Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties
Abstract
:1. Introduction
2. Lysozyme Modulates Nucleic Acid Activity
3. Chemical Structure and Anti-Viral Activity
4. Antiviral Activity: Disinfection over Norovirus Food Contamination
5. Antiviral Activity: Control of Foot-and-Mouth and Bovine Viral Diarrhea Virus Infections
6. Antiviral Activity: Effects on Respiratory and Influenza Viruses
7. Antiviral Activity: Evidence of Activity in SARS-CoV-2 and Control of COVID-19
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Callewaert, L.; Michiels, C.W. Lysozymes in the animal kingdom. J. Biosci. 2010, 35, 127–160. [Google Scholar] [CrossRef]
- Reitamo, S.; Klockars, M.; Adinolfi, M.; Osserman, E.F. Human lysozyme (origin and distribution in health and disease). Ric. Clin. Lab. 1978, 8, 211–231. [Google Scholar]
- Jollés, P.; Jollés, J. What’s new in lysozyme research? Always a model system, today as yesterday. Mol. Cell. Biochem. 1984, 63, 165–189. [Google Scholar]
- Shteyngart, B. Intratracheal Administration of Lysozyme with Other Therapeutic Agents in the Prevention and Treatment of Respiratory Disorders. U.S. Patent US20050271645, 8 December 2005. [Google Scholar]
- Kiaerulff, S.; Cohn, M.T.; Kristensen, N.N. Microbial Lysozyme for Use in the Treatment of Irritable Bowel Syndrome or Inflammatory Bowel Disease. U.S. Patent WO2018127532, 7 December 2018. [Google Scholar]
- Hong, J.Y.; Lee, J.S.; Choi, S.H.; Shin, H.S.; Park, J.C.; Shin, S.I.; Chung, J.H. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients. BMC Oral Health 2019, 19, 40. [Google Scholar] [CrossRef]
- Fleming, A. On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B 1922, 93, 306–317. [Google Scholar]
- Meyer, C. Lysozyme. Bull. N. Y. Acad. Med. 1954, 12, 995–996. [Google Scholar]
- Ganz, T. Antimicrobial polypeptides. J. Leukoc. Biol. 2004, 75, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012, 132, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, N.; Wen, S.; Wang, F.; Nawaz, S.; Raza, J.; Iftikhar, M.; Usman, M. Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022, 27, 6305. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R.; Ravi, V.K.; Kumar, S.; Kumar, M.V.S.; Chandra, N. Lysozyme: A model protein for amyloid research. Adv. Protein Chem. Struct Biol. 2011, 84, 63–111. [Google Scholar]
- Strynadka, N.C.; James, M.N. Lysozyme: A model enzyme in protein crystallography. Exs 1996, 75, 185–222. [Google Scholar]
- Choi, S.; Attri, P.; Lee, I.; Oh, J.; Yun, J.H.; Park, J.H.; Choi, E.H.; Lee, W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasm and atmospheric pressure plasma jet. Sci. Rep. 2017, 7, 1027. [Google Scholar] [CrossRef] [PubMed]
- Artesani, M.C.; Donnanno, S.; Cavagni, G.; Calzone, L.; D’Urbano, L. Egg sensitization caused by immediate hypersensitivity reaction to drug-containing lysozyme. Ann. Allergy Asthma Immunol. 2008, 101, 105. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, A.; Sava, G. Pharmacological modulation of host immunity with hen egg white lysozyme (HEWL)—A review. Molecules 2023, 28, 5027. [Google Scholar] [CrossRef] [PubMed]
- Ragland, S.A.; Criss, A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [PubMed]
- Sugahara, M.; Suzuki, M.; Nango, E. Crystal Structure of Hen Egg-White Lysozyme. 2016. Available online: https://www.wwpdb.org/pdb?id=pdb_00005b1f (accessed on 18 December 2023).
