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Abstract: This paper presents the development of a photoelectrochemical sensor for hypochlorous
acid (HOCl) detection, employing a phenothiazine-based organic photosensitizer (Dye-PZ). The
designed probe, Dye-PZ, follows a D-π-A structure with phenothiazine as the electron-donating
group and a cyano-substituted pyridine unit as the electron-accepting group. A specific reaction
of the phenothiazine sulfur atom with HOCl enables selective recognition. The covalent immo-
bilization of Dye-PZ onto a titanium dioxide nanorod-coated fluorine-doped tin oxide electrode
(FTO/TiO2) using bromo-silane coupling agent (BrPTMS) resulted in the fabrication of the pho-
toanode FTO/TiO2/BrPTMS/Dye-PZ. The photoanode exhibited a significant photoresponse under
visible-light irradiation, with a subsequent reduction in photocurrent upon reaction with HOCl. The
oxidation of the phenothiazine sulfur atom to a sulfoxide diminished the internal charge transfer
(ICT) effect. Leveraging this principle, the successful photoelectrochemical sensing of HOCl was
achieved. The sensor showed high stability, excellent reproducibility, and selective sensitivity for
HOCl detection. Our study provides a novel approach for the development of efficient photoelectro-
chemical sensors based on organic photosensitizers, with promising applications in water quality
monitoring and biosensing.

Keywords: photoelectrochemical sensor; organic photosensitizer; phenothiazine; hypochlorous acid

1. Introduction

Hypochlorous acid (HOCl) is a compound renowned for its robust oxidizing capa-
bilities, commonly utilized in household bleach and disinfectants due to its exceptional
antimicrobial and stain-removing properties. With oxygen atoms embedded in its molec-
ular structure, HOCl can serve as a potent oxidizing agent and can rapidly react with
both organic and inorganic substances. In household cleaning products, HOCl can release
reactive oxygen atoms to facilitate the breakdown and removal of colors, making it an
indispensable component for domestic and industrial cleaning. Beyond its applications in
cleaning, HOCl’s potent disinfecting properties find extensive applications in the medical,
food, and water treatment sectors, effectively eliminating various microorganisms to safe-
guard public health and ensure food safety [1–4]. At the biological level, HOCl assumes
a crucial role, particularly as a representative of reactive oxygen species (ROS). ROS play
pivotal roles in physiological and pathological processes, and HOCl, as one of these species,
participates in multiple facets of the immune system, contributing significantly to maintain-
ing normal physiological processes [5–8]. The role of HOCl in immune responses involves
pathogen clearance, inflammation promotion, and facilitation of tissue repair, serving as a
vital defense mechanism against external threats.

However, excessive exposure to hypochlorous acid (HOCl) can pose severe health
risks due to its oxidative and damaging effects on various biological components. The
intricate mechanisms underlying HOCl-induced harm involve its reactivity towards crucial
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cellular structures, leading to widespread physiological disruptions [9,10]. For instance, ex-
cess HOCl reacts with cell membrane lipids, causing lipid peroxidation and compromising
the integrity of the cell membrane. This may result in increased membrane permeabil-
ity, disruption of cellular homeostasis, and heightened susceptibility to external threats.
Additionally, excess HOCl reacts with thiol-containing amino acids, inducing protein de-
naturation and functional loss. HOCl also induces DNA strand breaks, base modifications,
and cross-linking, impacting nucleic acid integrity and jeopardizing the cell’s ability to
maintain genomic stability. Due to these oxidative reactions of HOCl, elevated levels may
damage cells and tissues, potentially triggering various diseases such as arthritis, cardio-
vascular disorders, kidney ailments, neurodegenerative conditions, and cancer [11–14].
Therefore, detecting the concentration of HOCl is crucial for monitoring its presence in the
environment and gaining a deeper understanding of the physiological and pathological
functions of HOCl.

