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Abstract: Oily sludge-derived activated carbon was prepared using the potassium hydroxide (KOH)
activation method using oily sludge as a raw material, and one-factor experiments determined the best
conditions for preparing activated carbon. The activated carbon’s morphological structure and surface
chemical properties were analyzed by scanning different characterization tools, and the adsorption
behavior of tetracycline hydrochloride was investigated. The results showed that the optimum
conditions for preparing oily sludge-derived activated carbon were an activation temperature of
400 ◦C, activation time of 30 min, activator concentration of 1 mol/L, and impregnation ratio of
2 mL/g. After activation, the activated carbon had more pores and a more orderly crystal structure
arrangement, the specific surface area was 2.07 times higher than that before activation, and the
surface was rich in functional groups such as -HO, -C-O, -C=C, and -C-H, which increased the active
sites of activated carbon. Physicochemical effects dominated the adsorption process. It belonged to
the spontaneous heat absorption process under the quasi-secondary kinetic and Langmuir isothermal
models. The maximum monolayer adsorption capacity of KOH-activated carbon was 205.1 mg·g−1.

Keywords: oily sludge; activated carbon; tetracycline hydrochloride; KOH activation; adsorption

1. Introduction

TCH (tetracycline hydrochloride) is a common antibiotic, and most of the tetracyclines
are biologically metabolized, excreted and accumulate in large quantities in the natural
environment. It has been shown that antibiotics affect the structure and enzymatic activity
of soil bacterial colonies, as well as the development of antibiotic resistance, which is related
to antibiotics’ effectiveness in treating human diseases. Therefore, it is necessary to find
effective measures to remove TCH.

There are various treatment methods for tetracycline, including electrochemical meth-
ods [1], advanced oxidation [2], ion exchange [3], membrane methods [4], photocatal-
ysis [5,6], and adsorption [7]. Among them, the advanced oxidation method makes it
challenging to synthesize catalysts. The electrochemical and membrane methods are more
costly, and the treatment process is more complicated. Therefore, the adsorption method
has received wide attention because of its convenient operation, low cost, and no secondary
pollution. Activated carbon, resin, graphene, and carbon nanotubes have been used as
adsorbent materials, among which activated carbon has received widespread attention
due to its vast source of raw materials and low cost. Activated carbon is a solid rich in
carbon obtained by pyrolysis of biomass in an anoxic environment. It is considered an
ideal adsorbent due to its large specific surface area, numerous pore structures, abundant
functional groups, and renewable resources [8]. Its preparation process mainly includes
carbonization and activation. Carbonization aims to obtain an initial pore structure and a
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carbon concentrate with appropriate mechanical strength for activation. The purpose of
activation is to create new pores and expand the specific surface area of activated carbon [9],
sludge [10] and rice husk [11], and wood chips [12] are often used as raw materials for
the preparation of activated carbon. The residue after the pyrolysis of oily sludge has
the advantage of higher carbon content and is an excellent raw material for preparing
activated carbon.

Oily sludge is a type of polluted waste created during the exploration, extraction,
cleaning, refining, storage, and transport of crude oil. It is also produced due to accidents,
natural sedimentation, and other factors [13]. Its primary constituents are water (30–50%),
oil (30–80%), and solids (10–20%). The oily component contains heavier oil, asphaltene,
and more saturated hydrocarbons. China produces more than 5 million tonnes of oily
sludge annually, classified as hazardous waste HW08 on the National Hazardous Waste
List [14]. Currently, the primary methods for treating oily sludge are simple landfilling
and advised incineration, which result in resource waste and environmental pollution.
To find a new use for oily sludge that is low-polluting, inexpensive, high value-added,
and can meet the standards of “three-chemistry” waste treatment, it is one of the research
hotspots for academics both at home and abroad. The pore size and specific surface area
limit the adsorption performance of the original activated carbon. The activation energy
increases the activated carbon’s specific surface area and pore volume and enriches the
pore structure. The activation methods are divided into chemical and physical activation;
chemical modification includes acid and alkali modification, oxidizer modification, and
metal modification, and physical activation includes ball milling and gas blowing. The
chemical activation method has the advantages of low activation temperature, short acti-
vation time, high specific surface area and controllable pore structure. Thus, it is widely
adopted [15]. ZnCl2 and other activators have problems with corrosion and low chemical
recovery. Using KOH as the activator can effectively improve the adsorption capacity
of activated carbon for a variety of pollutants; increase the content of hydroxyl groups,
carboxyl groups and other functional groups in the biochar; improve the pore structure of
the biochar; and change the adsorption performance [16]. Liu [17] and Han [18] et al. have
investigated the adsorption of organic materials and heavy metals on oily sludge-derived
activated carbon.

