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Abstract: The new 3-monosubstituted acetylacetone ligands, 3-(phenyl(1H-pyrazol-1-yl)methyl)pentane-
2,4-dione (HLacPz) and 3-((3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methyl)pentane-2,4-dione (HLacPzMe),
were synthesized and used as supporting ligands for new copper(II) and copper(I) phosphane complexes
of the general formulae [Cu(HLacX)2(LacX)2] and [Cu(PPh3)2(HLacX)]PF6 (X = Pz (pyrazole) or PzMe
(3,5-dimethylpyrazole)), respectively. In the syntheses of the Cu(I) complexes, the triphenylphosphine
coligand (PPh3) was used to stabilize copper in the +1 oxidation state, avoiding oxidation to Cu(II).
All compounds were characterized by CHN analysis, 1H-NMR, 13C-NMR, FT-IR spectroscopy, and
electrospray ionization mass spectrometry (ESI-MS). The ligands HLacPz (1) and HLacPzMe (2) and the
copper complex [Cu(PPh3)2(HLacPz)]PF6 (3) were also characterized by X-ray crystallography. The
reactivity of these new compounds was investigated and the new compounds 4-phenyl-4-(1H-pyrazol-
1-yl)butan-2-one (7) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-4-phenylbutan-2-one (8) were obtained in
basic conditions via the retro-Claisen reaction of related 3-monosubstituted acetylacetone, providing
efficient access to synthetically useful ketone compounds. Compound 8 was also characterized by
X-ray crystallography.
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1. Introduction

β-diketone compounds represent a very important class of reagents in synthetic
chemistry [1,2] with a well-established role in the synthesis of heterocyclic compounds [3–5].
The biological effects of these compounds are of great interest [6–9], and they have also been
investigated as potential antiviral agents [10,11]. Although β-diketones represent one of the
oldest classes of chelating ligands [12–15], their coordination chemistry continues to attract
much interest, due to the ability of related metal complexes to support several unique and
important catalytic reactions [16–22]. In this regard, it is often noted that even modestly
sterically hindered β-diketones offer improvements over the parent acetylacetone [23]. The
presence of steric bulk on β-diketones is of high interest, for their peculiar coordination
behavior is useful to improve their catalytic activity and selectivity [24–26].

β-diketones are known to form complexes with almost every metal [16] and despite
the enormous amount of work devoted to the synthesis and characterization of copper(II)
β-diketonate complexes [27], there are relatively few reports devoted to the corresponding
Cu(I) complexes showing undergoing disproportionation to copper metal and copper(II)
compounds in the absence of stabilizing ligands [28–30]. In particular, very little attention
has been paid to the study of triorganophosphane adducts of copper(I) β-diketonates
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of the general formula (β-diketonate)Cu(PR3)n, although a rich structural diversity can
also be expected there [31–43]. On the other hand, very few studies on the biological
activity of group 11 metal complexes of β-diketones have been reported in the literature
to date [44] and copper(I)-based anticancer complexes supported by β-diketonate ligands
remain an unexplored research field. Recently, as part of our continuous investigation on
the chemical and biological properties of coinage metal complexes [45–51], we reported
the first study on the syntheses, characterization and biological evaluation of new Cu(I)
complexes containing triorganophosphanes and the anion of several sterically hindered the
β-diketone ligands [52].

On the other hand, α-monosubstituted β-diketones exhibit a range of reactivities
depending on the nature of the substituents attached to the α-carbon atom [53]. The
presence of the α-substituent significantly influences the behavior of these compounds,
affecting their stability, reactivity, and reaction pathways [54]. There are three possible
tautomeric isomers for symmetric and α-monosubstituted β-diketones (Scheme 1). Many
factors influence the keto-enol tautomeric equilibrium [53,55], and among them it was
found that electronegative β-substituents (R groups in Scheme 1) sharply increase the
degree of enolization, whereas α-substituents (Z group in Scheme 1) cause a marked
decrease in the percentage of enol [56]. However, the cause is mainly steric-repulsion
between the α-moiety and the other β-substituents, which makes the chelate ring of the
cis-enolic form unstable [55]. On the other hand, for 3-substituted-2,4-pentanediones, the
keto form is predominant in the presence of bulky substituents in the 3-position [56].
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Ditopic ligands based on 3-monosubstituted acetylacetone with two distinctly differ-
ent coordination sites allow for assembling cations to coordination polymers, and thus add
an additional degree of freedom to these complex solids [57–61]. Substituted acetylacet-
onates have often been used in this context and 3-ciano [62], 3-diazo [63], 3-pyridyl [64],
3-halogen [65], 3-caged phosphine [66], 3-(4-methylthiophenyl) [67] and 3-pyrazolyl [68]
substituents, capable of supporting secondary interactions through exocyclic atoms with
metal cations, have been described [57,64,69–84], and the subject has recently been re-
viewed [85].

Therefore, as an extension of our studies on pyrazolyl derivatives and as part of our
continuous investigation on the chemical and biological properties of copper-containing
coordination compounds [46–49,52,86], we report here for the first-time a study on the
syntheses, characterization and reactivity of new 3-monosubstituted acetylacetone ligands,
HLacPz and HLacPzMe (Scheme 2), and related Cu(II) and Cu(I) complexes containing phos-
phane co-ligands, that could be evaluated for their biological effects and for their catalytic
activity and selectivity. In particular, these species may be considered as versatile coordi-
nating ligands having two different donor sites of different Pearson hardness [87] (a soft
neutral nitrogen atom of the pyrazolyl moiety and a hard oxygen donor atoms of the acety-
lacetone moiety). In addition, in contrast to the aforementioned ditopic 3-monosubstituted
acetylacetone ligands, HLacPz and HLacPzMe may act also as bidentate ligands at either the
N or the O donor sites. In an endeavor to extend the range of metal chelates in which the
β-diketones attain a conformation other than the usually encountered [85], herein we report
the crystal structure of compound [Cu(HLacPz)(PPh3)2]PF6 that reveals the formation of a
chelate complex, wherein the HLacPz ligand coordinates in bidentate κ2N,O fashion to the
copper(I) ion.
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2. Results and Discussion
2.1. Synthesis and Characterization

The ligands HLacPz (1) and HLacPzMe (2) were prepared, using a modified literature
method [88], from the reaction of 3-benzylidenepentane-2,4-dione and pyrazole or 3,5-
dimethylpyrazole, respectively, in ethanol solution with triethylamine as basic catalyst,
and isolated as white solids in very good yield and high purity (Scheme 2). The precursor
3-benzylidenepentane-2,4-dione can be synthetized by Knövenagel condensation of an
equimolar amount of acetylacetone and benzaldehyde in the presence of piperidine as a
catalyst [89,90].

Ligands 1 and 2 are soluble in methanol, diethyl ether, chloroform, acetonitrile, DMSO,
THF, dichloromethane, ethyl acetate and acetone. They were fully characterized by multin-
uclear NMR spectroscopy, FT-IR, ESI-MS and elemental analysis. A batch of good quality
crystals of 1 and 2, suitable for X-ray analysis, was obtained by slow evaporation of a
n-hexane and diethyl ether/n-hexane solution, respectively.