- Nam, K.H. Crystal structure of human lysozyme complexed with N-Acetyl-alpha-d-glucosamine. Appl. Sci. 2022, 12, 4363. [Google Scholar] [CrossRef]
- Ferrari, R.; Callerio, C.; Podio, G. Antiviral activity of lysozyme. Nature 1959, 183, 548. [Google Scholar] [CrossRef] [PubMed]
- Eylan, E.; Ronen, D.; Romano, A.; Smetana, O. Lysozyme tear level in herpes simplex virus eye infection. Invest. Ophthalmol. Visual Sci. 1977, 16, 850–853. [Google Scholar]
- Saari, K.M.; Aine, E.; Posz, A.; Klockars, M. Lysozyme content of tears in normal subjects and in patients with external eye infections. Graefe’s Arch. Clin. Exp. Ophthalmol. 1983, 221, 86–88. [Google Scholar] [CrossRef]
- Chen, T.-T.; Tan, L.-R.; Hu, N.; Dong, Z.-Q.; Hu, Z.-G.; Jiang, Y.-M.; Chen, P.; Pan, M.-H.; Lu, C. C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. J. Insect Physiol. 2018, 108, 54–60. [Google Scholar] [CrossRef]
- Tomoharu, Y.; Koh, H.; Hiroaki, M. Intestinal absorption of lysozyme, an egg-white allergen, in rats: Kinetics and effect of NSAIDs. Biochem. Biophys. Res. Commun. 2013, 438, 61–65. [Google Scholar] [CrossRef]
- Takano, M.; Koyama, Y.; Nishikawa, H.; Murakami, T.; Yumoto, R. Segment-selective absorption of lysozyme in the intestine. Eur. J. Pharmacol. 2004, 50, 149–155. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). Safety evaluation of the food enzyme lysozyme from hens’eggs. EFSA J. 2023, 21, e07916. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Wang, L.; Guo, J.; Liu, W.; Meng, G.; Zhang, L.; Li, M.; Cong, L.; Sun, M. Recent Insights Into the Prognostic and Therapeutic Applications of Lysozymes. Front. Pharmacol. 2021, 12, 767642. [Google Scholar] [CrossRef] [PubMed]
- Steinrauf, L.K.; Shiuan, D.; Yang, W.J.; Chiang, M.Y. Lysozyme association with nucleic acids. Biochem. Biophys. Res. Commun. 1999, 266, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Zalar, M.; Bye, J.; Curtis, R. Nonspecific Binding of Adenosine Tripolyphosphate and Tripolyphosphate Modulates the Phase Behavior of Lysozyme. J. Am. Chem. Soc. 2023, 145, 929–943. [Google Scholar] [CrossRef] [PubMed]
- Lee-Huang, S.; Huang, P.L.; Sun, Y.; Kung, H.F.; Blithe, D.L.; Chen, H.C. Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc. Natl. Acad. Sci. USA 1999, 96, 2678–2681. [Google Scholar] [CrossRef]
- Prager, E.M. Polyclonal antisera elicited by lysozyme: Insights into antigenic structure and evolution. In Lysozymes: Model Enzymes in Biochemistry and Biology; Jollès, P., Ed.; Birkhauser: Basel, Switzerland, 1996; pp. 261–276. [Google Scholar]
- Lin, K.C.; Wey, M.T.; Kan, L.S.; Shiuan, D. Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Appl. Biochem. Biotechnol. 2009, 158, 631–641. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, S.S. Inhibition of T7 RNA Polymerase: Transcription Initiation and Transition from Initiation to Elongation Are Inhibited by T7 Lysozyme Via a Ternary Complex with RNA Polymerase and Promoter DNA. Biochemistry 1997, 36, 13954–13962. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Yang, G. DNA–Lysozyme Nanoarchitectonics: Quantitative Investigation on Charge Inversion and Compaction. Polymers 2022, 14, 1377. [Google Scholar] [CrossRef]
- Alves, P.S.; Mesquita, O.N.; Rocha, M.S. Model for DNA Interactions with Proteins and Other Large Ligands: Extracting Physical Chemistry from Pure Mechanical Measurements. J. Phys. Chem. B 2020, 124, 1020–1024. [Google Scholar] [CrossRef]
- Herrlich, P.; Schweiger, M.; Sauerbier, W. Host- and phage-RNA polymerase mediated synthesis of T 7 lysozyme in vivo. Mol. Gen. Genet. 1971, 112, 152–160. [Google Scholar] [CrossRef]
- Moffatt, B.A.; Studier, F.W. T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 1987, 49, 221–227. [Google Scholar] [CrossRef]
- Zhang, X.; Studier, F.W. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J. Mol. Biol. 1997, 269, 10–27. [Google Scholar] [CrossRef]
- Zhang, X.; Studier, F.W. Multiple Roles of T7 RNA Polymerase and T7 Lysozyme During Bacteriophage T7 Infection. J. Mol. Biol. 2004, 340, 707–730. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jia, X.; Zhao, X.; Li, T.; Luo, Z.; Deng, R.; Peng, B.; Mao, D.; Liu, H.; Zheng, Q. In Vitro PCR verification that lysozyme inhibits nucleic acid replication and transcription. Sci. Rep. 2023, 13, 6383. [Google Scholar] [CrossRef] [PubMed]