Nevertheless, tetracycline hydrochloride has been observed to adsorb on activated
carbon very infrequently. Based on the above considerations, the activated carbon was pre-
pared from oil-containing sludge using KOH as the activator in this paper. The adsorption
effect of activated carbon on TCH was selected as the evaluation index, and a one-factor ex-
periment optimized the preparation of activated carbon. Various instruments were used to
study the morphological structure and surface chemical properties of the activated carbon
and to investigate the factors affecting the adsorption of TCH, and isothermal adsorption,
kinetic and thermodynamic models were used to investigate the adsorption process, which
provided a new idea for the treatment of wastes with wastes.

2. Results and Discussion
2.1. Optimization of Preparation Conditions
2.1.1. Activation Temperature

Under the conditions of a KOH concentration of 3 mol/L, impregnation ratio of
2 mL/g, and activation time of 90 min, the effects of activation temperature (200–500 ◦C) on
the adsorption of TCH by OSAC-KOH were examined. The results are shown in Figure 1a.

As shown in Figure 1a, the adsorption of TCH by OSAC-KOH showed a tendency
to increase and then decrease with the increase in activation temperature, and reached
the maximum value at 400 ◦C. This tendency may be due to the reaction of KOH at high
temperatures of Formula (1):

6KOH + 2C → 2K + 2K2CO3 + 3H2 (1)
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Less gas is produced when the activation temperature is 200 ◦C because the reaction
between KOH and C and its organic content is incomplete. The gas yield increased as the
activation temperature was raised to 400 ◦C. The diffusion of gas and embedding of K
monomers increased the number of OSAC micropores [19], which in turn increased the
adsorption of TCH by OSAC-KOH from 68.8 mg·g−1 to 96.1 mg·g−1. As the temperature
increased, the adsorption amount gradually reduced to 47.7 mg·g−1. This is because
high temperatures induce the microporous pores in OSAC to collapse; as a result, there
are fewer micropores and more mesopores and macropores, thus reducing the activated
carbon’s ability to adsorb substances. Therefore, the best activation temperature to produce
OSAC-KOH was 400 ◦C.
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Figure 1. Factors influencing the preparation of OSAC-KOH. (a) Activation temperature; (b) Activa-
tion time; (c) Activator concentration; (d) Impregnation ratio.

2.1.2. Activation Time

Under an impregnation ratio of 2 mL/g, an activation temperature of 400 ◦C, and
an activator concentration of 3 mol/L, the effects of activation time (10–120 min) on the
adsorption of TCH by OSAC-KOH were examined. The results are shown in Figure 1b.

The adsorption of TCH by OSAC-KOH showed a growing and declining trend as acti-
vation time increased, as shown in Figure 1b, reaching the maximum value of 55.5 mg·g−1

at 30 min. At a 10 min activation time, OSAC activation was not complete; however, a
longer activation time would result in sintering and the collapse of the pores [20], and
damage to the produced pores from overloading the activator with OSAC [21]. The carbon
skeleton was also damaged to a certain extent. The carbon atoms on it were consumed,
developing the original micropores into medium and large pores. The adsorption amount
of OSAC-KOH was thus reduced, which agreed with Nasrullah’s [22] study. Therefore, the
best activation time to produce OSAC-KOH was 30 min.