The IR spectra of 1 and 2 have been carried out on solid samples and show all the
expected absorption bands. Weak bands in the region 2916–3108 cm−1 are assigned to
C-H stretching vibrations. The ligands also show two sharp strong bands in the region
1699–1732 cm−1 attributable to the stretching vibrations of the two carbonyl groups. The
bands at ca. 1500 cm−1 correspond to C=C/C=N rings stretching. The 1H-NMR spectra of
HLacPz and HLacPzMe in CDCl3 suggest the presence of the keto form in solution. In the
1H-NMR spectrum of 1, the 3-CH and 4-CH protons of pyrazole ring are present at 7.50 and
6.22 ppm, respectively. The 5-CH of pyrazole and the CH aromatic protons of the phenyl
ring are present in the range 7.32–7.41 ppm. The α-CH and γ-CH protons are present at 5.32
(J = 11.28 Hz) and 6.01 ppm (J = 11.28 Hz). The singlets at 2.03 and 2.22 ppm are attributable
to the methyl groups bonded to the β-dicarbonyl moieties. In the 13C-NMR spectrum in
CDCl3, the C=O signals are detectable at about 200.0 ppm, while the α-CH and γ-CH
carbons are visible at 72.6 and 64.2 ppm; the 4-CH of the pyrazole ring and the CH3 carbons
are present at 106.1 and 29.9–30.9 ppm, respectively. In the 1H-NMR spectrum of 2 recorded
in CDCl3 solution, the CH aromatic protons are present in the range 7.28–7.37 ppm and the
α-CH and γ-CH proton are present at 5.82 ppm (J = 11.13 Hz) and 5.41 ppm (J = 11.11 Hz),
respectively The singlets in the range 2.00–2.22 ppm are attributable to the methyl groups
bonded to the β-dicarbonyl moieties and to the 3- and 5-CH3 of pyrazole, while the 4-CH
proton is present as a singlet at 5.75 ppm. In the 13C-NMR spectrum, the C=O signals
are detectable at 199.9 and 200.9 ppm, while the α- and γ-CH are at 72.4, and 60.6 ppm.
The 4-CH carbon of the pyrazole ring is detectable at 105.6 ppm, while the 3- and 5-CH3
of the pyrazole and the CH3 of the β-dicarbonyl moieties are present at 10.9–13.6 and
30.3–31.6, respectively. The ESI-MS study has been performed by dissolving 1 and 2 in
CH3CN and recording the spectra in the positive- and negative-ion modes. The molecular
structure of 1 has been confirmed by the presence of the molecular peaks at m/z 257 and
279, respectively, attributable to the [HLacPz + H]+ and [HLacPz + Na]+ species. Analogously,
in the positive-ion spectrum of 2 peaks at m/z 285 and 307, respectively, are attributable to
the [HLacPzMe + H]+ and [HLacPzMe + Na]+ species.
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The Cu(I) complex [Cu(HLacPz)(PPh3)2]PF6 (3) was prepared from the reaction of PPh3,
Cu(CH3CN)4PF6 and the ligand 1, in CH3CN solution. Complex 3 is soluble in CHCl3,
CH3CN, DMSO and acetone. Compound 3 was fully characterized by multinuclear NMR
spectroscopy, FT-IR, ESI-MS and elemental analysis and a batch of good quality crystals,
suitable for X-ray analysis, was obtained by slow evaporation of an acetone/ethyl acetate
solution. The IR spectrum carried out on a solid sample of 3 shows all the expected bands
for the β-diketone ligand and the triphenylphosphine co-ligand. The absorptions due to
the C=O stretching are at 1687–1727 cm−1; they do not significantly vary with respect to
the same absorptions of the carbonyl group detectable in the spectrum of the free ligand
(1699–1732 cm−1). In a lower-frequency region, complex 3 shows a broad strong band at
831 cm−1 due to the stretching vibrations of the PF6

− anion. The δ(PF6) bending vibration
is observed as a narrow strong band at 560 cm−1. In the 1H-NMR spectra of 3, recorded in
acetone-d6 solution at room temperature, the 3-CH and 4-CH protons of the pyrazole ring
are present at 7.72 and 6.21 ppm, while the 5-CH proton of the pyrazole ring and the CH
aromatic protons of the phenyl rings are present in the range 7.33–7.57 ppm. The α-CH and
γ-CH bridging protons are present at 5.53 ppm (J = 11.40 Hz) and 6.10 ppm (J = 11.42 Hz).
The singlets at 2.19 and 2.84 ppm are attributable to the methyl groups of the acetylacetone
fragment; the signal at 2.84 is shifted with respect to the signal of the free ligand in the same
solvent. In the 13C-NMR spectrum in acetone-d6, the C=O signals, are detectable at about
200 ppm. The 31P{H}-NMR spectrum of the Cu(I) complex 3, recorded in CDCl3 solution at
room temperature, gave a broad singlet at −0.86 ppm downfield shifted with respect to
the value of the free phosphane (δ = −5.36 ppm). In the spectrum, the characteristic septet
centered at −144.21 ppm is due to the PF6

− counterion.
Compound [Cu(HLacPzMe)(PPh3)2]PF6

.2CH3CN (5) was prepared similarly to com-
pound 4 from the reaction of PPh3, Cu(CH3CN)4PF6 and the ligand 2, in CH3CN solution
and it was fully characterized. Complex 5 is soluble in CHCl3, CH2Cl2, CH3CN, ethyl
acetate, THF, DMSO and acetone. The IR spectrum carried out on a solid sample of 5 shows
all the expected bands for the β-diketone ligand and the triphenylphosphine co-ligand.
The absorptions due to the C=O stretching are at 1700–1730 cm−1; they do not significantly
vary with respect to the same absorptions of the carbonyl group detectable in the spectrum
of the free ligand (1699–1729 cm−1). Very strong bands at 832 and 557 cm−1 are due to the
stretching vibrations and the δ(PF6) bending vibrations, respectively, of the PF6

− anion.
In the 1H-NMR spectra of 5, recorded in CDCl3 solution at room temperature, the 3- and
5-CH3 protons of the pyrazole ring are present at 2.21 ppm, while the 4-CH proton of the
pyrazole ring and the CH aromatic protons of the phenyl rings are present at 5.86 and
at in the range 7.19–7.41 ppm, respectively. The α-CH and γ-CH bridging protons are
present at 5.44 and 5.77 ppm. The singlets at 2.19 and 2.84 ppm are attributable to the
methyl groups of the acetylacetone fragment; the signal at 2.84 is shifted with respect to
the signal of the free ligand in the same solvent. In the 13C-NMR spectrum in CDCl3, the
C=O signals, are detectable at about 200 ppm. The 31P{H}-NMR spectrum of 5, recorded
in CDCl3 solution at room temperature, gave a singlet at −0.12 ppm downfield shifted
with respect to the value of the free phosphane. In the spectrum, the characteristic septet
centered at −144.21 ppm is due to the PF6

− counterion. The ESI-MS study was performed
by dissolving 3 and 5 in CH3CN and recording the spectra in the positive- and negative-ion
modes. The molecular structure of 3 was confirmed by the presence of the peak at m/z 865,
attributable to the molecular peak [Cu(LacPz)(PPh3)2 + Na]+; in addition, peaks at m/z 581
and 603 are attributable to the [Cu(HLacPz)(PPh3)]+ and [Cu(LacPz)(PPh3) + Na]+ species,
being positive fragments of the dissociation of the PPh3 coligand from the complex. In both
the compounds, the peaks at m/z 587 are due to the fragments of the dissociation of the
ligand [Cu(PPh3)2]+. The ESI-MS spectra of 3 and 5 in CH3CN recorded in the negative-ion
mode show peaks at m/z 145 attributable to the PF6

− aggregate, confirming the presence
of the counterion (PF6

−).
The copper(II) complexes [Cu(HLacPz)2(LacPz)2] (4) and [Cu(HLacPzMe)2(LacPzMe)2] (6)

were prepared from the reaction of Cu(CH3CO2)2·H2O with HLacPz (1) and HLacPzMe (2),
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respectively, in methanol solution at room temperature, starting from a 1:4 stoichiometric
ratio between metal and ligands. The syntheses were also performed starting from a
1:2 stoichiometric ratio obtaining the same products. The Cu(II) compounds 4 and 6 are
soluble in Et2O, CH2Cl2, CHCl3, EtOAc, MeCN, DMSO, acetone and are air stable even
as solutions; compound 6 is soluble in methanol too. The authenticity of compounds
4 and 6 was confirmed by elemental analysis, IR spectroscopy and electrospray mass
spectra. The infrared spectra showed all the bands required by the presence of the chelating
donors. In the spectra of compounds 4 and 6, weak absorptions due to the CH stretching
were observed at 2916–3107 cm−1. The carbonylic asymmetric stretching of 4 and 6 is
detectable as strong absorptions at 1700–1734 cm−1, together with medium signals at 1667
and 1659 cm−1, respectively, in the typical range of β-diketonate systems [91]. The ESI-MS
study was conducted by dissolving the Cu(II) complex compounds in acetonitrile, and
recording the spectra in the positive- and negative-ion modes. In the positive-ion spectrum
of 4, it is possible to detect peaks at m/z 318 and 360 attributable to the [Cu(LacPz)]+ and
[Cu(LacPz) + CH3CN]+ species, confirming the complex formation.

Both α-unsubstituted and α-monosubstituted β-diketones are well studied in retro-
Claisen reactions [54,92–97]. The retro-Claisen reactions of β-diketones are extremely
attractive, not only because these reactions are distributed widely in biological chem-
istry [7,98] but also because this C−C bond cleavage protocol provided efficient access
to synthetically useful ester and ketone compounds, simultaneously [99–102]. In ethanol
solution, HLacPz and HLacPzMe react with strong bases such as NaOH or t-BuOK by the
retro-Claisen C−C bond cleavage reaction, giving rise to the formation of the species
4-phenyl-4-(1H-pyrazol-1-yl)butan-2-one, PhPzMEK (7) and 4-(3,5-dimethyl-1H-pyrazol-1-
yl)-4-phenylbutan-2-one, PhPzMe2MEK (8) (Scheme 3). The reactions presumably proceed
by the nucleophilic addition of bases to keto carbonyl group furnishing the key tetrahedral
intermediate as a hemiketal anion, which might introduce C−C bond cleavage, leading to
the retro-Claisen reaction, where an enolate anion intermediate is potentially involved in
the reaction process [54].
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Scheme 3. The Retro-Claisen reaction.