Scientists employ a diverse array of methods to monitor and measure HOCl levels in
environmental and biological samples, ensuring that it remains within a safe and beneficial
range. These techniques include electroanalytical methods [15–17], chromatography [18,19],
chemiluminescence [20–22], colorimetry [23–25], and fluorescence [26–30]. Each of these
methods is continually evolving for HOCl detection in both scientific research and prac-
tical applications. Notably, the focus lies on detection techniques utilizing organic small
molecule probes. These molecules, with precise compositions and controllable structures,
selectively respond to target analytes through specific functional groups, enhancing selectiv-
ity to enable rapid and accurate detection of HOCl in diverse environmental and biological
systems. Advancements in detection methods based on the specific induction of oxidation
reactions in various structural units by HOCl are ongoing. These structural units include
carbon–carbon double bonds, sulfur compounds, aldoxime groups, thioether/Schiff bases,
N,N-dimethylthioamidoformate, phenylboronic acid/borate esters, and others [31–33].
Researchers have successfully developed a range of efficient fluorescence probe molecules
for HOCl detection by leveraging the specific oxidation reactions in various structural units.
Notably, phenothiazine stands out as a crucial structural unit for HOCl recognition. In
phenothiazine derivatives, sulfur atoms can be oxidized to sulfoxide by HOCl, achieving
a highly specific response to hypochlorous acid [34–40]. Moreover, phenothiazine com-
pounds exhibit unique biological activities and optoelectronic properties, making them
versatile for applications spanning medicine [41,42], photovoltaic cells [43–45], fluorescence
sensing [46–49], and electrochemical detection [50–52].

In this context, we innovatively employed the phenothiazine structural unit to con-
struct an organic photosensitive small molecule, contributing to the development of a
photoelectrochemical (PEC) sensor for detecting HOCl. PEC analysis, utilizing light exci-
tation with electrochemical signals as its output, has gained widespread attention for its
improved sensitivity through the utilization of two different signal modes [53–58]. Previ-
ous research has also indicated that employing organic small-molecule photosensitizers
to simultaneously achieve target recognition and photoelectric conversion is an effective
strategy for constructing PEC sensors [59–63]. Herein, we firstly synthesized a novel
D-π-A structured photoactive molecule (Dye-PZ) by coupling aldehyde-functionalized
phenothiazine with cyanopyridine. Subsequently, we covalently immobilized Dye-PZ
onto a TiO2 nanoarray substrate, obtaining a specific working PEC electrode for detect-
ing HOCl. In Dye-PZ, the phenothiazine moiety serves as the electron-donating group,
while the cyanopyridine unit acts as the electron-accepting group. This D-π-A structure
exhibits excellent photoelectric conversion efficiency, generating a substantial photocur-
rent (Scheme 1). Upon selective reaction of Dye-PZ with hypochlorous acid, the sulfur in
the molecule is oxidized to sulfoxide, disrupting the D-π-A structure and resulting in a
decrease in photocurrent response. Consequently, we achieved the highly specific detection
of HOCl. Furthermore, this sensor boasts several advantages, such as a fast response, high
signal-to-noise ratio, good selectivity, and high sensitivity.
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Scheme 1. The proposed PEC sensor for HOCl based on the phenothiazine-structured photoactive
molecule Dye-PZ.

2. Results and Discussion
2.1. Preparation and Characterization of the FTO/TiO2/BrPTMS/Dye-PZ Photoanode

In the design of the photoelectrochemical probe molecule Dye-PZ, the crucial struc-
tural unit phenothiazine was incorporated. Phenothiazine serves as the electron-donating
moiety, contributing to the construction of a D-π-A structured photoconversion functional
molecule. Simultaneously, the sulfur atom in phenothiazine acts as a reactive site for
the recognition of the target analyte, hypochlorous acid. The dual functionality of phe-
nothiazine is effectively utilized in the design of Dye-PZ. The synthetic process involves
two main steps: the aldehyde functionalization of phenothiazine, followed by condensa-
tion with cyano-4-pyridylacetonitrile to yield the target molecule, Dye-PZ. Further details
concerning the specific synthetic methodology and characterization are provided in the
subsequent experimental section. The results were confirmed through comprehensive
characterization using nuclear magnetic resonance (NMR) and mass spectrometry (MS)
methods. The photoanode was assembled through two steps (Figure 1). In the first step,
the (3-bromopropyl)trimethoxysilane (BrPTMS) was coupled with the FTO/TiO2 electrode,
resulting in a bromoalkylsilane-modified electrode, FTO/TiO2/BrPTMS. In the second
step, the alkyl bromide on the modified electrode underwent a covalent reaction with
the pyridine nitrogen in Dye-PZ, forming an alkylpyridinium and resulting in photoan-
ode FTO/TiO2/BrPTMS/Dye-PZ. To validate the successful assembly of the photoanode,
a series of characterization approaches were applied to the electrodes under different
modification states.
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Figure 1. The fabrication process for the photoanode FTO/TiO2/BrPTMS/Dye-PZ.

