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Abstract: Recycled crumb rubber (RCR) is considered a reliable asphalt modifier and a solution to the
problem of scrap tyre recycling. RCR-modified asphalt (RCRMA) typically has good low-temperature
performance and storage stability. However, the pre-treatment of crumb rubber (CR) impairs its
physical properties, resulting in poor high-temperature performance, which limits the industrial
application of RCRMA. In this study, low-density polyethylene (LDPE) composite RCR was used
to modify asphalt, and LDPE/RCR-composite-modified asphalt (L-RCRMA) was produced to com-
pensate for the deficiencies in the high-temperature performance of RCRMA. The comprehensive
physical properties of L-RCRMA were elucidated using tests such as the conventional properties,
rotational viscosity, and rheological tests. The results showed that the incorporation of LDPE im-
proved the high-temperature stability and rutting resistance of the asphalt, but an excessive amount
of LDPE impaired the low-temperature performance and storage stability of L-RCRMA. Therefore, it
is necessary to control the amount of LDPE to balance the performance of the asphalt. On this basis,
we recommend a dosage of 20% for RCR and 1.5% for LDPE.

Keywords: polymer processing; waste management; sustainability; crumb-rubber-modified asphalt;
rheological properties

1. Introduction

With the increasing traffic volumes worldwide and the inherent performance deficien-
cies of asphalt pavements, the service lives of these pavements are reduced [1,2]. At the
same time, the increase in used tyres has added pressure on environmental protection and
waste recycling [3]. LDPE is a plastic material with good processability, but its chemical
stability makes LDPE waste difficult to degrade naturally and to recycle [4]. Many stud-
ies at home and abroad have proven the feasibility of polymer-modified asphalt, so the
application of CR composite LDPE for asphalt modification has become a new trend in
sustainable development [5–8].

Relevant studies have confirmed that the addition of CR can significantly improve
asphalt’s high-temperature performance and resistance to permanent deformation, but it
will adversely affect the low-temperature performance of asphalt, and there are density
differences and thermodynamic incompatibilities between CR and matrix asphalt, resulting
in the poor storage stability of modified asphalt [9–11]. Due to its softness and elongation,
LDPE tends to react with asphalt during processing to form new cross-linked structures,
thus improving the high-temperature stability and temperature sensitivity of modified as-
phalt and its mixes [12]. Studies have shown that the addition of LDPE does not effectively
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help asphalt’s low-temperature performance, but if the dosage of LDPE exceeds a certain
amount, it will play a role in enhancing the toughening of asphalt [13]. However, LDPE
also has the problem of poor compatibility with matrix asphalt, which hinders the progress
of industrialisation of CR/LDPE-modified asphalt.

Inspired by terminal blend (TB) technology, researchers have attempted to pre-treat
CR and LDPE to address the above issues [14,15]. These include, but are not limited to,
screw extruders, microwave activation, and microbial depolymerisation techniques [16].
D. Lo Presti et al. [17] added granular rubber particles as asphalt modifiers to release the
full potential of liquid polymers by catalytically pre-treating the rubber particles. The
results showed that the compatibility between the rubber powder and the asphalt could
be significantly improved by maintaining the solubility value of the rubber powder and
improving the low-temperature properties of the asphalt based on rubber powder dosages
of up to 30%. Yang et al. [18] used Cole–Cole curves to observe the compatibility between
CR and asphalt. In general, the compatibility between CR and asphalt is determined by the
symmetry of the Cole–Cole plot. A perfectly symmetric semicircular plot indicates better
compatibility between the two, while deviations from symmetry indicate incompatibility.
The results of the study show that the Cole–Cole curve demonstrates that the pre-treatment
of CR has a positive effect on improving compatibility. Yan et al. [19] used ethylene vinyl
acetate copolymer (EVA) and LDPE for blending to improve the polarity of LDPE in asphalt,
which improved the compatibility between LDPE and asphalt and the storage stability
of the modified asphalt. However, the existing studies have a vague knowledge of the
preparation process of CR and LDPE pre-treatment, and the rheological properties of
pre-treated LDPE/CR-composite-modified asphalt have not been clearly investigated.

