of a white precipitate. The solid was filtered
and dried in vacuo, affording 2-La as a white solid (0.88 g, 1.3 mmol, 46%). 1H NMR (C6D6,
298 K, 400 MHz): δ/ppm = 1.04 (6 H, dd, 3JHP = 12 Hz, 3JHH = 7 Hz, CH(CH3)2), 1.18
(6 H, dd, 3JHP = 15.5 Hz, 3JHH = 7 Hz, CH(CH3)2), 2.08 (2 H, m, CH(CH3)2), 6.68 (1 H,
t, 3JHH = 7 Hz, Ar-CH), 6.80 (1 H, dd, 3JHH = 8 Hz, 3JHH = 8 Hz, Ar-CH), 7.12 (1 H, dd,
3JHH = 7 Hz, 4JHH = 2 Hz, Ar-CH), 7.25 (1 H, td, 3JHH = 7 Hz, 3JHP = 2 Hz, Ar-CH). 1H NMR
(C4D8O, 298 K, 800 MHz): δ/ppm = 0.87 (6 H, dd, 3JHP = 12 Hz, 3JHH = 7 Hz, CH(CH3)2),
1.03 (6 H, dd, 3JHP = 15 Hz, 3JHH = 7 Hz, CH(CH3)2), 2.04 (2 H, m, CH(CH3)2), 6.33 (1 H,
td, 3JHH = 7 Hz, 4JHH = 1 Hz, Ar-CH), 6.40 (1 H, dd, 3JHH = 8 Hz, 3JHH = 4 Hz, Ar-CH),
6.87 (1 H, m, Ar-CH), 6.97 (1 H, m, Ar-CH). 13C{1H} NMR (C4D8O, 298 K, 201.21 MHz):
δ/ppm = 18.9 (d, 2JCP = 7 Hz, CH(CH3)2), 19.7 (d, 2JCP = 14 Hz, CH(CH3)2), 23.8 (d,
2JCP = 4 Hz, CH(CH3)2), 114.8 (Ar-CH), 118.7 (Ar-CH), 120.9 (d, 2JCP = 6 Hz, Ar-CH),
130.8 (Ar-CH), 132.4 (Ar-C-O), 173.2 (d, 1JCP = 23 Hz, Ar-C-P). 31P{1H} NMR (C6D6, 298 K,
162 MHz): δ/ppm = 1.21. Anal. Calcd. (%) for C36H54O3P3La·C5H12: C 58.71, H 7.93.
Found (%): C 59.57, H 7.69. FT-IR:

∼
v/cm−1 = 2953, 2927, 2889, 2868, 1575, 1455, 1431, 1289,

1261, 1248, 1220, 1153, 1121, 1031, 854.
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5.6. Synthesis of [Sm{tBu2P(C6H4)O}3] (1-Sm)

A flame-dried Schlenk flask was charged with [Sm{N(SiMe3)2}3] (0.684 g, 1.2 mmol)
and 2-(di-tert-butylphosphino)phenol (0.86 g, 3.61 mmol). Toluene (60 mL) was added,
and the reaction mixture was stirred at room temperature for 18 h. The volatiles were
removed in vacuo and the residual solid was recrystallised from hexane (10 mL, room
temperature), affording 1-Sm as a white crystalline solid (0.075 g, 0.09 mmol, 7%). 1H NMR
(C4D8O, 298 K, 400 MHz): δ/ppm = 0.28 (18 H, broad, ν1/2 = 7.45 Hz, C(CH3)3), 7.06 (1 H, t,
3JHH = 7 Hz, Ar-CH), 7.56 (1 H, d. 3JHH = 6 Hz, Ar-CH), 7.93 (1 H, t, 3JHH = 6 Hz, Ar-CH),
9.67 (1 H, d, 3JH-H = 6 Hz, Ar-CH). 13C{1H} (C4D8O, 298 K, 125.78 MHz): δ/ppm = 29.3
(C(CH3)3), 30.6 (C(CH3)3), 116.0 (Ar-CH), 119.9 (Ar-CH), 124.1 (Ar-CH), 132.4 (Ar-CH),
134.4 (Ar-CH), 181.3 (Ar-C-O). 31P{1H} (C4D8O, 298 K, 202.46 MHz): δ/ppm = −56.71
(ν1/2 = 1765.42 Hz). Anal. Calcd. (%) for C42H66O3P3Sm: C 58.5, H 7.71. Found (%): C
55.3, H 7.89; elemental analyses consistently yielded low carbon values, which we ascribed
to carbide formation [47]. FT-IR:

∼
v/cm−1 = 2989, 2961, 2939, 2918, 2892, 2858, 1579, 1550,

1453, 1429, 1390, 1361, 1337, 1289, 1257, 1245, 1174, 1121, 1029.