Firstly, we examined the feasibility of covalent coupling between the bromoalkoxysi-
lane reagent (BrPTMS) and the photoactive molecule (Dye-PZ). As shown in Figure S1,
the acetonitrile solution containing only Dye-PZ had an absorption band around 420 nm,
while the solution after the reaction with BrPTMS showed absorption around 510 nm.
The absorption peak position underwent a redshift, and, simultaneously, the solution
color changed from yellow to red. This was attributed to the successful formation of a
pyridinium cation through the interaction of Dye-PZ with BrPTMS. The introduction of
this pyridinium salt moiety enhances the molecule’s electron-accepting capacity, thereby
significantly amplifying the intramolecular photo-induced charge transfer effect (ICT).
Consequently, this phenomenon leads to a noticeable redshift in the absorption spectrum.
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These results indicate the ability of bromoalkoxysilane to form a covalent bond with the
photosensitive molecule.

Then, we characterized the morphology of the photoanodes. SEM results revealed
a well-ordered TiO2 rod array with a radial size of approximately 100 nm grown on
the FTO surface (Figure S2). Subsequently, upon modification of the electrode surface
with the photoactive molecule Dye-PZ, there was no significant change observed in the
surface morphology of the FTO/TiO2/BrPTMS/Dye-PZ electrode (Figure 2a). This can
be attributed to the relatively smaller size of the organic small molecule, which does not
substantially alter the morphology of TiO2 upon modification. Next, we characterized the
changes in the electrode preparation process. The Fourier-transform infrared spectroscopy
(FTIR) outcomes revealed a pronounced absorption band within the 750–650 cm−1 range for
the TiO2 sample, corresponding to the vibration of Ti-O-Ti bonds (Figure 2b, green curve).
In the TiO2/BrPTMS sample, a subtle absorption band emerged at 1049 cm−1, signifying
the stretching vibration absorption of the Si-O bond and confirming the interaction between
the silane reagent and TiO2. In the TiO2/BrPTMS/Dye-PZ sample, we observed the
aforementioned Ti-O-Ti and Si-O bond absorptions, along with characteristic absorptions of
the photoactive molecule (Figure 2b, red curve). The absorption at 1630 cm−1 is due to the
stretching vibration of the C=N in the pyridinium group formed after the reaction between
the bromoalkylsilane reagent and the pyridine moiety of the photoactive molecule. The
absorption peak observed at 1560 cm−1 corresponds to the stretching vibration of the C=C
bond within the pyridine ring. The absorptions at 1460 cm−1 and 1340 cm−1 correspond
to the benzene ring and the C-N stretching vibration in the phenothiazine structure of
the photoactive molecule, respectively. These FTIR results indicated that the photoactive
molecule Dye-PZ was covalently coupled to the TiO2 surface through the silane reagent.
Subsequently, the synthesized samples underwent X-ray photoelectron spectroscopy (XPS)
elemental analysis. As depicted in Figure 2c, the TiO2 sample exhibited peaks at O 1s 529 eV
and Ti2p1/2 458 eV. Additionally, due to the organic titanium used in TiO2 synthesis, a peak
at C 1s 284 eV was observed. In the sample resulting from the reaction of FTO/TiO2 with
bromosilane, characteristic peaks of Br 3d at 70 eV and Si 2p at 102 eV were evident. Upon
covalent coupling with Dye-PZ, new peaks emerged at 163 eV and 399 eV, corresponding
to S 2p and N 1s, respectively. The appearance of these peaks signified the successful
integration of sulfur and nitrogen components into the sample after coupling with Dye-PZ.
These observations further validate the successful synthesis and covalent coupling of the
PEC anode FTO/TiO2/BrPTMS/Dye-PZ.
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Figure 2. (a) SEM image of FTO/TiO2. (b) FTIR spectra of Dye-PZ, TiO2, TiO2/BrPTMS, and
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Moreover, the electrochemical characterization of the photoanode preparation process
was conducted. The electrochemical impedance spectroscopy (EIS) results are depicted
in Figure S3a. After integrating FTO/TiO2 with bromosilane, there was an increase in
charge transfer resistance (Rct) from 3.1 × 103 Ω to 1.6 × 105 Ω. This increase suggested the
effective coverage of the electrode surface by bromosilane, hindering the charge transfer
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process. Subsequent covalent coupling with Dye-PZ led to a reduction in Rct to 9.1 × 104 Ω.
This reduction could be ascribed to the electrostatic attraction between the pyridinium
cations and the negatively charged Fe(CN)6