2.1.3. Activator Concentration

Under the conditions of the impregnation ratio of 2 mL/g, the activation temperature
of 400 ◦C, and the activation time of 30 min, the effects of KOH concentration (0.3–2 mol/L)
on adsorption of TCH by OSAC-KOH were examined. The results are shown in Figure 1c.

As shown in Figure 1c, the adsorption of TCH by OSAC-KOH was maximized at a
KOH concentration of 1 mol/L, which was 92.2 mg·g−1. The activation level of OSAC
was low, and pore formation was incomplete when the KOH concentration was less than
1 mol/L, which impacted its adsorption effect. The amount of adsorption reduced when
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the concentration reached 2 mol/L. This could result from the increased concentration of
KOH adhering to the OSAC’s surface, which hinders the release of the gas produced inside
and decreases the size of the micropores. In addition, at a particular impregnation ratio, the
increase in KOH concentration blocked portions of the OSAC’s micropores, which were not
entirely unblocked by acid and water washing, lowering the material’s adsorption capacity.
Therefore, the best activator concentration to produce OSAC-KOH was 1 mol/L.

2.1.4. Impregnation Ratio

Under a temperature of 400 ◦C, for 30 min, and with a KOH concentration of 1 mol/L,
the effects of the impregnation ratio (1–4 mL/g) on the adsorption of TCH by OSAC-KOH
were examined. The results are shown in Figure 1d.

One of the primary variables influencing the porosity of activated carbon is the impreg-
nation ratio [23]. As shown in Figure 1d, the adsorption of TCH by OSAC-KOH showed a
tendency to increase and then decrease with the increase in the impregnation ratio, and
reached the maximum at 2 mL/g, which was 77.0 mg·g−1. Sait Yorgun [24] showed that the
rise in the impregnation ratio significantly affected the specific surface area, microporous
surface area, and volume of the activated carbon at an activation temperature of 400 ◦C.
The increase in potassium hydroxide concentration might prevent the tar from clogging
the pore micropores when the impregnation ratio was less than 2 mL/g, enhancing the
adsorption action of activated carbon. When the impregnation ratio was raised to 4 mL/g,
the extra potassium hydroxide either entered the OSAC’s original pores or caused the pore
wall to vaporize, creating macropores between adjacent pores. As a result, the specific
surface area of OSAC-KOH shrank, and its ability to adsorb TCH declined [25]. Therefore,
the best impregnation ratio to produce OSAC-KOH was 2 mL/g.

2.2. Characterization of Activated Carbon

Activated carbon was subjected to an SEM analysis both before and after activation.
From Figure 2a, it can be seen that the OSAC surface is smooth, the number of pores is
small, and the pore size is large. According to Figure 2b, the surface of OSAC-KOH that
has been modified by KOH is rough and uneven, has many micropores, and has a rich
pore structure. In Figure 2c, the EDS characterization tests detect the presence of K; its
mass fraction, which is 18.84%; and KOH load success on the surface of activated carbon.
C and O are the main elements, indicating that KOH activation can effectively form a
layered structure, improve the porosity of OSA-KOH, and give OSA-KOH a larger specific
surface area.

Compared to the surface before activation, the specific surface area has increased,
which is helpful for TCH adsorption. FTIR and XRD techniques were used to examine
the activated carbon’s crystal structure and surface functional groups before and after
activation. From Figure 3a, it can be seen that the more substantial absorption peaks,
corresponding to (002) crystal surface [14], arose around 2θ = 26◦ both before and after
activation by activated carbon. The surface pores of the activated carbon extend into the
interior, according to the narrow and weak diffraction peaks associated with diffraction
angles of about 20.5, 27, 49.5, and 59.5◦, respectively. After activation, the diffraction
peak intensities increased, indicating a more ordered crystal structure for OSAC-KOH.
According to Figure 3b, the stretching vibrations of the -HO, -C-O, -C=C, and -C-H bonds
are represented by the absorption peaks at 3401, 1697, and 1384, 779 cm−1, respectively.
After KOH activation, the strength of the absorption peaks at -HO, -C-O, -C=C, and -C-
increased, and the addition of more of these functional groups may have increased the
adsorption of TCH through higher electrostatic attraction, hydrogen bonding, and π-π.