The reaction was found to be highly dependent on the basicity of the base. Weak
bases (such as Et3N) gave poor yield or even no reaction, while strong bases afforded a
complete transformation. It is interesting to note that compound 7 was obtained in ethanol
solution by the reaction of HLacPz with strong bases only in small amounts, in the presence
of unreacted ligand. Compounds 7 and 8 were fully characterized by multinuclear NMR
spectroscopy, FT-IR, ESI-MS and elemental analysis and in addition a batch of good quality
crystals of 8, suitable for X-ray analysis, was obtained by slow evaporation of a diethyl
ether/n-hexane solution.

The IR spectrum of 7 and 8 have been carried out on solid samples and show all the
expected absorption bands. Weak bands in the region 2833–3106 cm−1 are assigned to C-H
stretching vibrations, while the presence of only one strong band at about 1715 cm−1, due to
the stretching vibration of the carbonyl group, confirms the deacetylation of 1 and 2 by the
retro-Claisen reaction. In the 1H-NMR spectrum of 7 and 8 recorded in CDCl3 solution, the
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CH aromatic protons are present in the range 7.17–7.34, the singlets at 2.19 and 2.26 ppm
are attributable to the methyl bonded to the carbonyl group, respectively in 7 and 8. The CH
bridging proton is present as a double doublet at 5.73–5.89 ppm. The diasterotopic protons
of the methylene are detectable as double doublets at 3.05–3.11 ppm and 3.93–3.99 ppm.
In the 13C-NMR spectra of 7 and 8, recorded in CDCl3 the diagnostic CH2 signals, are
detectable at 48.7 and 49.0 ppm, respectively. In the ESI-MS spectra of 7 and 8, recorded in
acetonitrile in the positive-ion mode, it is possible to detect the molecular peaks at m/z 215
and 243 attributable to the protonated species [PhPzMEK + H]+ and [PhPzMe2MEK + H]+,
respectively.

2.2. X-ray Crystallography

A summary of the data collection parameters and crystal data for the HLacPz (1)
and HLacPzMe (2) ligands, the PhPzMe2MEK molecule (8) and the [Cu(PPh3)2(HLacPz)]PF6
complex (3) are reported in Table 1. Tables 2–5 list a selection of bond lengths and angles of
these compounds, while ORTEP [103] representations of the pertinent molecular structures
are shown in Figures 1–4. The selected specimens of 1, 2 and 8 (Table 1) were all found to
belong to the monoclinic crystal system; compound 8 was crystallized as a non-merohedral,
two-component twin, with the two components having the same cell parameters. The
twin data finalization showed that the whole reflection dataset was unequally divided
into a major and a minor component (0.7761/0.2239 ratio). The Rint values for the two
sets of reflections were significantly different, with the Rint value for the data of the minor
component significantly worse. Accordingly, the molecular structure of 8 has been solved
analyzing only data pertaining to the major component. Compounds 1, 2 and 8 share
a common 4-phenyl-4-(1H-pyrazol-1-yl)butan-2-one moiety and their structures can be
discussed together. An examination of the CCDC repository [104,105] shows that the
above fragment has not yet been documented, so, to the best of our knowledge, these
molecules and complex 3 below are the first examples of structures containing this rather
unusual synthon, while only few compounds show only some degree of similarity with
those described here. Among these, ethyl N-(2-acetyl-3-oxo-1-phenylbutyl)carbamate [106]
incorporates the 3-phenylmethyl-2,4-pentanedione moiety bound to a sp2 nitrogen that
is also present in the 1 and 2 ligands, while few [107–109] bis-pyrazolyl derivatives show
the pyrazole ring bound to a short alkyl-carbonyl chain. 1, 2 and 8 are optically active
molecules, because the C1 atom of all compounds shows four different substituent groups.

The X-ray experiments for 1 (Figure 1) and 8 (Figure 3) reveal that the asymmetric
unit of these compounds is made of a single molecule, in which C1 has an S configuration.
The asymmetric unit of compound 2 (Figure 2) shows instead two independent molecules,
defining an enantiomeric pair, with C1 and C1A atoms showing, respectively, S and R
configurations. The atoms common to 1, 2 and 8 are reasonably superimposable (RMS value
within 0.315–0.489 Å, making allowance for the inversion of the R enantiomer of 2) by using
the overlay routine in Mercury [110]. In 1 and 2, the two -C(O)-CH3 groups branching from
C5 have a nearly eclipsed reciprocal arrangement. In all compounds, the carbonyl oxygen
atoms are always syn-placed with respect to the C1 methine hydrogen and the molecular
pucker brings the mean planes encompassing the phenyl and the pyrazolyl moieties to
form similar angles with each other; 73.8◦ in 1, 71.8 and 67.5◦ in the two enantiomers
of 2 and 61.6◦ in 8. In the latter, the propan-2-one chain bound to C1 is also planar and
makes angles of 87.7 and 54.1◦, respectively, with the mean planes of the pyrazolyl and
phenyl moieties. A comparison (Tables 2–5) of the selected structural parameters in the
common fragments of the three molecules indicate that the distribution of the bond lengths
in the pyrazolyl rings and in the 2,4-pentanedione/propan-2-one chains is comparable, and
it is also comparable with those reported for the few molecules [106–109] sharing some
similarities with the compounds described here. In particular, the C=O bonds (mean length
of 1.199 Å) have clear double bond character and the bonds made by the C1 atom (mean
length of 1.526 Å) have single-bond character. Likewise, the distribution of the average bond
lengths about the pyrazolyl rings (1.356, 1.332, 1.384, 1.368 and 1.465 Å for, respectively,
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N1-N2, N1-C2, C2-C3, C3-C4, N2-C4 distances) matches those found in reported [107–109]
compounds (1.366, 1.334, 1.394, 1.367, 1.357 and 1.462 Å), thus suggesting that there is
not conjugation outside the ring and that N1-C2 and C3-C4 distances have the greater
double-bond character. As for the above compounds, the exploration of the CCDC database
reveals only one bis-triphenylphosphine copper(I) complex having some similarity with
the one presented here [111].

Table 1. Summary of data collection parameters and crystal data for compounds 1, 2, 3 and 8.

Compound 1 2 3 8

Radiation (all experiments) Cu Kα (λ = 1.54184)
Empirical formula C15H16N2O2 C17H20N2O2 C51H46N2O2F6P3Cu C15H18N2O
Formula weight 256.30 284.35 989.35 242.31
Temperature/K 298.1(4) 299.4(8) 298(1) 298.8(8)
Crystal system monoclinic monoclinic orthorhombic monoclinic
Space group C2/c P21/c Pna21 P21/c
a/Å 26.9711(5) 8.3223(2) 20.9587(2) 9.1203(7)
b/Å 9.7500(2) 12.4916(3) 9.96560(10) 12.8652(8)
c/Å 10.5745(2) 30.5285(5) 22.7132(2) 12.5423(9)
α/◦ 90.00 90.0 90.00 90.0
β/◦ 95.406(2) 91.296(2) 90.00 108.296(8)
γ/◦ 90.00 90.0 90.00 90.0
Volume/Å3 2768.39(9) 3172.90(12) 4744.02(8) 1397.25(18)
Z 8 8 4 4
ρcalc Mg/m3 1.230 1.191 1.385 1.152
µ/mm−1 0.668 0.629 2.164 0.575
F(000) 1088 1216 2040 520
Crystal size/mm3 0.80 × 0.40 × 0.10 0.44 × 0.40 × 0.24 0.40 × 0.30 × 0.22 0.44 × 0.30 × 0.06
Reflections collected 20,260 53,329 41,569 5370
Independent reflections/Rint 2658/0.0374 6320/0.0276 8023/0.0393 2484/0.0338
Restraints/parameters 0/237 0/539 1/643 0/236
Goodness of fit on F2 1.049 1.049 1.038 0.984
Final R (R1; wR2) indexes [I > 2σ (I)] 0.0473, 0.1113 0.0468, 0.1307 0.0336, 0.0838 0.0446, 0.1136
Largest diff. peak/hole/e Å−3 0.187/−0.175 0.222/−0.233 0.317/−0.182 0.149/−0.120

Goodness of fit = [Σ (w (Fo
2 – Fc

2)2]/(Nobsvns – Nparams)]1/2, based on all data; R1 = ||Fo| – |Fc||/|Fo|;
wR2 = [w (Fo

2 – Fc
2)2/w (Fo

2)2]1/2.