4−/3− redox probes in the electrolyte, leading
to a diminished charge transfer resistance. The cyclic voltammetry (CV) results exhibited
a similar trend, as shown in Figure S3b. These findings provide additional confirmation
of the covalent coupling processes, both between FTO/TiO2 and BrPTMS and between
TiO2/BrPTMS and Dye-PZ. This affirmed the successful fabrication of the photoanode.

2.2. PEC Response of FTO/TiO2/BrPTMS/Dye-PZ to HOCl

To validate the feasibility of the prepared photoanode in responding to HOCl, we
initially tested the spectral response of the synthesized photoactive probe Dye-PZ to HOCl
in solution. HPLC-MS experiments were conducted using different solution systems
to verify the occurrence of the reaction. Subsequently, we employed a three-electrode
system to assess the PEC response of the photoanode to HOCl. In a mixture of DMSO and
phosphate buffer (v/v, 5/5, 5 mM, pH 7.4), the spectral response of Dye-PZ to HOCl was
investigated. Dye-PZ (10 µM) exhibited a blue shift in the UV absorption spectrum from
422 nm to 400 nm upon reacting with HOCl. Simultaneously, a significant enhancement
in fluorescence emission at 470 nm was observed, and, under UV light, the solution’s
fluorescence changed from red to blue (Figure 3). The spectral response of Dye-PZ to
HOCl can likely be attributed to the oxidation of the sulfur in the phenothiazine moiety
induced by HOCl, leading to the attenuation of the intra-molecular charge transfer (ICT)
effect, resulting in spectral shifts. Subsequently, the reaction process was monitored using
HPLC-MS (Figure S4). A chromatographic peak appeared at 5.14 min for Dye-PZ alone
(Figure S4a), while after reacting with HOCl, two peaks emerged at 5.14 min and 5.83 min
(Figure S4b), corresponding to Dye-PZ (m/z [M + H+]+: theoretical value 342.1, measured
value m/z: 342.1) and the product (m/z [M + H+]+: theoretical value 358.1, measured
value m/z: 358.1), respectively. These results indicated the oxidation of sulfur in Dye-PZ to
sulfoxide after reacting with HOCl.
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Following that, the PEC response of the photoanode to HOCl was tested. As depicted
in Scheme 1, the phenothiazine moiety within the molecule functioned as the electron-
donating group, while the pyridine unit served as the electron-accepting group, inducing
the generation of the ICT effect and absorption in the visible region. Upon reacting with
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HOCl, the sulfur in the molecule underwent oxidation to a sulfoxide, leading to the
elimination of the ICT effect. The color of the photoanode FTO/TiO2/BrPTMS/Dye-PZ
also changed from red to colorless (Figure 4 inset). Photocurrent tests demonstrated
stable photocurrent responses under 500 nm excitation light. The process of photocurrent
generation begins with the excitation of Dye-PZ under illumination, where electrons
transition from the HOMO state to the LUMO excited state. Subsequently, the injected
electrons from the LUMO into the covalently coupled TiO2 conduction band are collected
by the electrode, generating a photocurrent signal. The oxidized state of Dye-PZ, after
losing electrons, is then reduced to its initial state by an electron-donating species in the
solution, such as ascorbic acid, thereby continuing the photocurrent generation. However,
upon reacting with HOCl, the molecular structure of the D-π-A system is disrupted,
preventing the effective generation of photocurrent. This phenomenon can be observed as
a significant decrease in photocurrent in Figure 4. The results confirm the effectiveness of
the photoelectrode as a PEC sensing platform for HOCl.
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to HOCl.