The elemental compositions of OSAC and OSAC-KOH were analyzed by XPS, as
shown in Figure 4. The content of O element in activated carbon increased after KOH
modification; this is due to the doping of O from the activator into the activated carbon [26].
C1s peak binding energy with 284.6 eV as the center was used as the calibration standard,
and the C peak is convoluted into four characteristic peaks: 284.6 eV(C-C/C-H), 285.8 eV(C-
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O), 287.0 eV(C=O), and 289.5 eV(O=C-O) [27]. The results showed that KOH activation
reduced the atomic ratio of C-C/C-H groups. In the O1s spectrum, the 531.95 eV and
533.42 eV peaks were assigned to C=O and C-O, respectively. After KOH modification,
C−O replaces C=O as the leading O-containing group. KOH modification can significantly
affect the surface functional groups of biochar, especially the oxygen-containing groups [28].
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Figure 5a,b show the N2 adsorption–desorption isotherms and pore size distribution
of activated carbon before and after activation, respectively. As shown in Figure 5a, the
adsorption and desorption of nitrogen by OSAC and OSAC-KOH conformed to the type IV
isotherm according to the classification criteria defined by IUPC. At p/p0 > 0.4, the nitrogen
adsorption of both activated carbons increased, indicating that both OSAC and OSAC-KOH
have microporous and mesoporous structures, and OSAC-KOH has a higher microporous
and mesoporous content. As shown in Figure 5b and Table 1, the specific surface area,
total pore volume, and average pore diameter of OSAC-KOH after KOH activation were
10.1938 m2·g−1, 0.0211 cm3·g−1 and 20.9481 nm, respectively, which were 2.07-, 2.22-, and
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2.0-fold higher compared to that of OSAC, and thus possessed more adsorption sites and a
more robust adsorption performance.
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Table 1. Aperture parameters of OSAC-KOH and OSAC.

Sample SBET/m2·g−1 VT/cm3·g−1 Pore Diameter/nm

OSAC-KOH 10.1938 0.0211 20.9481
OSAC 4.8244 0.0095 9.5031

2.3. Adsorption Influences
2.3.1. Liquid pH

The main factor influencing the adsorption process is the pH of the solution [29]. As
shown in Figure 6a, the adsorption of TCH by OSAC-KOH increased from 34.0 mg·g−1 to
107.0 mg·g−1 as the solution pH was increased from 3 to 4. Continuing to increase the pH
to 11, the adsorption gradually decreased to 24.0 mg·g−1. This may be because activated
carbon is amphoteric, and its capacity to absorb cationic or anionic chemicals is influenced
by the characteristics of its surface [30]. The TCH solution was dominated by H3L+ at
pH < 3.4, H2L at 3.4 < pH < 7.6, HL− at 7.6 < pH < 9.0, and L2− at 9.0 < pH. At a low pH,
OSAC-KOH’s surface had a higher positive charge, which made H3L+ electrostatically
reject it. When the solution was alkaline, TCH in the solution mainly existed in anionic
form, and the oxidized groups on the surface of OSAC-KOH were gradually ionized. The
surface charge density and adsorption decreased with the increase in pH, which could be
attributed to the electrostatic repulsion between the TCH and the reactive chemical groups
of OSAC-KOH decreasing the adsorption of TCH on OSAC-KOH. Additionally, under
alkaline circumstances, some active carboxyl sites on the surface of the activated carbon
would be passivated or even occluded [31], which reduced the OSAC-KOH’s ability to
adsorb. This suggests that electrostatic attraction plays an important role in the adsorption
process for TCH.
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Figure 6. Influencing factors of OSAC-KOH adsorption. (a) pH; (b) Initial concentration; (c) Adsorp-
tion temperature; (d) Adsorption time.