Table 2. Selected bond lengths (angstroms) and angles (◦) for molecule 1.

1
Bond Angle

N1-N2 1.3412(18) N2-N1-C2 103.65(14)
N1-C2 1.333(2) N1-N2-C4 112.21(14)
N2-C1 1.4694(19) N1-N2-C1 120.53(12)
N2-C4 1.338(2) N2-C1-C5 109.98(12)
C1-C5 1.531(2) N2-C1-C10 110.68(12)
C1-C10 1.520(2) C1-C5-C6 110.1(9)
C2-C3 1.371(3) C1-C5-C8 110.32(13)
C3-C4 1.359(3) C2-C3-C4 104.79(16)
C5-C6 1.536(2) C5-C6-C7 116.89(15)
C5-C8 1.532(2) C6-C5-C8 107.35(12)
C6-O1 1.1953(19) C5-C6-O1 120.18(15)
C8-O2 1.195(2) C5-C8-O2 120.39(14)
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Table 3. Selected bond lengths (angstroms) and angles (◦) for molecule 2.

2 *
Bond Angle

N1-N2 1.3606(15) 1.3645(15) N2-N1-C2 104.76(12) 104.73(11)
N1-C2 1.3293(17) 1.3298(17) N1-N2-C4 112.45(11) 112.25(11)
N2-C1 1.4637(15) 1.4621(15) N1-N2-C1 119.53(10) 119.45(10)
N2-C4 1.3513(17) 1.3496(17) N2-C1-C5 109.65(10) 109.59(10)
C1-C5 1.5363(18) 1.5362(18) N2-C1-C12 111.46(10) 112.36(10)
C1-C12 1.5213(18) 1.5211(18) C1-C5-C6 111.23(10) 111.70(10)
C2-C3 1.388(2) 1.393(2) C1-C5-C8 110.41(10) 110.27(11)
C3-C4 1.373(2) 1.366(2) C2-C3-C4 106.70(13) 106.73(13)
C5-C6 1.5411(17) 1.5388(17) C5-C6-C7 118.13(11) 117.63(12)
C5-C8 1.5380(17) 1.5342(17) C6-C5-C8 107.02(10) 106.88(10)
C6-O1 1.2016(16) 1.2026(17) C5-C6-O1 119.26(12) 119.57(13)
C8-O2 1.1964(18) 1.1948(19) C5-C8-O2 120.77(13) 120.66(14)

* Compound 2 with two independent molecules in an asymmetric unit.

Table 4. Selected bond lengths (angstroms) and angles (◦) for molecule 8.

8
Bond Angle

N1-N2 1.357(2) N2-N1-C2 104.30(16)
N1-C2 1.334(3) N1-N2-C4 112.47(15)
N2-C1 1.465(2) N1-N2-C1 119.84(15)
N2-C4 1.352(2) N2-C1-C5 109.70(15)
C1-C5 1.522(3) N2-C1-C10 112.90(15)
C1-C10 1.518(2) C1-C5-C6 113.97(17)
C2-C3 1.384(3) C2-C3-C4 106.17(19)
C3-C4 1.372(3) C5-C6-C7 116.7(2)
C5-C6 1.504(3) C5-C6-O1 121.29(19)
C6-O1 1.211(2)

Table 5. Selected bond lengths (angstroms) and angles (◦) for complex 3.

3
Bond Angle

Cu1-P1 2.2385(9) N1-Cu1-P1 110.40(9)
Cu1-P2 2.2578(9) N1-Cu1-P2 109.52(10)
Cu1-N1 2.039(3) O1-Cu1-P1 119.80(10)
Cu1-O1 2.307(3) O1-Cu1-P2 93.11(9)
N1-N2 1.347(5) P1-Cu1-P2 128.25(4))
N1-C2 1.323(5) N1-Cu1-O1 87.81(13)
N2-C4 1.348(6) Cu1-P1-C16 114.70(12)
N2-C1 1.470(5) Cu1-P2-C34 117.08(12)
C1-C5 1.545(5) Cu1-N1-N2 129.9(3)
C5-C6 1.525(6) Cu1-O1-C6 136.9(3)
C6-O1 1.203(6) N1-N2-C1 121.4(3)
C5-C8 1.551(7) N2-C1-C5 110.9(3)
C8-O2 1.195(7) C1-C5-C6 112.7(4)
C2-C3 1.369(6) C5-C6-O1 122.1(4)
C3-C4 1.351(7) N1-N2-C4 109.4(4)
P1-C16 1.833(4) N2-N1-C2 105.8(3)
P1-C22 1.825(4) C16-P1-C28 106.79(17)
P1-C28 1.828(4) C28-P1-C22 102.83(18)
P2-C34 1.824(3) C34-P2-C46 103.63(17)
P2-C40 1.829(4) C46-P2-C40 106.5(2)
P2-C46 1.820(4) F-P3-F (av.) 103.9
P3-F (av.) 1.540
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The complex 3 crystallizes in the orthorhombic crystal system; in its structure, the
Cu(I) ion is surrounded by two unidentate PPh3 molecules and one bidentate HLacPz

neutral ligand, which attacks the copper ion by means of its N1, O1 atoms. The resulting
complex [Cu(PPh3)2(HLacPz)]+ is cationic and crystallizes with the help of a (disordered)
hexafluorophosphate anion. The central metal has a distorted tetrahedral environment (τ4
and τ4′ indexes values of 0.794 and 0.768, respectively [112,113]), dominated at one side
by the large P1-Cu1-P2 angle of 128.25(4), to make allowance for the bulky triphenylphos-
phine ligands and at the other side by the narrow N1-Cu1-O1 chelation angle of 87.81(13).
Notably, upon coordination, the HLacPz ligand forms a seven-membered metallacycle, in
which, in addition to C1, also C5 becomes optically active, with both centers having an R
configuration. In its bound form, only the O6 atoms remains syn-oriented with respect to
the methine C1 hydrogen, while O5 becomes anti-oriented. Accordingly, the two -C(O)-CH3
groups branching from C5 are also reciprocally anti-oriented with respect to the C5 atom.
The atoms participating in the seven-membered ring, in addition to Cu1, O1 and N1, are
N2, C1, C5 and C6. The ring has a distorted boat (Cs) arrangement, due to the unequal
Cu1-O1, Cu1-N1 distances as well as to the constraints imposed by the pyrazolyl ring. The
Cu1, N1, O1 and C6 atoms are coplanar within 0.06 Å; another plane encompasses N1, N2,
C5 and C6, coplanar within 0.02 Å, with C1 out of this last plane by 0.78 Å. The mean planes



Molecules 2024, 29, 621 10 of 21

passing through the phenyl and the pyrazolyl rings in 3 make with each other a dihedral
angle of 70.2◦ (compared with 73.8◦ in the free ligand), so the HLacPz ligand satisfies the
copper coordination needs by properly adjusting only its 2,4-pentanedionato moiety. The
two triphenylphosphine ligands have the expected propeller shape, with the planes of the
three phenyl rings making with each other angles of 64.2, 73.4, 88.1◦ for the rings branching
from P1 and 78.1, 82.8, 87.3◦ for the rings branching from P2, respectively. Notably, the
atoms of the C22/C27 ring, P1 and Cu1 are also coplanar within 0.03 Å. The C6-O1 and
N1-N2 bond distances (Table 5) slightly elongate upon coordination (+0.008 and +0.006 Å,
respectively), while the N1-C2 and C3-C4 distances shrink a bit, slightly increasing their
double-bond character (−0.010 and −0.008 Å, respectively).
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nonbonding contacts, a list of the tightest interactions for the compounds described in this 
work is given in Table 6 (involved distances equal sum of the pertinent van der Waals radii 
minus 0.05 Å and almost all of them fall below 2.7 Å). 

Table 6. Most efficient nonbonding interactions in molecules 1, 2, 8 (top), and complex 3 (bottom). 

Molecule Acceptor Atom (A) 
Atom Donor (D) Atom Parent (P) Atom * Distance A····D (Å) Angle A–D–P (°) Symmetry Op. 