2.3. Analytical Performance

During PEC testing, factors such as bios voltage, the excitation light, and the electron
donor can influence the photocurrent response. Therefore, we explored and optimized the
conditions of this method to obtain the best experimental results. Firstly, we investigated
the impact of bias voltage (−0.6 V to −0.2 V) and excitation wavelength (440–600 nm) on
the PEC response. As shown in Figure S5a,b, the photoanode exhibited a stable response
and significant current changes at −0.4 V (vs. Hg/Hg2SO4) and 500 nm excitation wave-
length. Additionally, three electrolytes containing ascorbic acid (AA), sodium oxalate, and
triethanolamine (TEOA) as electron donors were chosen for comparative testing to explore
the influence of different electron donors on PEC testing. The results in Figure S5c indicate
that the photocurrent response showed the largest relative reduction when ascorbic acid
was used as the electron donor. Therefore, we selected a −0.4 V bias voltage, a 500 nm
excitation light, and an electrolyte-containing ascorbic acid for subsequent testing. Under
the optimal conditions, the photoanode was tested for its photocurrent response to different
concentrations of HOCl (Figure 5a). We observed that within the concentration range of
5.0–40.0 µM HOCl, the photocurrent exhibited a decrease as the concentration increased,
showing a robust linear correlation with the logarithm of HOCl concentration, as illustrated
in Figure 5b, represented by the fitting equation I = −0.348 × lg[HOCl] + 0.861 (R2 = 0.981).
The detection limit was established as 2.58 µM (3σ/k).
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Next, the selectivity and anti-interference performance of the PEC sensor were investi-
gated. Interfering ions included common ions such as Al3+, Fe2+, Cu2+, Zn2+, Mg2+, Mn2+,
NO3

−, Cl−, BrO3
−, SO4

2−, H2O2, C2H5OH, and alanine (Ala). None of the mentioned
interfering substances led to a substantial reduction in the PEC sensor’s photocurrent.
Although there are studies reporting that thiol-containing compounds (such as dimethyl
sulfide, DMS) can be oxidized to sulfoxides by hydrogen peroxide [64,65], in the case of
this Dye-PZ probe, the sulfur (S) in phenothiazine is linked to two phenyl rings, with its
electron cloud distributed in a larger conjugated system. Therefore, the reactivity of sulfur
in phenothiazine is expected to be lower than that of alkyl thioethers, making it resistant
to oxidation by hydrogen peroxide and selectively oxidizable by the stronger oxidizing
agent, hypochlorous acid, thus achieving the interference-free detection of hydrogen per-
oxide. Phenothiazine is also widely utilized as a high-specificity recognition moiety in
constructing probes for hypochlorous acid, and these probe molecules have also demon-
strated interference-free characteristics against hydrogen peroxide [66–70]. Furthermore,
competitive experiments revealed that the presence of other interferences did not impact
the detection of HOCl (Figure 6a). The selected competitive results indicated that the PEC
sensor exhibited outstanding anti-interference capability. Finally, the stability of the sensor
was examined by testing its continuous PEC pulse response. After eight cycles of testing,
the photocurrent remained highly stable, with a relative standard deviation (RSD) of less
than 1.1% (Figure 6b), demonstrating the sensor’s high photostability.
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3. Materials and Methods
3.1. Materials and Apparatus

The materials for synthesizing the photoactive molecule Dye-PZ, including 10-methyl-
10H-phenothiazine, phosphorus oxychloride, cyanopyridine, and piperidine, were pur-
chased from Shanghai Titan Technology Co., Ltd. (Shanghai, China). Titanium butoxide
and acetonitrile were procured from Tianjin Chemreagent Company (Tianjin, China). Sol-
vents used in synthesis, such as dichloromethane and ethyl acetate, were obtained from
Tianjin Damao Chemical Reagent Factory. Analytical-grade small molecules and salts
were sourced from China National Pharmaceutical Group Corporation. All reagents were
of analytical purity. Deionized water used for preparing testing solutions was purified
through a secondary deionization process.