2.3.2. TCH Initial Concentration

As shown in Figure 6b, as the initial concentration increased, the amount of TCH
adsorbed by OSAC-KOH rose from 36.6 mg·g−1 to 119.6 mg·g−1. This fact is primarily
caused by a high concentration of TCH solution, which offers more mass transfer driv-
ing forces and adsorption sites and increases the possibility that OSAC-KOH and TCH
molecules would collide, increasing its adsorption capacity. When the initial concentra-
tion was higher than 350.0 mg/L, the OSAC-KOH adsorption site was saturated, and the
adsorption amount was, thus, brought to equilibrium.
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2.3.3. Adsorption Temperature and Time

As shown in Figure 6c, the adsorption of TCH by OSAC-KOH increased from
107.0 mg·g−1 to 131.0 mg·g−1 when the temperature was increased from 25 to 45 ◦C.
This is because warming reduces the resistance to movement, which accelerates the diffu-
sion of TCH molecules [32]. At the same time, the activation energy of the OSAC-KOH
active adsorption site becomes higher, the adsorption site increases [33], and its adsorption
capacity is thus increased. As shown in Figure 5d, the amount of TCH adsorbing onto
OSAC-KOH grew initially, slowed down with time, and ultimately stabilized. OSAC-KOH
possessed a lot of adsorption sites during the first 360 min of adsorption, and its adsorption
capacity reached 104.0 mg·g−1. As the adsorption time continued to increase, the internal
adsorption sites were occupied by TCH and saturated, and the adsorption amount was
stabilized to 105.0 mg·g−1.

2.4. Kinetic Model
2.4.1. Adsorption Kinetics

The following kinetic equations were used to fit the experimental results using the
quasi-primary kinetic model (2) and the quasi-secondary kinetic model (3):

qt = qe(1 − ek1t) (2)

qt =
k2qe

2t
1 + k2qet

(3)

herein, qe, qt—OSAC-KOH adsorption and adsorption equilibrium at time t, mg·g−1; k1,
k2—kinetic adsorption rate constants for the quasi-primary and quasi-secondary states;
t—absorption time, min.

Adsorption kinetics primarily focus on modelling the adsorption rate to determine
whether physisorption or chemisorption is the adsorption process. As shown in Figure 7
and Table 2, the equilibrium adsorption of TCH by OSAC-KOH obtained from the quasi-
primary and quasi-secondary kinetic fits were 104.2 mg·g−1 and 118.9 mg·g−1, respectively.
The latter quasi-secondary kinetic R1

2 (0.9951) was also higher than the quasi-secondary
kinetic R2

2 (0.9892), which suggests that the process is an adsorption process dominated by
chemisorption [34], with a combination of physical and chemical adsorption. It agrees with
the characterization results, indicating that OSAC-KOH has a rich pore structure enriched
with functional groups such as -HO, -C-O, -C=C, and -C-H.

Molecules 2024, 29, x FOR PEER REVIEW 9 of 15 
 

 

herein, qe, qt—OSAC-KOH adsorption and adsorption equilibrium at time t, mg·g−1; k1, 

k2—kinetic adsorption rate constants for the quasi-primary and quasi-secondary states; 

t—absorption time, min. 

Adsorption kinetics primarily focus on modelling the adsorption rate to determine 

whether physisorption or chemisorption is the adsorption process. As shown in Figure 7 

and Table 2, the equilibrium adsorption of TCH by OSAC-KOH obtained from the quasi-

primary and quasi-secondary kinetic fits were 104.2 mg·g−1 and 118.9 mg·g−1, respectively. 