- Ay, J.; Keitel, T.; Kuttner, G.; Wessner, H.; Scholz, C.; Hahn, M.; Hohne, W. Crystal Structure of a Phage Library-derived Single-chain Fv Fragment Complexed with Turkey Egg-white Lysozyme at 2.0 A Resolution. J. Mol. Biol. 2000, 301, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Mulvey, R.S.; Gaultieri, R.J.; BeychoK, S. Spectral properties of human lysozyme and its inhibitor complexes. Fluorescence and difference spectra. Biochemistry 1973, 12, 2683–2690. [Google Scholar] [CrossRef] [PubMed]
- Villa, T.G.; Feijoo-Siota, L.; Rama, J.L.R.; Ageitos, J.M. Antivirals against animal viruses. Biochem. Pharmacol. 2017, 133, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Cisani, G.; Varaldo, P.E.; Ingianni, A.; Pompei, R.; Satta, G. Inhibition of Herpes Simplex virus-induced cytopathic effect by modified hen egg-white lysozyme. Curr. Microbiol. 1984, 10, 35–40. [Google Scholar] [CrossRef]
- Oevermann, A.; Engels, M.; Thomas, U.; Pellegrini, A. The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antivir. Res. 2003, 59, 23–33. [Google Scholar] [CrossRef]
- Lee-Huang, S.; Maiorov, V.; Huang, P.L.; Ng, A.; Lee, H.C.; Chang, Y.T.; Kallenbach, N.; Huang, P.L.; Chen, H.C. Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 2005, 44, 4648–4655. [Google Scholar] [CrossRef]
- Hartono, Y.D.; Noviani Lee, A.; Lee-Huang, S.; Zhang, D. Computational study of bindings of HL9, a nonapeptide fragment of human lysozyme, to HIV-1 fusion protein gp41. Bioorganic Med. Chem. Lett. 2011, 21, 1607–1611. [Google Scholar] [CrossRef]
- Bergamo, A.; Gerdol, M.; Pallavicini, A.; Greco, S.; Schepens, I.; Hamelin, R.; Armand, F.; Dyson, P.J.; Sava, G. Lysozyme-Induced Transcriptional Regulation of TNF-a Pathway Genes in Cells of the Monocyte Lineage. Int. J. Mol. Sci. 2019, 20, 5502. [Google Scholar] [CrossRef]
- Jin, Q.; Chen, H.; Wang, X.; Zhao, L.; Xu, Q.; Wang, H.; Li, G.; Yang, X.; Ma, H.; Wu, H.; et al. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection. PLoS ONE 2015, 10, e0131894. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Nakazawa, M.; Ohshima, C.; Sato, M.; Tsuchiya, T.; Takeuchi, A.; Kunou, M.; Kuda, T.; Kimura, B. Heat-Denatured Lysozyme Inactivates Murine Norovirus as a Surrogate Human Norovirus. Sci. Rep. 2015, 5, 11819. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.M.; Widdowson, M.A.; Glass, R.I.; Akazawa, K.; Vinjé, J.; Parashar, U.D. Systematic Literature Review of Role of Noroviruses in Sporadic Gastroenteritis. Emerg. Infect. Dis. 2008, 14, 1224–1231. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Higashiguci, S.; Juneja, L.R.; Kim, M.; Yamamoto, T. A structural phase of heat-denatured lysozyme with novel antimicrobial action. J. Agric. Food Chem. 1996, 44, 1416–1423. [Google Scholar] [CrossRef]
- Cisani, G.; Varaldo, P.E.; Pompei, R.; Valisena, S.; Satta, G. Cell fusion induced by herpes simplex is inhibited by hen egg-white lysozyme. Microbios 1989, 59, 73–83. [Google Scholar]
- Takahashi, M.; Takahashi, H.; Okakura, Y.; Ichikawa, M.; Kuda, T.; Kimura, B. Impact of pH and protein hydrophobicity on norovirus inactivation by heat-denatured lysozyme. PLoS ONE 2020, 15, e0237888. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Tsuchiya, T.; Takahashi, M.; Nakazawa, M.; Watanabe, T.; Takeuchi, A.; Kuda, T.; Kimura, B. Viability of murine norovirus in salads and dressings and its inactivation using heat-denatured lysozyme. Int. J. Food Microbiol. 2016, 233, 29–33. [Google Scholar] [CrossRef]
- Takahashi, M.; Yasuda, Y.; Takahashi, H.; Takeuchi, A.; Kuda, T.; Kimura, B. Inactivating Effect of Heat-Denatured Lysozyme on Murine Norovirus in Bread Fillings. Food Hyg. Saf. Sci. 2018, 59, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.; Thornton, L.; O’Gorman, J.; O’Connor, L.; Garvey, P.; Boland, M.; Part, A.M.; Rogalska, J.; Coughlan, H.; MacDiarmada, J.; et al. Outbreak of hepatitis A infection associated with the consumption of frozen berries, Ireland, 2013—Linked to an international outbreak. Eurosurveill 2014, 19, 20942. [Google Scholar] [CrossRef]