5.7. Synthesis of [Y{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Y)

A flame-dried Schlenk flask was charged with [Y{N(SiMe3)2}3] (0.684 g, 1.2 mmol)
and 2-(di-tert-butylphosphino)phenol (0.86 g, 3.61 mmol). Toluene (60 mL) was added,
and the resulting solution was stirred at room temperature for 18 h. The volatiles were
removed in vacuo and the residual solid was recrystallised from hexane (10 mL, −30 ◦C) to
obtain the product as a white crystalline solid (0.099 g, 0.095 mmol, 4.8%). 1H NMR (C6D6,
298 K, 400 MHz): δ/ppm = 0.73–1.11 (18 H, broad, CH3), 1.18–1.64 (54 H, broad, CH3),
6.59–6.76 (4 H, broad, Ar-CH), 6.76–6.93 (4 H, broad, Ar-CH), 7.27 (4 H, t, 3JHH = 7 Hz,
Ar-CH), 7.52–7.73 (4 H, broad, Ar-CH), 7.42–8.27 (1 H, d, 1JPH = 276 Hz, PH). 13C{1H}
NMR (C6D6/C4D8O, 298 K, 100 MHz): 27.8 (C(CH3)3), 30.8 (PC(CH3)3), 33.3 (d, 7 Hz,
HPC(CH3)3), 114.5 (Ar-CH), 120.0 (Ar-CH), 123.7 (Ar-CO), 131.0 (Ar-CH), 134.8 (Ar-CH),
172.2 (Ar-CP). 31P{1H} (C6D6, 298 K, 162 MHz): δ/ppm = 10.55 (P), 18.25 (PH). Anal. Calcd.
(%) for C56H89O4P4Y·0.5(C6H14): C 65.48, H 8.94. Found (%) C: 65.93, H: 8.56. FT-IR:
∼
v/cm−1 = 2961, 2895, 2862, 1580, 1454, 1429, 1391, 1364, 1295, 1259, 1175, 1093, 1018,
857, 799.

5.8. Synthesis of [Ce{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Ce)

UPTOHERE A flame-dried Schlenk flask was charged with [Ce{N(SiMe3)2}3] (0.745 g,
1.2 mmol) and 2-(di-tert-butylphosphaneyl)phenol (0.858 g, 3.6 mmol). Toluene (40 mL)
was added, and the mixture was stirred at room temperature for 18 h whilst protected
from UV light. The volatiles were removed in vacuo and the residue was dissolved in
hexane (2 mL). A precipitate crashed out at −30 ◦C, and the resulting suspension was
filtered. The filtrate was transferred to a small vial in the glove box, where dark red crystals
grew at room temperature by slow evaporation. The crystals were analysed by X-ray
crystallography to confirm the structure of 3-Ce (0.04 g, 0.03 mmol, 3.1%). 1H NMR (C6D6,
298 K, 400 MHz): δ/ppm = −4.46 (broad), −3.98 (broad), −3.42 (broad with shoulder),
−2.30 (broad), −1.69 (broad), 0.16 (s), 1.33 (s), 3.58 (broad), 3.82 (broad), 5.09 (broad),
5.24 (broad), 5.70 (broad), 6.79 (broad), 6.96 (broad with shoulder), 7.05 (broad), 7.46 (broad),
7.71 (broad), 8.73 (broad), 9.01 (broad), 10.13 (broad), 10.55 (broad), 17.32 (broad). No 13C
NMR data could be obtained due to paramagnetism. 31P{1H} (C6D6, 298 K, 162 MHz)
δ/ppm = 40.54.