In conclusion, in this paper, CR was pre-treated, and composite LDPE was applied
for asphalt modification. Based on a conventional asphalt test and a rheological test to
characterise the comprehensive physical properties of L-RCRMA, the optimal dosage of pre-
treated RCR and LDPE was clarified to provide a reference for the feasibility of industrial
application of L-RCRMA.

2. Results and Discussion
2.1. Routine Performance Characterisation

As shown in Figure 1a, the penetration value of RCRMA is the largest, indicating that
CR damages the hardness of the asphalt after pre-treatment, while the added naphthenic
oil softens it [20]. The penetration of L-RCRMA showed a decrease compared with that of
RCRMA, and with increasing LDPE doping, the penetration of L-RCRMA decreased. This
indicates that the addition of LDPE improves the hardness of the asphalt and compensates
for the lack of performance after CR pre-treatment, so that the softness and hardness of
the asphalt can be balanced by controlling the dosage of LDPE. The softening point and
penetration are related; as shown in Figure 1b, the softening point of RCRMA was the
lowest, indicating that the pre-treatment of CR to make the asphalt softer also had some
adverse effects on its high-temperature performance and was even lower than that of the
matrix asphalt. However, with the addition of LDPE, the softening point of the modified
asphalt increased significantly and was already higher than that of the matrix asphalt at a
dosage of 0.5%. As the dosage of LDPE increased, the softening point gradually increased,
indicating that LDPE can improve the high-temperature performance of asphalt. As shown
in Figure 1c, RCRMA had good low-temperature properties, indicating that the addition of
naphthenic oil and the pre-treatment of CR can improve the low-temperature properties
of asphalt. However, with the increase in LDPE doping, the 5 ◦C ductility performance of
L-RCRMA became progressively worse, indicating that the addition of LDPE is detrimental
to the low-temperature performance of asphalt. In line with previous studies, Usman
Ghani et al. [21] evaluated the morphology, rheological and dynamic viscosity, and the
creep properties of waste HDPE- and LDPE-modified asphalt binders and concluded that
the addition of HDPE and LDPE reduces the phase angle of the asphalt, thereby increasing
the resistance of the modified asphalt to permanent deformation. Jasim Nisar et al. [22] used
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LDPE and styrene–butadiene–styrene (SBS) together for the compound modification of
asphalt binders, which significantly improved the rutting factor and rotational viscosity of
the modified asphalt, indicating that LDPE has a favourable effect on the high-temperature
properties of asphalt. From this, it can be concluded that the high- and low-temperature
properties of the modified asphalt are balanced by controlling the levels of RCR and LDPE
according to the production method described in this paper.
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Figure 1. Conventional physical properties of modified asphalt: (a) penetration, (b) softening point,
and (c) 5 ◦C ductility.

2.2. Ease of Construction

Rotational viscosity reflects, to some extent, the ease of construction of asphalt and its
binders and is closely related to the difficulty of asphalt construction [23]. In this paper, the
change in viscosity of each asphalt sample was investigated over a range of construction
temperatures from 135 ◦C to 175 ◦C.