1 O1 H15 C15 2.50 141.6 x, 1 − y, −1/2 + z 
 N1 H11 C11 2.70 171.6 x, 1 − y, 1/2 + z 
2 O1A H7B C7 2.53 147.0 x, y, z 
 O1A H14A C14A 2.60 143.6 1 + x, y, z 
 O1 H7AC C7A 2.52 156.0 1 + x, y, z 
 O1 H14 C14 2.56 152.3 −1 + x, y, z 
 O2 H16 C16 2.62 175.0 2 − x, 2 − y,1 − z 
8 O1 H15 C15 2.55 153.4 1 − x, 1 − y, −z 

Figure 4. ORTEP representation of the [Cu(PPh3)2(HLacPz)]+ cation of the complex (3), with the
atomic numbering scheme. Ellipsoids drawn at the 50% probability level; H atoms and the disordered
PF6

− anion not shown.

By examining the metrical data of the above noted (1H-pyrazole-3,5-dicarboxylato)-
bis(triphenylphosphine)-copper(I) [111], we note that Cu-P distances in 3, (2.2385(9)/2.2578(9)
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Å) compare quite well with those in the reported complex (2.226/2.265 Å) and are little
shorter than the average of 2.272 Å for 950 bis-triphenylphosphine copper(I) complexes in
the CCDC repository. On the other side, Cu-N (2.039(3) Å) and Cu-O (2.307(3) Å) distances
are instead shorter and longer (−0.05 and +0.147 Å, respectively) than the corresponding
ones [111] and also appreciably longer (+0.104 and +0.127 Å) of the known means for Cu(I)
complexes showing Cu-N(pyrazolyl) and Cu-O=C bonds (1.935 Å/290 compounds and
2.180 Å/260 compounds, respectively). The longer Cu-N and Cu-O bonds (compared to
averages for known compounds) may hint in part to a lesser donating ability of the N1 and
especially O6 atoms, as well as to the steric hindrance brought by the bulky triphenylphos-
phine ligands. With respect to the nonbonding contacts, a list of the tightest interactions for
the compounds described in this work is given in Table 6 (involved distances equal sum of
the pertinent van der Waals radii minus 0.05 Å and almost all of them fall below 2.7 Å).

Table 6. Most efficient nonbonding interactions in molecules 1, 2, 8 (top), and complex 3 (bottom).

Molecule Acceptor Atom
(A) Atom

Donor (D)
Atom

Parent (P)
Atom *

Distance A····D
(Å)

Angle A–D–P
(◦) Symmetry Op.

1 O1 H15 C15 2.50 141.6 x, 1 − y, −1/2 + z
N1 H11 C11 2.70 171.6 x, 1 − y, 1/2 + z

2 O1A H7B C7 2.53 147.0 x, y, z
O1A H14A C14A 2.60 143.6 1 + x, y, z
O1 H7AC C7A 2.52 156.0 1 + x, y, z
O1 H14 C14 2.56 152.3 −1 + x, y, z
O2 H16 C16 2.62 175.0 2 − x, 2 − y,1 − z

8 O1 H15 C15 2.55 153.4 1 − x, 1 − y, −z
O1 H1 C1 2.65 157.3 1 − x, 1 − y, −z
O1 H14 C14 2.66 136.6 1 + x, y, z

3 F1A H14 C14 2.56 135.3 1/2 + x, 3/2 − y, z
F1A H18 C18 2.44 160.7 1/2 + x, 3/2 − y, z
F2A H9B C9 2.51 142.8 x, y, z
F2 H9B C9 2.56 130.7 x, y, z
F2 H42 C42 2.44 145.6 1 − x, 1 − y, 1/2 + z
F3 H11 C11 2.51 158.2 x, 1 + y, z

F3 H32 C32 2.63 160.6 1/2 − x, 1/2 + y, 1/2 +
z

F4A H38 C38 2.56 129.9 x, 1 + y, z
F4 H5 C5 2.46 154.5 x, 1 + y, z

F5A H21 C21 2.57 148.4 x, y, z
F6A H42 C42 2.55 146.6 1 − x, 1 − y, 1/2 + z
C15 H37 C37 2.79 153.4 1 − x, 1/2 − y, 1/2 + z

* Atom to which the donor atom is bound.

An inspection of the packing diagrams of the compounds 1 and 8 shows a similar
contact network. In 1, the two noticeable contacts involve O1 and N1 that binds, respectively
the H15 and H11 atoms of two different nearby molecules. (at x, 1 − y, –1/2 + z and x, 1 − y,
1/2 + z). The two contacts help to consolidate a one-dimensional chain that propagates
along the crystallographic c axis. In 8, the three shortest contacts (range: 2.55–2.66 Å) all
involve the O1 atom which binds, again, the H1/H15 and H14 of two different proximal
molecules. The links with H1, H15 establish a dimeric couple, the third one (symmetry
operation: 1 + x, y, z) in turn propagates a one-dimensional chain of the dimer along the
crystallographic a axis. In 2, the two independent molecules in the asymmetric unit are
bound through an O1A····H7B link (2.53 Å); O1A is also involved in a contact with the
H14A of another molecule (at 1 + x, y, z). Likewise, O1 establish two different contacts
with the H7AC and H14 atoms 14 (at 1 + x, y, z and −1 + x, y, z) and all these links create
again a one-dimensional chain propagating along the crystallographic a axis. This motif is
also reinforced by an O2····H16 contact that joins together two proximal chains. The more
extended nonbonding contact network of complex 3 depends on the disordered PF6

− anion.
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In the latter, almost all the atoms of the alternate position of the anion establish contacts with
several hydrogen atoms sustaining a full 3D network in which the hexafluorophosphate
anions and the complex cations pile up in alternate layers along the crystallographic c
axis. Among these contacts, that between C15 and H37 of another molecule (at 1 − x,
1/2 − y, 1/2 + z) of 2.79 Å is the longest one among those reported in Table 6 and also the
only one that does not involve fluorine atoms; it creates a 1D chain propagating along the
crystallographic a axis. Those involving F2 and F2A with H9B, F5A with H21 (all within the
same unit) and F6A with H42 (at 1 − x, 1 − y, 1/2 + z) range between 2.51 and 2.57 Å and
sustain a zigzag 1D chain that propagates along the crystallographic c axis (Table 6). This
chain is crisscrossed by another chain, running along the −1, 1, 0 plane and originated by
the contacts of F1A with H14 and H18 (at1/2 + x, 3/2 − y, z), F3 with H11, F4 with H5 and
F4A with H38 (all of them at x, 1 + y, z, range: 2.44–2.56 Å), which also intersects the motif
originated by C15····H37 contact. The articulate 3D network is finally completed by the
contact (2.63 Å) established between F3 and H32 (at 1/2 − x, 1/2 + y, 1/2 + z), which also
intersects the aforementioned zigzag motif, keeping together two proximal zigzag chains.
The nonbonding interactions above described are also illustrated with a series of crystal
packing diagrams that have been attached to the Supporting Information (Figures S1–S8),
highlighting the different structural motifs as well as the pertinent distances and angles.

3. Experimental Section
3.1. Materials and Instruments

All reagents were obtained from commercial suppliers and used as received. Melting
Points (MP) were performed by an SMP3 Stuart Scientific Instrument (Bibby Sterilin Ltd.,
London, UK). Elemental Analyses (C, H, N, S) (EA) were performed with a Fisons Instru-
ments EA-1108 CHNS-O Elemental Analyzer (Thermo Fisher Scientific Inc., Waltham, MA,
USA). Fourier-Transform InfraRed (FT-IR) spectra were recorded from 4000 to 700 cm−1 on
a PerkinElmer Frontier Instrument (PerkinElmer Inc., Waltham, MA, USA), equipped with
the Attenuated Total Reflection (ATR) unit using universal diamond top-plate as sample
holder. Abbreviation used in the analyses of the FT-IR spectra: br = broad, m = medium,
mbr = medium broad, s = strong, sbr = strong broad, vs. = very strong, w = weak, and
wbr = weak broad. Nuclear Magnetic Resonance (NMR) spectra for the nuclei 1H, 13C and
31P were recorded with a Bruker 500 Ascend Spectrometer (Bruker BioSpin Corporation,
Billerica, MA, USA; 500.13 MHz for 1H, 125.78 MHz for 13C, 202.46 MHz for 31P and 470.59
MHz for 19F). Tetramethylsilane (SiMe4) was used as external standard for the 1H- and
13C-NMR spectra, while 85% H3PO4 was used for the 31P-NMR spectra. The chemical shifts
(δ) are reported in ppm, and coupling constants (J) are reported in hertz (Hz). Abbreviation
used in the analyses of the NMR spectra: br = broad, d = doublet, dbr = broad doublet,
dd = doublet of doublets, m = multiplet, s = singlet, sbr = broad singlet, and t = triplet.
Electrospray ionization mass spectra (ESI-MS) were recorded in the positive- (ESI-MS(+)) or
negative-ion (ESI-MS(−)) modes on a Waters Micromass ZQ Spectrometer equipped with a
single quadrupole (Waters Corporation, Milford, MA, USA), using methanol or acetonitrile
mobile phase. The compounds were added to reagent grade methanol or acetonitrile to give
approximately 0.1 mM solutions. These solutions were injected (1 µL) into the spectrometer
fitted with an autosampler. The pump delivered the solutions to the mass spectrometer
source at a flow rate of 200 µL/min and nitrogen was employed both as a drying and
nebulizing gas. Capillary voltage was typically 2500 V. The temperature of the source was
100 ◦C, while the temperature of the desolvation was 400 ◦C. In the analyses of ESI-MS
spectra, the confirmation of major peaks was supported by comparison of the observed and
predicted isotope distribution patterns, the latter calculated using the IsoPro 3.1 computer
software (T-Tech Inc., Norcross, GA, USA).
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3.2. Synthesis