5.9. Synthesis of [Pr{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Pr)

A flame-dried Schlenk flask was charged with [Pr{N(SiMe3)2}3] (0.632 g, 1.01 mmol)
and 2-(di-tert-butylphosphaneyl)phenol (0.727 g, 3.04 mmol). Toluene (50 mL) was added,
and the mixture were stirred at room temperature for 18 h. The volatiles were removed
in vacuo and the residual solid was recrystallised in hexane, affording 3-Pr as a beige crys-
talline solid (0.193 g, 0.2 mmol, 23%). 1H NMR (C6D6, 298 K, 400 MHz): δ/ppm = −33.30
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(broad, ν1/2 = 239.81 Hz), −6.37 (broad with shoulder, ν1/2 = 446.91 Hz), −5.8 (broad),
−0.12 (s), −0.01 (s), 0.10 (s) 0.21 (s), 0.29 (s), 0.87–0.97 (broad m), 1.20–1.40 (broad m), 6.23
(broad, ν1/2 = 73.94 Hz), 6.96 (s), 7.36 (s), 12.10–16.62 (broad with shoulder), 96.18 (broad d,
1JHP = 473.68 Hz, PH). No 13C and 31P NMR data could be obtained due to paramagnetism.
Anal. Calcd. (%) C56H89O4P4Pr: C 61.64, H 8.22. Found (%) C 60.57, H 8.33; elemental anal-
yses afforded low carbon values consistently, which we ascribe to carbide formation [47].
FT-IR:

∼
v/cm−1 = 2989, 2954, 2938, 2891, 2859, 1579, 1453, 1425, 1361, 1336, 1292, 1247, 1178,

1120, 1031, 933, 848.

5.10. Synthesis of [Sm{tBu2P(C6H4)O}3{tBu2PH(C6H4)O}] (3-Sm)

A flame-dried Schlenk flask was charged with [Sm{N(SiMe3)2}3] (1.571 g, 2.49 mmol)
and 2-(di-tert-butylphosphaneyl)phenol (1.787 g, 7.5 mmol). Toluene (40 mL) was added
and the mixture stirred at room temperature for 18 h. The volatiles were removed in vacuo,
and the residual solid was recrystallised in a mixture of hexane and toluene, affording
obtain 3-Sm as a white crystalline solid (0.096 g, 0.09 mmol, 3%). Notably, 1-Sm was also
isolated from the same reaction upon fractional crystallisation (vide supra). 1H NMR (C6D6,
298 K, 400 MHz): δ/ppm = 0.62 (54 H, broad, C(CH3)3), 1.96 (18 H, broad, C(CH3)3), 6.30
(4 H, broad, Ar-CH), 7.64 (4 H, broad, Ar-CH), 7.79 (4 H, broad, Ar-CH), 8.64 (4 H, broad,
Ar-CH), 14.72 (1 H, broad, PH), 15.94 (1 H, broad s, PH). 31P{1H} (C6D6, 298 K, 162 MHz):
δ/ppm = −44.34 (broad, ν1/2 384.04 Hz), 21.95 (broad, ν1/2 470.76 Hz). No 13C NMR data
could be obtained due to paramagnetism. Anal. Calcd. (%) for C56H89O4P4Sm: C 61.11, H
8.15. Found (%) C 61.54, H 8.24. FT-IR:

∼
v/cm−1 = 2956, 2927, 2865, 1465, 1448, 1383, 1366,

1336, 1324, 1259, 1252, 1239, 1207, 1176, 1159, 1144, 1108, 1052, 1039, 976, 958, 939, 920, 897,
885, 876, 813, 806.

5.11. Synthesis of K[tBu2P(C6H4)O]

2-di-tert-butylphosphinophenol (1.906 g, 8 mmol) and KH (0.326 g, 8.3 mmol) were
added to a flame-dried Schlenk flask. THF (25 mL) was added, and the resulting suspension
was stirred at room temperature for 18 h. The suspension was filtered and the filtrate was
dried in vacuo, affording K[tBu2P(C6H4)O] as a white powder (2.096 g, 7.6 mmol, 95%). 1H
NMR (C6D6, 298 K, 400 MHz): δ/ppm = 1.30 (18 H, d, 3JHP = 12 Hz, C(CH3)3), 6.29 (1 H,
t, 3JHH = 6 Hz, Ar-CH), 6.65 (1 H, m, Ar-CH), 7.26 (1 H, m, Ar-CH), 7.69 (1 H, m, Ar-CH).
13C{1H} NMR (C6D6/C4D8O, 298 K, 100 MHz): δ/ppm = 31.5 (d, 2JPC = 15 Hz, C(CH3)3),
32.8 (d, 1JPC = 18 Hz, C(CH3)3), 111.5 (Ar-CH), 118.8 (Ar-C-O), 123.1 (d, 2JCP = 6 Hz, Ar-CH),
131.9 (Ar-CH), 137.4 (Ar-CH), 175.4 (d, 1JCP = 22 Hz, Ar-C-P). 31P{1H} NMR (C6D6, 298 K,
162 MHz): δ/ppm = 9.03. Anal. Calcd. (%) for C14H22OPK: C 60.84, H 8.02. Found (%): C
60.15, H 8.30.