As shown in Figure 2, CRMA had the highest viscosity due to the larger particle size
and heavier mass of untreated CR, which, in the form of small solid particles applied
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directly to the asphalt modification, greatly increased the density of the asphalt [24]. With
the addition of LDPE, the viscosity of L-RCRMA increased, but at higher temperatures
above 145 ◦C, the viscosity of 0.5L-RCRMA and 1.0L-RCRMA was very close to that
of RCRMA. The SHRP specification for asphalt binder performance sets the technical
requirement that the viscosity of modified asphalt should not exceed 3000 mPa·s at 135 ◦C.
As shown in Figure 2, even the viscosities of CRMA and 2.5L-RCMA, which had the highest
viscosities, were still well below 3000 mPa·s at 135 ◦C, and the viscosities of all samples
continued to decrease with increasing temperatures. Therefore, most of the L-RCMAs
can still meet the requirements of road construction. From the conventional tests for the
penetration, softening point, ductility, and rotational viscosity of asphalt, it can be seen that
the maximum penetration difference between the L-RCRMA samples is 13.8 (0.1 mm), the
maximum softening point difference is 4.2 ◦C, and the maximum 5 ◦C ductility difference
is 2.9 cm. Among them, the indicators of 1.0L-RCRMA are close to those of 0.5L-RCRMA,
and the indicators of 2.0L-RCRMA are closer to those of 1.5L-RCRMA, with the same trend
of change. Therefore, from the perspective of the rational use of resources, we consider
0.5L-RCRMA, 1.5L-RCRMA, and 2.5L-RCRMA to be more representative.
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Figure 2. Viscosity–temperature curve.

2.3. Rheological Properties
2.3.1. Temperature Scanning

As shown in Figure 3a, the incorporation of RCR and LDPE improved the rutting
factor of L-RCRMA, suggesting a beneficial effect on the high-temperature stability of the
asphalt [25]. The rutting factor of the samples increased with increasing LDPE doping
based on RCR addition. Among them, the rutting factors of 0.5L-RCRMA and 1.5L-RCRMA
were closer to but better than that of RCRMA. When the dosage reached roughly 2.5%, the
rutting factor of the composite-modified asphalt increased significantly and was obviously
better than that of the matrix asphalt. When the temperature was lower than 64 ◦C, the
rutting factors of 0.5L-RCRMA and 1.5L-RCRMA were between those of RCRMA and
matrix asphalt, and when the temperature was higher than 64 ◦C, the rutting factor of each
dosage of L-RCRMA was higher than that of RCRMA and matrix asphalt, which indicates
that when the dosage of LDPE is 0.5–2.5%, it will result in the high-temperature stability
of the composite-modified asphalt. At higher temperatures, the improvement effect is
more significant.
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The fatigue factor is commonly used to assess the susceptibility to fatigue cracking
at intermediate asphalt temperatures. In general, the lower the rate of energy loss in
the specimen material, i.e., the lower the fatigue factor, the better the fatigue resistance
of the specimen. The fatigue factor of the modified asphalt is shown in Figure 3b, and
the fatigue factor of CRMA is the largest, indicating that the direct application of waste
rubber powder for asphalt modification will cause the modified asphalt to have certain
performance defects. The fatigue factor curves of BA, 0.5L-RCRMA, and 2.5L-RCRMA
overlap more, indicating that the fatigue resistances of the three are closer. The fatigue
factor curves of RCRMA and 1.5L-RCRMA are more overlapped, and the fatigue factor
of 1.5L-RCRMA is the least overlapped, which indicates that the desulphurisation and
depolymerisation of waste rubber is beneficial to the fatigue resistance of modified asphalt,
and at the same time, the fatigue resistance of modified asphalt can be further improved by
controlling the dosage of LDPE.
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2.3.2. Frequency Scanning

As shown in Figure 4, with the incorporation of RCR and LDPE, the complex modulus
performance of the composite-modified asphalt showed some changes in both the low-
frequency, high-temperature region and the high-frequency, low-temperature region. The
complex modulus of L-RCRMA under each LDPE dosage was better than that of the matrix
asphalt, and there was a phenomenon of complex modulus increase, indicating that the
dosage of LDPE enhanced the ability of the modified asphalt to resist deformation under
the action of high temperatures and low speeds and improved the rutting resistance of the
modified asphalt to a certain extent.