The latter quasi-secondary kinetic R12 (0.9951) was also higher than the quasi-secondary 

kinetic R22 (0.9892), which suggests that the process is an adsorption process dominated 

by chemisorption [34], with a combination of physical and chemical adsorption. It agrees 

with the characterization results, indicating that OSAC-KOH has a rich pore structure en-

riched with functional groups such as -HO, -C-O, -C=C, and -C-H. 

 

Figure 7. The quasi-first-order kinetic model and quasi-second-order kinetic model of TCH ad-

sorption by OSAC-KOH. 

Table 2. Kinetic model fitting parameters of OSAC-KOH and OSAC. 

Sample 

Quasi-Primary Kinetics  Quasi-Secondary Kinetics 

qe/ 

(mg·g−1) 

k1/ 

min−1 
R12 

qe/ 

(mg·g−1) 

k2/ 

(g·mg−1·min−1) 
R22 

OSAC-KOH 104.21 0.0154 0.9892 118.98 1.69 × 10−4 0.9951 

OSAC 35.59 0.0135 0.9932 41.43 4 × 10−1 0.9991 

2.4.2. Isothermal Adsorption 

The following isothermal equations were used to match the experiments using two 

isothermal models: Langmuir (Equation (4)) and Freundlich (Equation (5)): 

1

m e
e

e

q c b
q

bc
=

+
 

(4) 

1

n
e eq kc=

 
(5) 

herein, b, k—adsorption equilibrium constants in the Langmuir and Freundlich model; 

ce—TCH concentration at equilibrium adsorption, mg/L; qe—OSAC-KOH adsorption at 

Figure 7. The quasi-first-order kinetic model and quasi-second-order kinetic model of TCH adsorption
by OSAC-KOH.



Molecules 2024, 29, 769 9 of 14

Table 2. Kinetic model fitting parameters of OSAC-KOH and OSAC.

Sample
Quasi-Primary Kinetics Quasi-Secondary Kinetics

qe/
(mg·g−1)

k1/
min−1 R1

2 qe/
(mg·g−1)

k2/
(g·mg−1·min−1) R2

2

OSAC-KOH 104.21 0.0154 0.9892 118.98 1.69 × 10−4 0.9951

OSAC 35.59 0.0135 0.9932 41.43 4 × 10−1 0.9991

2.4.2. Isothermal Adsorption

The following isothermal equations were used to match the experiments using two
isothermal models: Langmuir (Equation (4)) and Freundlich (Equation (5)):

qe =
qmceb

1 + bce
(4)

qe = kce
1
n (5)

herein, b, k—adsorption equilibrium constants in the Langmuir and Freundlich model;
ce—TCH concentration at equilibrium adsorption, mg/L; qe—OSAC-KOH adsorption at
equilibrium adsorption, mg·g−1; qm—TCH adsorption is greatest on the monolayer of
OSAC-KOH’s surface, mg·g−1; n—adsorption density constant.

As shown in Figure 8 and Table 3, the Langmuir isothermal model R2 of both OSAC-
KOH and OSAC was more significant than that of the Freundlich isothermal model R2, and
the former had a higher correlation with the fitting parameters of the experimental data,
which indicated that the adsorption of TCH by OSAC-KOH was more consistent with the
Langmuir model. The distribution of adsorption sites is homogeneous and constrained in
both adsorption processes, proving that they are both monolayer adsorptions. OSAC-KOH
had a monolayer adsorption capacity that was 2.9 times more than OSAC at 105.1 mg·g−1.
The Langmuir model equation with 1/n(0.3346) < 1 also indicates that the adsorption of
TCH on OSAC-KOH is a more likely process [35]. Table 4 compares the greatest amount of
TCH that can be absorbed by activated carbon made from various raw materials, and it is
clear that OSAC-KOH exhibits strong adsorption capabilities.
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Table 3. Fitting parameters of the adsorption isotherm model of OSAC-KOH and OSAC.