5.12. Synthesis of [La{tBu2P(C6H4)O}6K3] (4)

A flame-dried Schlenk flask was charged with LaI3(THF)4 (0.664 g, 1 mmol) and
K[tBu2P(C6H4)O] (0.937 g, 3 mmol). THF (40 mL) was added, and the mixture was stirred
at room temperature for 18 h. The volatiles were removed in vacuo and the residue was
washed with hexane (3 × 5 mL). The filtrate was concentrated in vacuo to about 8 mL. From
the filtrate, two crystalline solids precipitated out. The pale red crystals were identified
as 3-La via X-ray crystallography. The clear colourless crystals were identified as 4 via
X-ray crystallography (0.015 g, 0.01 mmol, 1%). 1H NMR (C6D6/C4D8O, 298 K, 400 MHz):
δ/ppm = 1.26 (108 H, broad, C(CH3)3), 6.62 (8 H, broad, Ar-CH), 7.03 (8 H, broad, Ar-CH),
7.20 (8 H, broad, Ar-CH), 7.53 (8 H, broad, Ar-CH). 13C{1H} NMR (C6D6/C4D8O, 298 K,
100 MHz): δ/ppm = 31.0 (d, 2JPC = 12 Hz, C(CH3)3), 33.2 (d, 1JPC = 13 Hz, C(CH3)3),
114.5 (Ar-CH), 120.9 (Ar-CH), 122.9 (Ar-C-O), 130.8 (Ar-CH), 135.5 (Ar-CH), 173.2 (Ar-C-P).
31P{1H} NMR (C6D6, 298 K, 162 MHz): δ/ppm = 13.36.
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5.13. General Procedure for Gas Reactions—CO and CO2

The metal complex was added to a flame-dried Schlenk flask. Toluene was added,
together with additional diethyl ether if needed to dissolve all solids. The solution was
transferred to an ampoule fitted with a Rotaflo valve. The solution was degassed (freeze-
pump-thaw) and then refilled with an atmosphere of the chosen gas (~0.5 bar, CO or CO2).
The solution was stirred at room temperature (18–72 h). An aliquot of the solution was
transferred to a flame-dried Schlenk flask and analysed by NMR spectroscopy to monitor
reaction progress (1H, 13C, 31P, 31P{1H}).

5.14. Reaction Between a Mixture of 1-La and 3-La with CO2 (Isolation of 3-La)

A mixture of 1-La and 3-La (0.299 g) was added to a flame-dried Schlenk flask. The
flask was charged with toluene (15 mL) and diethyl ether (1 mL) to dissolve all solids.
The solution was transferred to a Rotaflo ampoule. The solution was frozen, degassed
and then refilled with an atmosphere of CO. The solution was thawed and stirred (64 h).
An aliquot of the solution was transferred to a flame-dried Schlenk flask and analysed by
NMR spectroscopy (1H, 13C, 31P, 31P{1H}), proving that no reaction had taken place. The
contents of the flask were filtered, and the filtrate was concentrated to around 10 mL of
solvent. Compound 3-La was recrystallised from the filtrate at −30 ◦C in toluene. The
solid was filtered and dried in, to yield 3-La as an off-white solid (0.074 g). 1H NMR
(C6D6, 298 K, 400 MHz): δ/ppm = 0.9–1.7 (72 H, broad, C(CH3)3), 6.42–6.72 (4 H, broad,
Ar-CH), 6.75–7.00 (4 H, broad, Ar-CH), 7.32 (4 H, t, 3JHH = 8 Hz, Ar-CH), 7.28–7.76 (4 H,
broad, Ar-CH), 8.40 (1 H, broad, PH). 13C{1H} NMR (C6D6, 298 K, 100 MHz): δ/ppm = 30.7
(broad with shoulder, PC(CH3)3), 33.7 (HPC(CH3)3), 114.3 (Ar-CH), 119.5 (Ar-CH), 123.8
(Ar-CP), 131.2 (s, Ar-CH), 134.8 (s, Ar-CH), 173.9 (s, Ar-CO). 31P{1H} (C6D6, 298K, 162 MHz):
δ/ppm = 18.7. Anal. Calcd. (%) for C56H89O4P4La: C 61.76, H 8.24. Found (%) C 61.45, H
8.30. FT-IR:

∼
v/cm−1 = 2991, 2960, 2947, 2934, 2887, 2859, 1578, 1452, 1428, 1336, 1293, 1247,

1121, 1031, 848.
Reaction between a mixture of 1-La and 3-La with CO: In a similar procedure to the

reactivity of a mixture of 1-La and 3-La with CO2, no reaction was observed, and 3-La
was isolated.