As shown in Figure 5, except for the Han curve distribution of CRMA, the Han curve
of L-RCRMA is smooth and continuous, and the slope of the whole curve is excessively
smooth and has no plateau area, which indicates that the LDPE doping within 2.5% does
not result in any obvious negative effect on the compatibility of RCRMA. This is because
RCR and LDPE blended into asphalt at the same time form a continuous network structure
with each other, which can make asphalt both more uniformly dispersed and stable and to
have better compatibility than either of the modified asphalts alone [26].
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2.3.3. MSCR

Figure 6 shows the MSCR results for each asphalt sample. The strains of the modified
asphalt at both 0.1 kPa and 3.2 kPa were proportional to time. As shown in Figure 6a, under
0.1 kPa stress, the strain of L-RCRMA was significantly reduced when compared with that
of RCRMA and matrix asphalt, indicating that LDPE doping significantly improved the
flow deformation resistance of the asphalt. As the LDPE dosage increased, the strain also
decreased and showed an obvious regularity. As shown in Figure 6b, the change rule of
each asphalt sample under the action of 3.2 kPa stress was basically the same as that under
the action of 0.1 kPa, and it is worth noting that the improvement in the asphalt’s ability to
resist flow deformation by LDPE was more obvious under the action of 0.1 kPa.
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The higher the value of the creep recovery rate R, the lower the unrecoverable creep
flexibility Jnr, indicating that the elastic deformation capacity of the asphalt is greater. The
lower the residual deformation, the better the resistance to high-temperature deforma-
tion [27]. As shown in Figure 7a, under 0.1 kPa stress, LDPE doping significantly increased
the creep recovery (R) of L-RCRMA, and the creep recovery of each amount of L-RCRMA
was higher than that of RCRMA. With the increase in LDPE doping, the creep recovery of
each L-RCRMA amount under 0.1 kPa stress slightly decreased, but the difference between
them was not obvious. The change rule of each asphalt sample at 3.2 kPa stress was different
from that at 0.1 kPa. With the increase in LDPE doping, the creep recovery rate of L-RCRMA
at 3.2 kPa showed an increasing trend. Each creep recovery rate of L-RCRMA compared
with that of CRMA and matrix asphalt had a very significant advantage but was lower than
that of RCRMA. The results show that the incorporation of LDPE can improve the creep
recovery rate of asphalt mainly under low stress, and the effect is significant; LDPE can also
improve the creep recovery rate under high stress, but this effect is relatively insignificant.
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As shown in Figure 7b, the incorporation of LDPE significantly reduced the unrecover-
able creep flexibility (Jnr) of L-RCRMA under 0.1 kPa stress, indicating that the incorporation
of LDPE significantly improved the ability of the asphalt to resist permanent deformation
under repeated loading. As the LDPE loading increased, the unrecoverable creep flexibility
of L-RCRMA decreased with apparent regularity. At 3.2 kPa stress, the unrecoverable creep
flexibility of each asphalt sample decreased with increasing LDPE loading.

As shown in Figure 8, the Rdiff of L-RCRMA decreased with the increasing LDPE
blend. 0.5L-RCRMA performed poorly and similarly to matrix asphalt, but 1.5L-RCRMA
and 2.5L-RCRMA performed better, and their creep recovery rate difference was close to
that of RCRMA. Meanwhile, LDPE incorporation improved the Jnr-diff of L-RCRMA, and
the non-recoverable creep modulus difference of L-RCRMA decreased with the increase in
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LDPE incorporation. This indicates that LDPE incorporation significantly improved the
elastic stability of asphalt and reduced the stress sensitivity of asphalt [28].
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2.3.4. BBR