- Wenzel, J.J.; Schemmerer, M.; Oberkofler, H.; Kerschner, H.; Sinha, P.; Koidl, C.; Allerberger, F. Hepatitis A outbreak in Europe: Imported frozen berry mix suspected to be the source of at least one infection in Austria in 2013. Food Environ. Virol. 2014, 6, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Okakura, Y.; Takahashi, H.; Imamura, M.; Takeuchi, A.; Shidara, H.; Kuda, T.; Kimura, B. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit. Int. J. Food Microbiol. 2018, 266, 104–108. [Google Scholar] [CrossRef]
- Fukai, K.; Inoue, K.; Takeuchi, A.; Yamakawa, M. New possibilities for egg white lysozyme: Heat-denatured lysozyme partially inactivates select foot-and-mouth disease virus strains. Sci. Rep. 2021, 11, 26. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef]
- Malaczewska, J.; Kaczorek-Lukowska, E.; Wojcik, R.; Siwicki, A.K. Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet. Res. 2019, 15, 318. [Google Scholar] [CrossRef]
- Lanyon, S.R.; Reichel, M.P. Understanding the impact and control of bovine viral diarrhoea in cattle populations. Springer Sci. Rev. 2013, 1, 85–93. [Google Scholar] [CrossRef]
- Pang, G.; Clancy, G.; Cong, M.; Ortega, M.; Zhigang, R.; Reeves, G. Influenza Virus Inhibits Lysozyme Secretion by Sputum Neutrophils in Subjects with Chronic Bronchial. Am. J. Resp. Crit. Care Med. 2000, 161, 718–722. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yamamoto, S. Comparison of proteins with anti-influenza virus effects in parotid and submandibular-sublingual saliva in humans. BMC Oral Health 2022, 22, 639. [Google Scholar] [CrossRef]
- White, M.R.; Helmerhorst, E.J.; Ligtenberg, A.; Karpel, M.; Tecle, T.; Siqueira, W.L.; Oppenheim, F.G.; Hartshorn, K.L. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol. Immunol. 2009, 24, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wu, Z.; Zhou, B.; Jiang, X.; Lavillette, D.; Fan, G. Heat-Denatured Lysozyme is a Novel Potential Non-alcoholic Disinfectant Against Respiratory Virus. Food Environ. Virol. 2023, 15, 212–223. [Google Scholar] [CrossRef]
- Baindara, P.; Ganguli, S.; Chakraborty, R.; Mandal, S.M. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin. Pract. 2023, 13, 125–147. [Google Scholar] [CrossRef]
- Brunaugh, A.D.; Seo, H.; Warnken, Z.; Ding, L.; Seo, S.H.; Smyth, H.D.C. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae. PLoS ONE 2021, 1, e0246803. [Google Scholar] [CrossRef] [PubMed]
- Tonk, M.; Ruzek, D.; Vilcinskas, A. Compelling evidence for the activity of antiviral peptides against SARS-CoV-2. Viruses 2021, 13, 912. [Google Scholar] [CrossRef]
- De Clercq, E. Antivirals: Past, Present and Future. Biochem. Pharmacol. 2013, 85, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Mulder, K.C.L.; Lima, L.A.; Miranda, V.J.; Dias, S.C.; Franco, O.L. Current Scenario of Peptide-Based Drugs: The Key Roles of Cationic Antitumor and Antiviral Peptides. Front. Microbiol. 2013, 4, 321. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.S.M.; Restamian, M.; Madanchi, H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Exp. Rev. Anti-Infect Ther. 2021, 19, 1205–1217. [Google Scholar] [CrossRef]
- Saini, J.; Kaur, P.; Malik, N.; Lakhawat, S.S.; Sharma, P.K. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS-CoV-2 era. Microbiol. Res. 2022, 265, 127206. [Google Scholar] [CrossRef]
- Fan, H.; Bixia Hong, B.; Luo, Y.; Peng, Q.; Wang, L.; Jin, X.; Chen, Y.; Hu, Y.; Shi, Y.; Li, T.; et al. The effect of whey protein on viral infection and replication of SARS-CoV-2 and pangolin coronavirus in vitro. Signal Transduct. Target. Ther. 2020, 5, 275. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wei, Y.Y.; Xian, W.; Fei Ye, F.; Ju, X.; Luo, Y.; Dong, H.; Zhou, Y.-H.; Tan, W.; Zhuang, H.; et al. Identified human breast milk compositions effectively inhibit SARS-CoV-2 and variants infection and replication. iScience 2022, 25, 104136. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, H.; Zhu, Y.; Zhao, X.; Lei, Y.; Zhou, W.; Yu, J.; Dong, X.; Wang, X.; Du, M.; et al. Lysozyme protects against severe acute respiratory syndrome coronavirus 2 infection and inflammation in human corneal epithelial cells. Investig. Ophtalmol. Vis. Sci. 2022, 63, 16. [Google Scholar] [CrossRef] [PubMed]