UV–visible spectrophotometry signals were recorded using a Lambda-850 instru-
ment from PerkinElmer Inc. (Waltham, MA, USA). Fluorescence measurements were
conducted with an RF-5301PC fluorometer from Shimadzu Corporation (Kyoto, Japan).
Mass spectrometry analysis employed a Q-Tof Premier mass spectrometer from Waters Cor-
poration (Milford, MA, USA). Nuclear magnetic resonance (NMR) spectra were acquired
using a Bruker ARX-400 spectrometer (Bruker Limited, Fällanden, Switzerland). Infrared
spectra were recorded with the Bruker Vector 22 Fourier-transform infrared spectrometer
(Bruker Limited, Switzerland). X-ray photoelectron spectroscopy (XPS) measurements
were conducted using a Thermo Scientific K-Alpha instrument (Thermo Fisher Scientific
Inc., Waltham, MA, USA). Photoelectrochemical tests were carried out using a DY200B
electrochemical workstation from Digi-Ivy, Inc. (Austin, TX, USA).

3.2. Synthesis of Dye-PZ

The synthetic route for Dye-PZ is depicted in Figure S6. Under an ice bath (0 ◦C)
and a nitrogen atmosphere, dimethylformamide (0.17 mL, 2.4 mmol) was combined with
phosphorus oxychloride (0.2 mL, 2.4 mmol), followed by stirring for 15 min. Subsequently,
compound 1 (426 mg, 2 mmol in 2 mL anhydrous DMF) was introduced into the mixture.
The reaction mixture was heated to 60 ◦C and stirred for 4 h. After completing the reaction,
the mixture was transferred into 100 mL of ice water and neutralized with a 10% NaHCO3
solution. The resulting viscous material was subjected to three extractions with 100 mL of
dichloromethane. The organic layer was separated, washed sequentially with saturated
sodium chloride solution and water, dried over anhydrous Na2SO4, and the solvent was
evaporated under reduced pressure. The residue was further purified through silica gel
column chromatography, using dichloromethane as the eluent. This process resulted in
the isolation of purified compound 2 (0.322 g, 67% yield). Compound 2 (241 mg, 1.0
mmol), cyanopyridine (118 mg, 1.0 mmol), and 4 mL anhydrous ethanol were combined
and refluxed for 5 h. After the completion of the reaction, the solvent was removed
under reduced pressure, and further purification was carried out using silica gel column
chromatography. A mixture of dichloromethane and ethyl acetate (1:1, v/v) was used as
the eluent for purification. The resulting product, Dye-PZ, was obtained as a deep red
solid (0.143 g, 43% yield). Characterization of the synthesized photosensitizer Dye-PZ
was conducted using several techniques, including nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry. 1HNMR (400 MHz, DMSO) δ 8.67 (d, J = 6.1 Hz, 2H),
8.19 (s, 1H), 7.91 (dd, J = 8.6, 1.9 Hz, 1H), 7.81 (d, J = 1.9 Hz, 1H), 7.69 (d, J = 6.1 Hz, 2H),
7.26 (t, J = 7.7 Hz, 1H), 7.20 (d, J = 7.4 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 7.03 (t, J = 7.3 Hz, 2H),
3.39 (s, 3H) (Figure S7). 13CNMR (101 MHz, DMSO) δ 150.85, 148.41, 144.87, 144.29, 141.84,
130.84, 128.55, 128.09, 127.66, 127.40, 123.85, 122.68, 121.48, 119.95, 117.96, 115.71, 115.18,
104.96, 35.91 (Figure S8). MS [ESI]: m/z, theoretical molecular weight [M+]+ 341.0981; mass
spectrum data 341.0983 (Figure S9).

3.3. Preparation of FTO/TiO2/BrPTMS/Dye-PZ

The FTO/TiO2 nanorod-based electrode was prepared according to a reported
method [60]. The assembly of the photoanode is illustrated in Figure 1, and the spe-
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cific assembly steps were as follows: Firstly, 3-(bromopropyl)trimethoxysilane (150 µL)
and isopropanol (10 mL) were added to a beaker. After thorough mixing, the prepared
FTO/TiO2 was placed into the beaker and the reaction mixture was heated at 70 ◦C for
30 min. Subsequently, the electrode was removed and washed with isopropanol, and dried
with nitrogen gas. Then, the electrode was placed in a vacuum drying oven at 60 ◦C to
obtain the bromosilane-modified electrode FTO/TiO2/BrPTMS. Next, FTO/TiO2/BrPTMS
was immersed in a solution containing Dye-PZ (1 mM) in acetonitrile (20 mL) at 80 ◦C
for 5 h oil bath reflux. Finally, the electrode was thoroughly rinsed with dimethyl sul-
foxide to remove non-covalently bound dye, resulting in the desired working electrode
FTO/TiO2/BrPTMS/Dye-PZ.