We analysed the low-temperature creep of modified asphalt using BBR characterisation.
As shown in Figure 9a, the flexural creep modulus (S) of each asphalt sample increased
with decreasing temperatures. The LDPE blend generally increased the creep modulus of L-
RCRMA and improved the ability of the composite-modified asphalt to resist deformation
at low temperatures. The creep modulus of L-RCRMA increased with the increasing LDPE
dosage, and 0.5% L-RCRMA had the smallest creep modulus, indicating that this dosage of
LDPE can have a beneficial effect on the low-temperature cracking resistance of composite-
modified asphalt. The creep moduli of 1.5% L-RCRMA and 2.5% L-RCRMA were slightly
higher than that of RCRMA, indicating that the addition of LDPE at higher levels would
have a negative effect on the low-temperature cracking resistance of asphalt, but it still
had a significant advantage over CRMA and matrix asphalt. As shown in Figure 9b, the
flexural creep rate (m) of each asphalt sample decreased with decreasing temperatures. The
incorporation of higher dosages of LDPE reduces the flexural creep rate of L-RCRMA and
weakens the ability of the asphalt to resist stress dissipation at low temperatures. This is
also consistent with the creep modulus results. In summary, the incorporation of LDPE has
some negative effects on the low-temperature cracking resistance of composite-modified
asphalt, but the effects are mainly manifested at more extreme low temperatures.
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3. Materials and Methods
3.1. Materials

The raw materials required for this study included 60-mesh CR, LDPE, industrial naph-
thenic oil, matrix asphalt, and DZ catalyst. Sixty-mesh CR was purchased from Dujiangyan
Huayi Rubber Co., Ltd. (Chengdu, China) and is produced from scrap tyres by removing
impurities and then grinding them; the specific properties are shown in Table 1. LDPE
is a white translucent pellet produced in Basel, Switzerland, with its specific properties
shown in Table 2. Industrial naphthenic oil was purchased from PetroChina Karamay Petro-
chemical Company (Karamay, China), and the asphalt belonged to the same petroleum
derivatives at room temperature for the brown liquid; the specific properties are shown in
Table 3. The asphalt used in the test was 70# A grade matrix asphalt produced by Yunnan
Petrochemical (Kunming, China), and all the indices are in accordance with the Technical
Specification for Highway Asphalt Pavement Construction JTG F40-2011; the specific prop-
erties are shown in Table 4. The DZ catalyst was a mixture of 2,2′-dibenzoylaminodiphenyl
disulphide (DBD) and zinc oxide (ZnO), which was derived from the group’s previous
research to be effective in assisting desulphurisation at the ratio determined for the test [20].

Table 1. Basic properties of CR.

Parameters
Heating

Reduction
/%

Ash Content
/%

Iron Content
/%

Fibre
Content

/%

Sieve Residue
/%

Bulk
Density
/kg/m3

Test Value 0.62 8.75 0.029 0 0.014 314
Experimental

Methods GB/T19208-2008 GB/T4498-2013 GB/T19208-2008 GB/T19208-2008 GB/T19208-2008 GB/T19208-2008

Table 2. Basic properties of LDPE.

Parameters Density
/g·cm−3

Melting Point
/◦C Tensile Strength /MPa

Test Value 0.936 123 9.2
Experimental

Methods GB/T2559-2005 GB/T8026-2014 ASTM D882

Table 3. Basic properties of naphthenic oils.

Parameters Density
/g·cm−3

Viscosity
/m2·s−1 (100 ◦C)

Saturated Phenol
/%

Test Value 1.02 40 87
Experimental

Methods GB/T1884-92 GB/T265-88 ASM-IP-2
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Table 4. Basic properties of asphalt.