- Sing, P.; Hernandez-Rauda, R.; Pena-Rodas, O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci. Nutr. 2023, 11, 2547–2579. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.K.; Ndung’u, T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virol. 2020, 15, 609–624. [Google Scholar] [CrossRef]
- Delbue, S.; Pariani, E.; Parapini, S.; Galli, C.; Basilico, N.; D’Alessandro, S.; Pellegrino, S.; Pini, E.; Ciceri, S.; Ferraboschi, P.; et al. Heat-Treated Lysozyme Hydrochloride: A Study on Its Structural Modifications and Anti-SARS-CoV-2 Activity. Molecules 2023, 28, 2848. [Google Scholar] [CrossRef]
- Behbahani, M.; Nosrati, M.; Mohabatkar, H. Inhibition of human immunodeficiency type 1 virus (HIV-1) life cycle by different egg white lysozymes. Appl. Biochem. Biotechnol. 2018, 185, 786–798. [Google Scholar] [CrossRef]
Lysozyme and Model | Antiviral Activity | Reference |
---|---|---|
C-lysozyme purified from different sources against HIV cell infection | Anti-HIV activity assessed using HIV-1 core protein p24 expression in chronically infected ACH-2 lymphocytes and U1 monocytes | [31] |
HEWL tested on HIV infectivity | EC50 55nM; preferred activity before HIV infection; restricted HIV attachment to host cell CD4 | [82] |
C-lysozyme overexpression in Bombix mori | Inhibition of cell proliferation of B. mori nucleopolyhedrovirus | [24] |
Lysozyme heat-treated for 40 min at 100 °C tested against MNV-1, a surrogate of human norovirus | 4.5 log reduction in infectivity of norovirus | [51] |
1% heat-denatured HEWL added to different types of salads exposed to murine norovirus-1 (MNV-1) | General decrease in viral infectivity and inactivating effect on MNV-1 | [56] |
1% heat-denatured HEWL for 60 min against three strains of hepatitis A viruses and murine and human noroviruses | Potent virus inactivating activity and disinfectant action for fruits | [57] |
Addition of 1% heat denatured lysozyme against murine norovirus-1 inoculated into chocolate cream or marmalade jam | Decrease in infectivity by 1.2 log PFU/g in chocolate cream and by 0.9 log PFU/g in marmalade jam | [60] |
Heat-denatured lysozyme mixed and plated with foot-and-mouth disease virus at room temperature for 1 min | Inhibition of virus infectivity and of RNA loads | [61] |
CCR5-T4-Lysozyme on HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates | Inhibitory activity at the higher concentrations | [50] |
C-lysozyme contained in saliva of patients tested against H1N1 influenza virus (IAV) on Madin- Darby canine kidney cells | C-lysozyme contributes to the high anti-IAV activity of sub-mandibular sub-lingual saliva | [66] |
Different heat inactivating conditions of HEWL against H1N1, H5N1, H5N6, and H7N1 influenza viruses and SARS-CoV and SARS-CoV-2 | Inhibition of viral entry into target cells in the ng/mL range | [68] |
Lysozyme combined with lactoferrin against bovine viral diarrhoea virus | Strong antiviral effect at dosages lower than those of the single drug | [63] |
Heat-treated lysozyme against SARS-CoV-2 in vitro | Highest activity when lysozyme was pre-incubated with the virus and re-added to already-infected cells | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamo, A.; Sava, G. Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties. Molecules 2024, 29, 652. https://doi.org/10.3390/molecules29030652
Bergamo A, Sava G. Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties. Molecules. 2024; 29(3):652. https://doi.org/10.3390/molecules29030652
Chicago/Turabian StyleBergamo, Alberta, and Gianni Sava. 2024. "Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties" Molecules 29, no. 3: 652. https://doi.org/10.3390/molecules29030652
APA StyleBergamo, A., & Sava, G. (2024). Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties. Molecules, 29(3), 652. https://doi.org/10.3390/molecules29030652