3.2.1. Synthesis of HLacPz (1)

Pyrazole (5.313 mmol, 0.362 g) was added to an ethanol solution (20 mL) of 3-
benzylidene-2,4-pentadienone (5.313 mmol, 1.000 g) and triethylamine (6.206 mmol, 0.628 g)
and the reaction was stirred overnight at reflux. The solution was left to cool to room tem-
perature and dried at reduced pressure obtaining an orange oil product. The latter was
solubilized in diethyl ether and precipitated with n-hexane to obtain the white solid product
HLacPz (1) in 70% yield. Crystals of ligand 1, suitable for Single-Crystal X-ray Diffraction,
were obtained by slow evaporation of a n-hexane solution of 1. M.P.: 98–100 ◦C. FT-IR
(cm−1): 3108w, 3056w (C-H); 1732s, 1699m (C=O); 1515w, 1505w, 1497w, 1454w, 1418m,
1394m, 1356s, 1323w, 1282sh, 1263s, 1231m, 1198m, 1168m, 1140s, 1096s, 1069w, 1046w,
1037w, 965m, 916w, 893m, 878w, 869w, 757vs, 729vs, 702s. 1H-NMR (CDCl3, 293 K): δ 2.03
(s, 3H, CH3), 2.22 (s, 3H, CH3), 5.32 (d, 1H, CH, J = 11.28 Hz), 6.01 (d, 1H, CH, J = 11.28 Hz),
6.22 (t, 1H, 4-CHpz, J = 2.06 Hz), 7.32–7.41 (m, 6H, CHar and 5-CHpz), 7.50 (dbr, 1H, 3-
CHpz). 1H-NMR (DMSO, 293 K): δ 2.07 (s, 3H, CH3), 2.15 (s, 3H, CH3), 5.58 (d, 1H, CH,
J = 11.55 Hz), 6.04 (d, 1H, CH, J = 11.28 Hz), 6.18 (t, 1H, 4-CHpz, J = 2.12 Hz), 7.26–7.50 (m,
6H, CHar and 5-CHpz), 7.85 (d, 1H, 3-CHpz, J = 2.12 Hz). 1H-NMR (Acetone-d6, 293 K):
δ 2.07 (s, 3H, CH3), 2.18 (s, 3H, CH3), 5.51 (d, 1H, CH, 3J = 11.44 Hz), 6.08 (d, 1H, CH,
3J = 11.44 Hz), 6.19 (t, 1H, 4-CHpz, J = 2.06 Hz), 7.28–7.35 (m, 3H, CHar), 7.44 (dbr, 1H,
5-CHpz), 7.51–7.53 (m, 2H, CHar), 7.69 (d, 1H, 3-CHpz J = 2.31 Hz). 13C{1H}-NMR (CDCl3,
293 K): δ 29.9, 30.9 (CH3), 64.2 (CH), 72.6 (CH), 106.1 (4-CHpz), 127.5, 128.7, 128.9, 129.6,
137.7, 139.4 (CHar, 3- and 5-CHpz), 200.0 (C=O), 200.3 (C=O). 13C{1H}-NMR (Acetone-d6,
293 K): δ 29.5, 30.2 (CH3), 63.8 (CH), 71.4 (CH), 105.5 (4-CHpz), 127.8, 128.2, 128.5, 129.8,
138.7, 138.8 (CHar, 3- and 5-CHpz), 199.5 (C=O), 199.8 (C=O). ESI-MS(+) (major positive ions,
CH3CN), m/z (%): 211 (40) [3-benzylidene-2,4-pentanedione + Na]+, 257 (95) [HLacPz + H]+,
279 (100) [HLacPz + Na]+. ESI-MS(-) (major negative ions, CH3CN), m/z (%): 187 (100) [3-
benzylidene-2,4-pentanedione − H]−, 213 (25) [HLacPz − CH3CO]−. Elemental analysis
(%) calculated for C15H16N2O2: C 70.29, H 6.29, N 10.93; found C 70.65, H 6.36, N 9.79.

3.2.2. Synthesis of HLacPzMe (2)

3,5-Methylpyrazole (5.313 mmol, 1.000 g) was added to an ethanol solution (20 mL)
of 3-benzylidene-2,4-pentanedione (5.313 mol, 1.000 g) and triethylamine (6.206 mmol,
0.628 g), and the reaction was stirred overnight at room temperature. The solution was
dried at reduced pressure obtaining a colorless oil. The latter was solubilized with diethyl
ether and precipitated with n-hexane to obtain the white solid HLacPzMe (2) in 73% yield.
Crystals of ligand 2, suitable for Single-Crystal X-ray Diffraction, were obtained by slow
evaporation of a diethyl ether/n-hexane solution of 2. M.P.: 89–92 ◦C. FT-IR (cm−1):
3034w, 2980w, 2916w (C-H); 1729s, 1699s (C=O); 1601w, 1586w, 1552m, 1496w, 1458m,
1422m, 1381m, 1350s, 1311w, 1294w, 1256sh, 1244s, 1234sh, 1192m, 1174m, 1134m, 1088w,
1071w, 1022m, 1002w, 972w, 951m, 930w, 898m, 864w, 853w, 813w, 776m, 763s, 717sh,
709vs. 1H-NMR (CDCl3, 293 K): δ 2.00, 2.18, 2.21, 2.22 (s, 12H, CH3), 5.41 (d, 1H, CH,
J = 11.11 Hz), 5.75 (s, 1H, 4-CHpz), 5.82 (d, 1H, CH, J = 11.13 Hz), 7.28–7.37 (m, 5H,
CHar). 13C{1H}-NMR (CDCl3, 500 MHz): δ 10.9, 13.6, (3- and 5-CH3), 30.3, 31.6 (CH3),
60.6 (CH), 72.4 (CH), 105.6 (4-CHpz), 127.5, 128.2, 128.8, 129.0, 129.7, 138.0, 139.3, 147.3
(CHar, 3- and 5-Cpz), 199.9, 200.9 (C=O). ESI-MS(+) (major positive ions, CH3CN), m/z
(%): 211 (50) [3-benzylidene-2,4-pentanedione + Na]+, 285 (100) [HLacPzMe + H]+, 307
(45) [HLacPzMe + Na]+. ESI-MS(−) (major negative ions, CH3CN), m/z (%): 187 (45) [3-
benzylpentane-2,4-dione − H]−. Elemental analysis (%) calculated for C17H20N2O2: C
71.81, H 7.09, N 9.85; found C 73.45, H 7.29, N 9.70.