Parameters Softening Point
/◦C

Ductility (15
◦C)/cm

Penetration (25
◦C)/mm

Flash Point
/◦C

Test Value 45.8 >100 70.5 286
Standard Value ≥45 ≥100 60~80 ≥260

Experimental Methods GB/T0606-2011 GB/T0605-2011 GB/T0604-2011 GB/T0611-2011

3.2. Sample Preparation
3.2.1. Activation Pre-Treatment of CR and Preparation of LDPE

During vulcanisation, the carbon atoms of the rubber’s main chain are linked by
sulphur bridges to form a cross-linked structure, which provides good elastic properties
while preventing the chain from moving independently [29]. As a result, vulcanised rubber
is more stable in nature, which makes it difficult to recycle and reuse. In this study, CR was
activated and pre-treated by mechanochemical means, disrupting the internally cured cross-
linked network structure of CR and reducing it to a linearly structured rubber molecular
chain with fluidity and plasticity [30]. Industrial naphthenic oils were used as pre-treatment
solvents. Throughout the treatment process, CR was fully heated in the naphthenic oils and
underwent solubilisation and degradation reactions. As shown in Figure 10a, the untreated
raw CR surface was smooth and flat, which is not easy to use in asphalt binding. As shown
by the red label in Figure 10b, the RCR surface after pre-treatment had a rich laminar
structure with more holes, which is easier for use in asphalt binding reactions [31,32]. The
CR was first weighed and placed in a container. A certain mass of homemade catalyst DZ
was weighed on an electronic balance and added to the container. Next, the naphthenic
oil was heated in an oven at 100 ◦C until it became liquid, then proportionally added to
the container and mixed with the CR and the catalyst DZ. The container with the sample
was placed in the oven for heating and holding; the purpose of this was to heat the sample
evenly so that the reaction could take place in the pre-desulphurisation treatment. Finally,
the container with heat preservation was placed in the oil bath, and the stirrer was activated;
the desulphurisation temperature was 160 ◦C, the desulphurisation time was 2 h, and the
stirrer rotation speed was 450 r/min.
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Figure 10. SEM images: (a) CR and (b) RCR.

LDPE, as a type of plastic, is difficult to dissolve in asphalt and tends to delaminate
when first prepared, so the storage stability of most LDPE-modified asphalts is poor. Before
the modified asphalt was prepared, the LDPE was heated and stirred in an oven at 160 ◦C
to soften and homogenise it, and then, it was slowly added to the asphalt, gram-by-gram.

3.2.2. Preparation of LDPE/RCR-Modified Asphalt (L-RCRMA)

The preparation process of L-RCRMA is shown in Figure 11. The matrix asphalt was
heated to a liquid state, the prepared RCR was slowly added to the asphalt, the mixer was
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started at 100 rpm, and, after 10 min of mixing, the heated LDPE was added to the asphalt
at an even rate and mixed for 30 min. Then, the samples were subjected to shear treatment
at a rate of 2500 rpm and a shear time of 50 min, and finally, the prepared samples were
developed in an oven for 20 min. The samples were labelled as 0.5L-RCRMA, 1.0L-RCRMA,
1.5L-RCRMA, 2.0L-RCRMA, and 2.5L-RCRMA, according to the amount of LDPE blended
into them. The CR was weighed proportionally and poured into the heated asphalt, and
the mixer was started at 100 rpm, and after mixing for 10 min, the samples were sheared
with a shearer at 2500 rpm for 50 min, and finally, the samples were baked in an oven for
20 min. The samples prepared were CR-modified asphalt, designated CRMA.
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3.3. Testing and Characterisation

According to the Technical Specification for Highway Asphalt Pavement Construction
in China (JTG F40-2011) [33], softening point, 5 ◦C ductility, 25 ◦C penetration, and rota-
tional viscosity tests were carried out to determine the properties of the modified asphalt.
We placed the sample ring, containing the sample and the sample base plate, in a constant-
temperature water bath at 5 ◦C for at least 15 min, then removed the sample ring and placed
it in the instrument to ensure the instrument data were accurate, started the electromagnetic
oscillating stirrer, and began heating for the softening point test. We prepared the test
samples according to the protocol, fixed the insulated specimens on the metal columns
of the elongometer slide and fixing plate, and removed the side moulds. We started the
elongometer and observed the extension of the specimen to determine the elongation of the
sample. We removed the sample dish to reach a constant temperature, placed the sample
dish on the platform of the penetration meter, slowly lowered the needle connecting rod,
and used the appropriate position of the reflector or light reflection observation so that
the tip of the needle was exactly in contact with the surface of the sample. We reset the
displacement meter or dial pointer to zero so as to determine the degree of penetration
of the sample needle. The sample was divided into containers for heat preservation. The
sample container was removed after levelling the instrument and stirred appropriately;
we added the appropriate asphalt sample according to the volume required by the rotor
model, held the rotor and sample for 1.5 h, selected the appropriate rotor speed, and began
the rotational viscosity test.
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The samples were subjected to temperature and frequency scans using a Dynamic
Shear Rheometer (DSR) to evaluate their rheological properties over the temperature range.
The tests were carried out using 25 mm diameter plates with 1 mm gap, a shear rate of
10 rad/s, and test temperatures ranging from 46 to 82 ◦C in 6 ◦C increments. The tests
covered a frequency range from 0.1 rad/s to 100 rad/s [34].