Reaction between 2-La and CO: 2-La (0.3 g) in toluene (8 mL) and diethyl ether (42 mL),
CO (~0.5 bar). NMR spectroscopic analysis (C6D6, 1H, 13C, 31P, 31P{1H}) on an aliquot from
the reaction after 64 h showed no reaction. The solution was concentrated in vacuo to 4 mL
affording a crystalline solid upon standing at room temperature, which was analysed by
X-ray crystallography to confirm the identity of 2-La. The crystals were dried in vacuo to
yield 2-La (0.22 g recovered).

Reaction between 2-La and CO2: (0.3 g) in toluene (8 mL) and diethyl ether (42 mL), CO2
(~0.5 bar) In a procedure similar to the reactivity of 2-La with CO, no reaction was observed
and 2-La was retrieved.

5.15. General Procedure for Reactivity with H2

The metal complex was added to an oven-dried J. Young’s NMR tube, which was
then charged with C6D6 (0.5 mL) and drops of THF-d8 as required. After obtaining NMR
spectra of the starting material (1H, 13C, 31P, 31P{1H}), the solution was frozen using liquid
N2 and the headspace was evacuated and backfilled with H2 gas. The solution was thawed
and, after 3 h, analysed by NMR spectroscopy. The NMR tube was heated to 80 ◦C for 24 h
and then analysed once again by NMR spectroscopy.

Reaction between 2-La and H2: 2-La (0.014 g, 0.0226 mmol) in C6D6 (0.5 mL) and 7 drops
of THF-d8. No reaction observed.

Reaction between 3-Y and H2: (0.014 g, 0.013 mmol) In a similar procedure to the previous
one, no reactivity was observed.

Reaction between LaN(SiMe3)2}3 and 2-di-tert-butylphosphinophenol: La{N(SiMe3)2}3 (0.0102 g,
0.016 mmol) and 2-di-tert-butylphosphinophenol (0.0155 g, 0.065 mmol) was added to a J.
Young’s NMR tube and dissolved in C6D6 (0.6 mL). NMR spectra were recorded after 30 min.
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NMR data analysis confirmed the formation of 3-La as the major product, the formation of
1-La as a minor product and the formation of other unknown minor impurities.

Synthesis of {tBu2PH(C6H4)O}B(C6F5)3 (5): 2-di-tert-butylphosphinophenol (0.005 g,
0.02 mmol) and B(C6F5) (0.010 g, 0.02 mmol) were added to a J. Young’s NMR tube and
dissolved in C6D6 (0.6 mL). NMR spectra were recorded after 45 min. NMR data analysis
confirmed quantitative formation of 5.

5: 1H (C6D6, 298 K, 400 MHz): δ/ppm = 0.65 (18 H, d, 2JPH = 17 Hz, P-C(CH3)3), 6.33
(1 H, td, 3JHH = 7.4 Hz, 4JHH = 3 Hz, Ar-CH), 6.39 (1 H, d, 1JPH = 480 Hz, PH), 6.59 (1 H, m,
Ar-CH), 6.92 (1 H, td, 3JHH = 8 Hz, 4JHH = 1.28 Hz, Ar-CH), 7.18 (1 H, m, Ar-CH). 11B (C6D6,
298 K, 128 MHz): δ/ppm = −2.78. 19F (C6D6, 298 K, 376 MHz): δ/ppm = −164.94 (m-F),
−159.06 (p-F), −133.66 (p-F). 31P{1H} (C6D6, 298K, 162 MHz): δ/ppm = 23.63 (1JPH, PH).

Reaction between 3-Y and B(C6F5)3 and formation of 1-Y and 5: 1-Y (0.010 g, 0.01 mmol)
and B(C6F5) (0.005 g, 0.01 mmol) were added to a J. Young’s NMR tube and dissolved in
C6D6 (0.6 mL). NMR spectra were recorded after 45 min. NMR data analysis confirmed the
formation of 1-Y and 5.

Reaction between 3-La and B(C6F5)3 and formation of 5: 1-La (0.010 g, 0.01 mmol) and
B(C6F5) (0.005 g, 0.01 mmol) were added to a J. Young’s NMR tube and dissolved in C6D6
(0.6 mL). NMR spectra were recorded after 60 min. NMR data analysis confirmed formation
of 1-La and 5, together with unknown impurities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29235757/s1. Additional experimental details and
spectroscopic data (multinuclear NMR, IR), crystallographic data for all compounds [48–51].
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