3.2.3. Synthesis of [Cu(HLacPz)(PPh3)2]PF6 (3)

The ligand HLacPz (1.000 mmol, 0.256 g) was added to an acetonitrile solution (40 mL)
of PPh3 (2.000 mmol, 0.525 g) and Cu(CH3CN)4PF6 (1.000 mmol, 0.372 g) and stirred at
room temperature for 12 h. The solvent was removed at reduced pressure, giving a yellow
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oil that was washed with diethyl ether, giving the white complex [Cu(HLacPz)(PPh3)2]PF6
in 89% yield. M.P.: 153–157 ◦C. Crystals of compound 3, suitable for Single-Crystal X-ray
Diffraction, were obtained by slow evaporation of an acetone/ethyl acetate solution of 3.
FT-IR (cm−1): 3063wbr (C-H); 1727w, 1687m (C=O); 1586w, 1480w, 1454w, 1435m, 1417w,
1363w, 1327w, 1279w, 1229w, 1194w, 1184w, 1172w, 1153m, 1120w, 1097m, 1070w, 1027w,
998w, 982w, 958w, 876w; 831vs (PF6); 787w, 750s, 729m, 695s. 1H-NMR (Acetone-d6, 293 K):
δ 2.19 (s, 3H, CH3), 2.84 (s, 3H, CH3), 5.53 (d, 1H, CH, J = 11.40 Hz), 6.10 (d, 1H, CH,
J = 11.42 Hz), 6.21 (t, 1H, 4-CHpz, J = 2.01 Hz), 7.33–7.57 (m, 36H, CHar and 5-CHpz),
7.72 (d, 1H, 3-CHpz, J = 2.20 Hz). 13C{1H}-NMR (Acetone-d6, 293 K): δ 29.7, 30.4 (CH3),
64.2 (CH), 71.2 (CH), 106.2 (4-CHpz), 127.7, 128.4, 128.7, 128.9, 129.1, 129.7, 130.7, 131.2,
131.4, 133.5, 138.1; 199.6, 199.8 (C=O). 31P{1H}-NMR (CDCl3, 293 K): δ −0.86 (s), −144.21
(sept, J(19F-31P) = 712 Hz, PF6). ESI-MS(+) (major positive ions, CH3CN), m/z (%): 581
(30) [Cu(HLacPz)(PPh3)]+, 587 (100) [Cu(PPh3)2]+, 603 (30) [Cu(LacPz)(PPh3) + Na]+, 849 (10)
[Cu(PPh3)3]+, 865 (5) [Cu(LacPz)(PPh3)2 + Na]+. ESI-MS(−) (major negative ions, CH3CN),
m/z (%): 145 [PF6]−. Elemental analysis (%) calculated for C51H46CuF6N2O2P3: C 61.91, H
4.69, N 2.83; found: C 60.46, H 4.72, N 2.58.

3.2.4. Synthesis of [Cu(HLacPz)2(LacPz)2] (4)

The ligand HLacPz (4.000 mmol, 1.025 g) and copper(II) acetate monohydrate
(Cu(CH3CO2)2·H2O (1.000 mmol, 0.199 g) were dissolved in CH3OH (40 mL), and the
reaction was stirred for 12 h at room temperature. The mixture was filtered and the solution
was dried at reduced pressure obtaining a blue oil. Diethyl ether was added, and the
precipitate was filtered off. The solution was dried at reduced pressure to obtain the blue
complex [Cu(HLacPz)2(LacPz)2] in 58% yield. M.P.: 87–88 ◦C. FT-IR (cm−1): 3107w, 3056w,
3031wbr, 3004wbr, 2916wbr (C-H); 1732s, 1700s 1657w (C=O); 1616w, 1517w, 1497w, 1453w,
141 8m, 1394 m, 1355s, 1322w, 1282sh, 1263s, 1230sh, 1917 m, 1168s, 1140s, 1095s, 1069w,
1045m, 1038m, 1030sh, 966m, 916w, 893m, 869w, 879w, 757s, 728s, 701s. ESI-MS(+) (major
positive ions, CH3CN): m/z (%): 318 (30) [Cu(LacPz)]+, 360 (50) [Cu(LacPz) + CH3CN]+,
575 (10) [Cu(LacPz)2 + H]+. ESI-MS(−) (major negative ions, CH3CN): 255 (100) [LacPz]−.
Elemental analysis (%) calculated for C60H62CuN8O8: C 66.31, H 5.75, N 10.31; found: C
67.84, H 6.14, N 9.18.

3.2.5. Synthesis of [Cu(HLacPzMe)(PPh3)2]PF6
.2CH3CN (5)

The ligand HLacPz HLacPzMe (0.500 mmol, 0.142 g) was added to an acetonitrile solution
(20 mL) of PPh3 (1.000 mmol, 0.262 g) and Cu(CH3CN)4PF6 (0.500 mmol, 0.186 g) and stirred
at room temperature for 24 h. The solvent was removed at reduced pressure to obtain the
white complex [Cu(HLacPzMe)(PPh3)2]PF6

.2CH3CN in 73% yield. M.P.: 130–133 ◦C. FT-IR
(cm−1): 3049w, 2988w, 2938w, 2902w (C-H); 2301w, 2271w (C≡N); 1730m, 1700m (C=O);
1667w, 1586w, 1554w, 1479m, 1458m, 1434s, 1394m, 1382m, 1331sh, 1311m, 1257m, 1246m,
1236sh, 1174mbr, 1160m, 1135m, 1121m, 1094s, 1067m, 1057m, 1027m, 1000m, 973w, 953w,
922vw, 898w, 879m, 859s; 832vs (PF6); 791m, 777m, 744vs, 693vs. 1H-NMR (CDCl3, 293 K):
δ 2.06 (s, 6H, CH3), 2.21 (s, 12H, CH3), 5.44 (sbr, 1H, CH), 5.77 (sbr, 1H, CH), 5.86 (s, 1H,
4-CHpz), 7.19–7.41 (m, 35H, CHar). 13C{1H}-NMR (CDCl3, 500 MHz): δ 1.98 (CH3CN),
11.0, 13.6 (3- and 5-CH3), 30.4, 31.5 (CH3); 60.6, 72.0 (CH); 105.8 (4-CHpz); 118.7 (CH3CN);
127.5, 128.3, 129.0, 129.7, 130.5, 131.1, 131.3, 132.0, 132.1, 133.4, 133.5, 137.8, 139.8, 147.6
(CHar, 3- and 5-Cpz); 200.1, 200.9 (C=O). 31P{1H}-NMR (CDCl3, 293 K): δ −0.12 (s), −144.23
(sept, J(19F-31P) = 712 Hz, PF6). ESI-MS(+) (major positive ions, CH3CN), m/z (%): 366 (70)
[Cu(PPh3) + CH3CN]+, 589 (100) [Cu(PPh3)2]+. ESI-MS(−) (major negative ions, CH3CN),
m/z (%): 145 (100) [PF6]−. Elemental analysis (%) calculated for C57H56CuF6N4O2P3: C
62.26, H 5.13, N 5.10; found: C 61.69, H 5.16, N 4.86.

3.2.6. Synthesis of [Cu(HLacPzMe)2(LacPzMe)2] (6)

The ligand HLacPzMe (4.000 mmol, 1.137 g) and (Cu(CH3CO2)2·H2O (1.000 mmol,
0.199 g) were dissolved in CH3OH (40 mL), and the reaction was stirred for 24 h at room
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temperature. The solution was dried at reduced pressure obtaining a blue oil; diethyl
ether was added and the precipitate was filtered off. The solution was dried at reduced
pressure to obtain the blue complex [Cu(HLacPzMe)2(LacPzMe)2] in 50% yield. M.P.: 89–93 ◦C.
FT-IR (cm−1): 3062w, 3031w, 3002wbr, 2919w (C-H); 1734s, 1703vs, 1659s (C=O); 1615m,
1556s, 1494m, 1455s, 1420s, 1382s, 1355vs, 1311m, 1288sh, 1245vs, 1213s, 1194sh, 1173s,
1086m, 1023m, 1005sh, 973m, 955m, 927m, 900m, 866m, 844w, 787m, 759s, 704vs. Elemental
analysis (%) calculated for C68H78CuN8O8: C 68.12, H 6.56, N 9.35; found: C 69.89, H 6.80,
N 9.16.

3.2.7. Synthesis of 4-Phenyl-4-(1H-pyrazol-1-yl)butan-2-one, PhPzMEK (7)

An excess of sodium hydroxide (1.200 mmol, 0.048 g) was added to an ethanol solution
(20 mL) of HLacPz (1.000 mmol, 0.284 g), giving a pale-yellow solution. The reaction was
stirred for 72 h at room temperature and the solution was dried at reduced pressure. The
residue was washed with diethyl ether and hexane, the precipitate was filtered off and the
solution was dried at reduced pressure, giving a yellow oil of PhPzMEK. M.P.: oil. FT-IR
(cm−1): 3106w, 3086w, 3061w, 3028w, 3003w, 2912w, 2833w (C-H); 1715s (C=O); 1659m,
1602m, 1510sh, 1494m, 1454m, 1435sh, 1417m, 1396s, 1358s, 1283m, 1255m, 1204m, 1160m,
1090m, 1044m, 1022m, 959m, 917m, 875m, 861m, 845m, 749vs, 697vs, 628sh, 618s. 1H-NMR
(CDCl3, 293K): δ 2.19 (s, 3H, CH3), 3.11 (dd, 1H, CH2, J = 4.96 Hz, J = 17.28 Hz), 3.93 (dd,
1H, CH2, J = 9.05 Hz, J = 17.27 Hz), 5.89 (m, 1H, CH), 6.26 (s, 1H, 4-CHpz), 7.25–7.34 (m,
5H, CHar), 7.43 (m, 1H, 5-CHpz), 7.56 (dbr, 1H, 3-CHpz). 13C{1H}-NMR (CDCl3, 500 MHz):
δ 30.4 (CH3), 48.7 (CH2), 60.8 (CH), 105.7 (4-CHpz), 126.6, 128.0, 128.8, 129.7, 139.1, 140.5
(CHar, 3- and 5-Cpz), 205.2 (C=O). ESI-MS(+) (major positive ions, CH3CN), m/z (%): 215
(100) [PhPzMEK + H]+. Elemental analysis (%) calculated for C13H14N2O: C 74.35, H 7.49,
N 11.56; found C, H, N.