Multiple Stress Creep Recovery (MSCR) is an effective method for evaluating the
elastic responses of viscoelastic materials [35]. The elastic response of asphalt samples
under creep and recovery effects was tested at two stress levels, 0.1 kPa and 3.2 kPa. The
test temperature was 58 ◦C, and the stress was applied for 1 s and then removed, and
we waited for a recovery cycle of 9 s. There were 20 cycles, of which the first 10 cycles
were used to condition the specimens and the last 10 cycles were used to analyse the data.
The average percentage recovery (R0.1) and unrecoverable creep compliance (Jnr0.1) were
obtained for all prepared samples during the cycle at 0.1 kPa and at 3.2 kPa. The average
percentage recovery (R3.2) and non-recoverable creep compliance (Jnr3.2) were obtained.
The calculation is shown in Equations (1)–(6):

R(σ, N) =
εc − εr

εc − ε0
× 100 (1)

Jnr(σ, N) =
εr − ε0

σ
(2)

R0.1 =
∑20

N=11 R(0.1, N)

10
(3)

Jnr0.1 =
∑20

N=11 Jnr(0.1, N)

10
(4)

R3.2 =
∑10

N=1 R(3.2, N)

10
(5)

Jnr3.2 =
∑10

N=1 Jnr(3.2, N)

10
(6)

where σ is the applied stress; N is the number of creep and recovery cycles; and ε is the
shear strain.

The bending beam creep (BBR) test is an effective method for evaluating the low-
temperature performance of asphalt [36]. The creep modulus S and creep rate m of asphalt
specimens can reflect the low-temperature cracking resistance of asphalt; the lower the
creep modulus, the higher the creep rate, indicating that the low-temperature performance
of asphalt is better. BBR tests were carried out on matrix asphalt and modified asphalt
samples using standard test methods at −12 ◦C, −18 ◦C, and −24 ◦C. S and m were
recorded at 60 s.

4. Conclusions

In this study, pre-treated CR and LDPE were used for asphalt modification. Based on
the three main indicators, rotational viscosity, dynamic shear rheology, and bending beam
creep experiments to evaluate the comprehensive physical properties of different dosages
of L-RCRMA, the specific conclusions that were reached are as follows:

(1) Rheological experiments showed that the pre-treatment of CR degraded the high-
temperature performance of modified asphalt but improved its low-temperature
performance and storage stability. On the contrary, with an increase in LDPE doping,
the high-temperature rheological properties of L-RCRMA showed an increasing trend
and the low-temperature rheological properties showed a decreasing trend, but the
low-temperature rheological properties decreased less significantly.
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(2) The incorporation of RCR and LDPE improved the rotational viscosity of L-RCRMA
at all temperatures, which was significantly better than that of CRMA.

(3) The Han curve showed that in the range of 0.5% to 2.5%, the incorporation of LDPE
had no negative effect on the original good compatibility of RCRMA, and the Han
curve of L-RCRMA remained smooth and continuous.

(4) Compared with RCRMA, 1.5% L-RCRMA has obvious high-temperature stability
and maintained good compatibility; compared with CRMA, it has obvious low-
temperature crack resistance, is environmentally friendly, and has excellent perfor-
mance as a new road material. In summary, we suggest that the ideal dosage of RCR
is 20%, and the ideal dosage of LDPE is 1.5%.
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