3.4. Characterization and Photoelectrochemical Testing of FTO/TiO2/BrPTMS/Dye-PZ

The photoanode and its preparation process were characterized using a three-electrode
system with K3Fe(CN)6 (10 mM) and KCl (0.1 M) solution as the electrolyte. The three
electrodes consisted of differently modified FTO as the working electrode (WE), Ag/AgCl
(saturated KCl at 25 ◦C) as the reference electrode (RE), and platinum wire as the counter
electrode (CE). The photoanode was subjected to electrochemical impedance spectroscopy
(EIS) and cyclic voltammetry (CV) using a CHI 660E electrochemical analyzer. Infrared
spectroscopy (IR) was employed for functional group analysis, and X-ray photoelectron
spectroscopy (XPS) was used for elemental analysis of the photoanode surface.

The photoanode functioned as the working electrode, accompanied by a platinum
wire as the counter electrode and Hg/Hg2SO4 (saturated K2SO4 at 25 ◦C) as the reference
electrode. Incubation took place in a phosphate buffer solution (5 mM, pH 7.4) containing
a specific concentration of HOCl. The electrolyte utilized was a phosphate buffer solution
(0.1 M, pH 7.4) comprising 0.1 M sodium sulfate and 0.1 M ascorbic acid (AA). The photo-
electrochemical (PEC) characteristics were monitored using an electrochemical workstation
and a fluorescence spectrophotometer (model: RF-5301PC, Shimadzu, Japan) equipped
with a xenon lamp for excitation.

4. Conclusions

A PEC sensor for HOCl detection was successfully developed using a phenothiazine-
based photoactive probe. The designed probe, Dye-PZ, featuring a D-π-A structure with
phenothiazine as the electron-donating group and a cyano-pyridine unit as the electron-
withdrawing group, demonstrated the specific reactivity with HOCl. Covalent attachment
of Dye-PZ onto a titanium dioxide nanorod substrate using BrPTMS yielded the photoan-
ode FTO/TiO2/BrPTMS/Dye-PZ. The photoanode exhibited a pronounced PEC response
under visible light, and, upon reaction with HOCl, the oxidation of the sulfur atom in the
phenothiazine resulted in a weakened internal charge transfer effect and a subsequent
decrease in photocurrent. Exploiting this mechanism, the PEC sensor demonstrated effec-
tive detection of HOCl. The sensor displayed high stability and excellent reproducibility,
allowing for the selective and sensitive detection of HOCl.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29030614/s1, Figure S1: Absorption spectra of Dye-PZ
and Dye-PZ with BrPTMS in acetonitrile; Figure S2: SEM images of TiO2 nanorod grown on FTO sub-
strate before (a,b), SEM images of photoanode FTO/TiO2/BrPTMS/Dye-PZ (c,d);
Figure S3: Nyquist plots (a) and cyclic voltammetry (b) of photoanodes with different modifications
in a phosphate buffer solution (10 mM, pH 7.4) containing 0.1 M Na2SO4 and 1 mM K3[Fe(CN)6]. The
reference electrode used was Ag/AgCl; Figure S4: HPLC-MS analysis of the reaction process between
Dye-PZ and HOCl. (a) Results for Dye-PZ alone. (b) Results for the reaction between Dye-PZ and
HOCl; Figure S5: (a) Photocurrent response of the photoanode at voltages ranging from −0.6 V to
−0.2 V and its response after reacting with HOCl; (b) photocurrent response of the photoanode
before and after reacting with HOCl under different excitation lights from 440 nm to 600 nm; (c)
photocurrent response of the photoanode before and after reacting with HOCl in solutions with
three different electron donors; Figure S6: Synthetic route to Dye-PZ; Figure S7: 1H NMR spectrum

https://www.mdpi.com/article/10.3390/molecules29030614/s1
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of Dye-PZ in DMSO-d6; Figure S8: 13C NMR spectrum of Dye-PZ in DMSO-d6; Figure S9: Mass
spectrum of Dye-PZ.
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