Sample T/◦C
Langmuir Freundlich

qm/
(mg·g−1)

b/
(L·mg−1) R2 K 1/n R2

OSAC-KOH
25 205.11 0.0217 0.9907 26.9365 0.3346 0.8909
35 216.12 0.0432 0.9928 45.0116 0.2862 0.8574
45 263.20 0.0477 0.9903 52.0806 0.2700 0.8800
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Table 3. Cont.

Sample T/◦C
Langmuir Freundlich

qm/
(mg·g−1)

b/
(L·mg−1) R2 K 1/n R2

OSAC
25 173.53 0.0029 0.9862 2.2419 0.6335 0.9591
35 183.95 0.0046 0.9952 4.4942 0.5512 0.9620
45 205.37 0.0093 0.9900 11.7670 0.4474 0.9471

Table 4. Comparison of the maximum adsorption capacity of TCH by activated carbon prepared
from different raw materials.

Absorbent qm/(mg·g−1) References

Sludge 4.61 [10]
Bamboo charcoal 22.7 [36]

Zeolite 20.4 [37]
Biomass 58.8 [38]

Rice husk ash 8.37 [39]
Ball-milled biochar 84.5 [40]
Marine sediments 50.0 [41]

Palygorskite 93.3 [42]
Chitosan 13.3 [43]

Oily sludge 126.1 This study

2.4.3. Adsorption Thermodynamics

The adsorption thermodynamic parameters Gibbs free energy (∆Gθ), enthalpy change
(∆Hθ) and entropy change (∆Sθ) were calculated using Equations (6) and (7) with the
following equations.

∆G = −RT ln Kθ (6)

ln Kθ =
∆Sθ

R
− ∆Hθ

RT
(7)

where R—gas constant, 8.314 J·(mol·K)−1; T—absolute temperature K; Kθ—factor of equi-
librium distribution.

Table 5 demonstrates that ∆Gθ is smaller than 0 at various temperatures, indicating
that adsorption is spontaneous. Its value also lowers as the temperature rises, suggesting
that high temperatures aid adsorption. ∆Hθ > 0, which is 17.19 kJ·mol−1, indicates that the
adsorption of TCH on OSAC-KOH is a heat-absorbing reaction. ∆Sθ, meaning the degree
of disorder at the solid–liquid interface during adsorption, has a value of 66.34 J·(mol·K)−1,
indicating that the process is becoming more random and disorderly. The adsorption
process is consistent with monolayer adsorption [44].

Table 5. Adsorption thermodynamic parameter of OSAC-KOH.

Sample T/K ∆Gθ/
kJ·mol−1

∆Hθ/
kJ·mol−1

∆Sθ/
J·(mol·K)−1

OSAC-KOH
298 −2.173
308 −3.802 17.19 66.34
318 −5.267

3. Materials and Methods
3.1. Materials

A certain amount of oily sludge was put into a vacuum pyrolysis furnace, heated to
700 ◦C with nitrogen as the protective gas at the heating rate of 10 ◦C/min, and kept at this
temperature for 60 min. After the pyrolysis furnace was cooled to room temperature, it was
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removed and dried, and the primary activated carbon (OSAC) was obtained by grinding
it until it passed through a 50-mesh sieve. KOH was used as the activator, and 10 g of
OSAC was weighed, mixed with various KOH concentrations (0.3–2 mol/L) at different
impregnation ratios (1–4 mL/g), and then placed in a magnetic stirrer for 8 h at 200 rpm.
The mixture was then baked until it reached a steady weight. The dried samples were
placed in a vacuum pyrolysis furnace, where they were gradually heated to the required
temperature (200–700 ◦C) under a nitrogen atmosphere at a rate of 10 ◦C/min with varying
activation durations (30–120 min). The samples were allowed to cool naturally to room
temperature before being immersed in 0.1 mol/L hydrochloric acid for 2 h to remove
impurities. After this, the samples were neutralized by rinsing them with ultrapure water,
drying them, and passing them through a 50-mesh sieve to obtain oily sludge-derived
activated carbon (OSAC-KOH).