3.2.8. Synthesis of 4-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-phenylbutan-2-one, PhPzMe2MEK (8)

An excess of sodium hydroxide (1.200 mmol, 0.048 g) was added to an ethanol solution
(20 mL) of HLacPzMe (1.000 mmol, 0.284 g), giving a pale-yellow solution. The reaction
was stirred for 12 h at room temperature and the solution was dried at reduced pressure.
The residue was washed with chloroform, the precipitate was filtered off and the solution
was dried at reduced pressure, giving an oil. The latter was solubilized in diethyl ether
and n-hexane was added; white crystals of Ph PzMe2MEK suitable for Single-Crystal X-ray
Diffraction were obtained from a slow evaporation of the solution at a low temperature.
M.P.: 98–100 ◦C. FT-IR (cm−1): 3123w, 3064w, 3008w, 2987w, 2947w, 2914w, 2898w, 2863w
(C-H); 1714vs (C=O); 1601w, 1585w, 1552m, 1498m, 1459s, 1440m, 1425s, 1395s, 1370s, 1354s,
1323m, 1302w, 1274s, 1253m, 1200w, 1182m, 1162s, 1122w, 1060w, 1029s, 1018m, 1000w,
975m, 930w, 873m, 816w, 797vs, 775m, 762s, 710vs. 1H-NMR (CDCl3, 293 K): δ 2.19 (s, 6H,
CH3), 2.26 (s, 3H, CH3), 3.05 (dd, 1H, CH2, J = 4.76 Hz, J = 17.31 Hz), 3.99 (m br, 1H, CH2),
5.73 (m, 1H, CH), 5.80 (s, 1H, 4-CHpz), 7.17–7.32 (m, 5H, CHar). 13C{1H}-NMR (CDCl3,
500 MHz): δ 11.0, 13.6 (3- and 5-CH3), 30.6 (CH3), 49.0 (CH2), 56.9 (CH), 105.4 (4-CHpz),
126.3, 127.5, 128.7, 139.7, 141.0, 147.1 (CHar, 3- and 5-Cpz), 205.9 (C=O). ESI-MS(+) (major
positive ions, CH3CN), m/z (%): 243 (100) [PhPzMe2MEK + H]+. Elemental analysis (%)
calculated for C15H18N2O: C 74.35, H 7.49, N 11.56; found C 74.82, H 7.73, N 11.83.

3.3. Crystallographic Data Collection and Refinement

Single crystals suitable for the X-ray experiment of the compounds 1, 2, 8 were obtained
by slow evaporation of n-hexane or diethyl ether/n-hexane solutions; likewise, crystals
of the complex 3 were obtained by slow evaporation of an acetone/ethyl acetate solution.
In all cases, several specimens were screened before selecting the most appropriate items,
which were picked up with a nylon loop and mounted on the top of the goniometer
head of a Rigaku-OD Gemini E diffractometer, equipped with a 2K × 2K EOS CCD area
detector and sealed tube to enhance the Cu X–ray source. The raw diffraction data for
all compounds were collected at room temperature [range: 298(1)–299.4(8) K] by means
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of the ω-scan technique, using graphite-monochromated Cu Kα radiation (λ = 1.54184 Å)
in a 1024 × 1024-pixel mode and 2 × 2-pixel binning. Data collection, reduction, and
finalization were performed using the CrysAlisPro software, Versions 1.171.41.123a (1) and
1.171.42.49 (2, 3, 8) [114]. Data collections were usually planned to allow for a certain degree
of redundancy, except for compound 8, where reflection intensities were low and the
time for the experiment would have been exceedingly long. The raw data were corrected
for Lorentz/polarization effects. An empirical absorption correction was also performed
by means of a multiscan approach, with the scaling algorithm SCALE3 ABSPACK, using
equivalent reflections. Accurate unit cell parameters were obtained by the least-squares
refinement of 8464 (1), 19353 (2), 23975 (3), 2282 (8) strongest reflections chosen throughout
the whole data collection. The crystal and equipment stability were checked by monitoring
two reference frames every 50 frames for all compounds. A manual data reduction was
performed at the end of the data collection in order to appropriately account for limited
sample wobbling, but no significant change in peak intensities were observed during
all experiments.

The structures were solved by direct phasing and refined by full-matrix least squares
based on Fo

2 with the SHELXT [115] and SHELXL [116] programs through the OLEX2
program interface [117]. For all compounds, non-H atoms were allowed to vibrate anisotrop-
ically in the last cycles of refinement. In compounds 1, 2 and 8, the positions of the H
atoms were obtained by difference Fourier maps; in complex 3, H atoms were placed in
calculated positions and refined as a riding model, with their displacement parameters
calculated as 1.2 (or 1.5 for the methyl groups) times the Ueq of the pertinent carrier carbon
atom. The asymmetric unit of compound 2 contains two independent molecules which
define an enantiomeric pair, with C1 and C1A atoms showing, respectively, S and R con-
figurations. The cationic complex 3 crystallizes as an hexafluorophosphate salt. The PF6

−

anion is disordered over two positions, whose site occupation factors were constrained
to sum to unity; finally refined sofs were 0.472/0.528 for F1/F6 and F1A/F6A, respec-
tively. The involved atoms have also been modelled introducing RIGU restraints. The
analysis of the diffraction data of 8 showed that this compound crystallizes in the form of a
non-merohedral two-component twin (second component individuated by a rotation of
-179.992◦ about the [1.00 0.00 0.00] direction in the reciprocal space). The two components
account, respectively, for 77.61% and 22.39% of the diffraction peaks. Twin data finaliza-
tion [114] of this compound showed that the Rint value of the data pertaining to the minor
component was significantly worse than that of the major component; for this reason, the
structure of 8 was solved using only the data of the major component. Full listings of
atomic coordinates, bond lengths and angles, anisotropic thermal parameters are available
as Supporting Information, in the form of .cif files; ORTEP [103] representations of all com-
pounds (Figures 1–4) have been prepared using the Mercury program [110]. CCDC 2326184
(8), 2326185 (1), 2326186 (3) and 2326187 (2) contain the supplementary crystallographic
data for this paper, available free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/structures.

4. Conclusions

In this study, we report the synthesis and characterization of two new 3-monosubstituted
acetylacetone ligands, 3-(phenyl(1H-pyrazol-1-yl)methyl)pentane-2,4-dione (HLacPz, 1) and
3-((3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methyl)pentane-2,4-dione (HLacPzMe, 2). They were
employed for the preparation of the copper(II) and copper(I) phosphane complexes of the
general formulae [Cu(PPh3)2(HLacX)]PF6 (3 and 5) and [Cu(HLacX)2(LacX)2] (4 and 6). HLacPz

and HLacPzMe react with strong bases by the retro-Claisen C−C bond cleavage reaction,
giving rise to the formation of the species 4-phenyl-4-(1H-pyrazol-1-yl)butan-2-one (7) and
4-(3,5-dimethyl-1H-pyrazol-1-yl)-4-phenylbutan-2-one (8), providing an efficient access to
synthetically useful ketone compounds. All species were fully characterized both in the solid
state and in solution. The X-ray experiments for 1 and 8 reveal that the related asymmetric
unit is made of a single molecule, in which C1 has an S configuration. The asymmetric unit of

www.ccdc.cam.ac.uk/structures
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compound 2 shows instead two independent molecules, defining an enantiomeric pair. The
molecular structure reveals that complex 3 crystallizes in the orthorhombic crystal system,
where copper(I) ion is surrounded in a distorted tetrahedral environment by two unidentate
PPh3 molecules and one bidentate HLacPz neutral ligand, which attacks the metal by means of
its N1, O1 atoms.

This study establishes a new and easily accessible class of copper compounds, provides
new insights into the chemistry group 11 metal compounds, and opens new opportunities
for further research in this field.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29030621/s1, Figures S1–S8: Crystal packing representation of
compounds 1, 2, 3 and 8; Figures S9–S33: FT-IR, 1H−, 13C− and 31P-NMR spectra of compounds 1–8.
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