3.2. Analytical Methods

Oily sludge is from the landing sludge of a treatment plant in Liaohe Oilfield, China.
All reagents used in this work were of analytical grade, and all solutions were prepared
with double-deionized water. NaOH was purchased from Sinopharm Chemical Reagent
Co., Shanghai, China. TCH was acquired from Shanghai yuanye Bio-Technology Co.,
Ltd., Shanghai, China. HCl was purchased from Chengdu Chron Chemicals Co., LTD.,
Chengdu, China. The surface morphology of activated carbon that has been coated with
gold was examined using scanning electron microscopy (SEM, Tescan MIRA LMS, Brno,
Czech Republic). An X-ray diffractometer (XRD, SmartLab SE, Tokyo, Japan) was used to
investigate the crystal structure using Cu-K rays at 40 kV and 40 mA. With the help of a
Fourier Transform Infrared Spectrometer (FTIR; Thermo Scientific Nicolet 6700, Waltham,
MA, USA), surface functional group alterations were examined. Samples were compressed
using the KBr technique, and the scanning wavelengths ranged from 400 to 500 cm−1. A
fully automated specific surface and porosity analyzer (BET, Micromeritics ASAP 2460,
Freeport, IL, USA) was used to calculate the activated carbon’s specific surface area and
pore size distribution.

3.3. Adsorption Experiments
3.3.1. Adsorption Influence Factor Experiment

In total, 100 mL of a particular concentration of TCH solution was added to a conical
flask containing 100 mg of OSAC-KOH, and the mixture was agitated for 8 h at 25 ◦C at
200 rpm. The starting concentration of TCH, c0 (50–550 mg/L), the solution pH (3–11),
adsorption period t (0–960 min), adsorption temperature T (25–45 ◦C), and all of these
variables were under control. Following filtration via a 0.45 nm membrane, the TCH
concentration was measured using liquid chromatography, and Equation (8) was used to
determine the equilibrium adsorption.

qe =
(co − ce)× V

m
(8)

3.3.2. Adsorption Kinetic Experiments

In total, 100 mg of OSAC and 100 mg of OSAC-KOH were weighed into separate glass
vials, along with 100 mL of TCH solution with a c0 of 150 mg/L. The solution’s pH was
then changed to 4.0 and agitated at 200 revolutions per minute for 8 h at 25 ◦C. Following
the passage of the samples through a 0.45 m filter membrane, samples were obtained at the
predetermined time.

3.3.3. Isothermal Adsorption Experiment

In total, 100 mg of OSAC and 100 mg of OSAC-KOH were added into separate glass
vials. In total, 100 mL of TCH solution with a c0 of 50–200 mg/L was added. The samples
were stirred for 8 h at a rate of 200 rpm per minute at 25, 35, and 45 ◦C to ascertain the TCH
concentration. Each of the above experiments was carried out three times.
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4. Conclusions

OSAC-KOH produced from oily sludge demonstrated effective TCH adsorption.
OSAC-KOH should be prepared under ideal conditions: an activation temperature of
400 ◦C, activation period of 0.5 h, activator concentration of 1 mol/L, and impregnation
ratio of 2 mL/g. The KOH-activated OSAC-KOH micropores were created with more pores,
a more complex pore structure, an ordered crystal structure, a more extensive specific
surface area, and surfaces that were rich in functional groups, including -HO, -C-O, -C=C,
and -C-H. The performance of OSAC-KOH during adsorption was affected by the pH of
the solution, starting concentration, adsorption time, and adsorption temperature, with pH
having the most significant impact. The maximal adsorption capacity of the monolayer
is 105.1 mg·g−1, and the adsorption process is a heat-absorption response consistent with
the Langmuir isothermal model and the quasi-secondary kinetic model. The monolayer’s
highest adsorption capacity was 105.1 mg·g−1. The adsorption mechanisms are mainly
electrostatic, hydrogen bonding, and π-π interactions.

In our future research, we will study the zeta potential of pH and the adsorption
mechanism versus pH.
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