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Abstract: A catalyst-free, additive-free, and eco-friendly method for synthesizing 1,2,4-triazolo[1,5-
a]pyridines under microwave conditions has been established. This tandem reaction involves the
use of enaminonitriles and benzohydrazides, a transamidation mechanism followed by nucleophilic
addition with nitrile, and subsequent condensation to yield the target compound in a short reaction
time. The methodology demonstrates a broad substrate scope and good functional group tolerance,
resulting in the formation of products in good-to-excellent yields. Furthermore, the scale-up reac-
tion and late-stage functionalization of triazolo pyridine further demonstrate its synthetic utility.
A plausible reaction pathway, based on our findings, has been proposed.

Keywords: enaminonitrile; 1,2,4-triazolo[1,5-a]pyridine; microwave irradiation; tandem reaction;
acyl hydrazide

1. Introduction

The synthesis of heterocyclic compounds holds enormous applications in medicinal
and pharmaceutical chemistry [1]. Nitrogen-containing heterocyclic compounds are found
in numerous natural products exhibiting immense biological activities [2]. Developing
sustainable methodologies for the synthesis of fused heterocyclic compounds is an actively
pursued area of research. 1,2,4-triazolo[1,5-a]pyridine, with a bridge-headed nitrogen
atom, is usually found in medicinal and biologically active compounds [3–6]. It exhibits
numerous activities, including acting as RORγt inverse agonists [7], PHD-1 [8], JAK1 [9],
and JAK2 inhibitors [10] (Figure 1). Also, these compounds are utilized in the treatment of
cardiovascular disorders [11], type 2 diabetes [12], and hyperproliferative disorders [13].
Additionally, these types of compounds have various applications in the material sciences
fields as well [14].

Thus, due to the importance of these compounds, a number of methods have been
developed for constructing this useful framework (Scheme 1). In 2009, the Nagasawa group
first disclosed a facile synthesis of 1,2,4-triazolo[1,5-a]pyridines from 2-amino pyridine
with nitrile in the presence of CuBr via consecutive addition–oxidative cyclization [15].
Subsequently, numerous research groups have achieved the target compound either by
using a transition metal catalyst or through the utilization of external oxidants at the
stoichiometric level, such as NaClO/base [16], Pb(OAc)4 [17], and MnO2 [18]. In 2014,
Zhao et al. reported the formation of 1,2,4-triazolo[1,5-a]pyridines through the reaction
between 2-aminopyridine and nitriles in the presence of Cu-Zn/Al-Ti, a heterogeneous
catalyst system under atmospheric air [19].
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Figure 1. Representative examples of bioactive 1,2,4-triazolo[1,5-a]pyridines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 1. Representative examples of bioactive 1,2,4-triazolo[1,5-a]pyridines.

Molecules 2024, 29, x FOR PEER REVIEW 2 of 16 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Representative examples of bioactive 1,2,4-triazolo[1,5-a]pyridines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Scheme 1. Reported strategies for the synthesis of triazolopyridines and our approach.
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Zhao et al. described the PIFA-mediated intramolecular annulation of N-(2-pyridyl)-
amidine by forming an oxidative N-N bond [20]. In 2015, Chang and coworkers reported
the same reaction in an I2/KI reagent system [21]. On the other hand, Zhang and colleagues
reported the same intramolecular annulation under metal- and additive-free electrolytic
conditions, utilizing nBu4Br as both a redox mediator and electrolyte [22]. Bartels et al.
developed a CuBr-catalyzed synthesis of 2-amino-triazolopyridine from quanidylpyridines
through oxidative cyclization under an air atmosphere [23]. In 2021, Chattopadhyay et al.
reported the annulation between 1,2,3,4-tetrazole and nitriles in the presence of a Mn–
Porphyrin catalytic system [24]. In 2022, Liu and coworkers developed a mechanochemical
method to obtain 1,2,4-triazolo[1,5-a]pyridines by the reaction between azinium-N-imines
and nitriles via a [3 + 2] cycloaddition reaction in the presence of copper acetate [25].
Zhuo et al. developed the reaction from 1,2,4-oxadiazol-3-amines and 2-flouropyidines in a
basic medium via tandem SNAr/Boulton–Katritzky rearrangement [26]. Zhuo’s group fur-
ther developed a palladium-catalyzed tandem reaction between 1,2,4-oxadiazol-3-amines
and 2-pyridyl triflate. This cascade reaction proceeds via C-N coupling, followed by
Boulton–Kartritzky rearrangement [27]. In 2022, Cao and coworkers reported the reaction
of N-iminoisoquinolinium ylides with dioxazolone as an acyl nitrile source in the presence
of copper acetate, providing 1,2,4-triazolo[1,5-a]pyridines via C-H amidation and cycliza-
tion [28], and so on [29–48]. Despite the efficiency of these methods in several aspects,
there are still some limitations, including the use of solvent in large quantities, longer
reaction times, multistep processes, and, in several cases, the requirement for either metal
or external catalysts, which will come out as chemical hazards. To overcome these issues, it
is crucial to develop more sustainable methods.

In the past two decades, microwave chemistry has attracted significant attention in
synthetic organic chemistry due to its rapidity, reproducibility, and efficiency in shorter
timeframes compared to conventional approaches [49–51]. Moreover, microwave methods
play an important role in reducing unwanted byproducts, eliminating the need for haz-
ardous solvents and mitigating harsh reaction conditions. Considering the green chemistry
perspective, these types of reactions are environmentally benign, requiring a minimal
amount of solvent, enhancing the reaction rates, and profiting from the cost of the over-
all process.

The nitrile group is an important precursor capable of being transformed into various
molecules via reduction, hydration, hydrolysis, nucleophilic addition, and [3 + 2] cycload-
dition, leading to the formation of nitrogen-containing heterocyclic compounds [52–54].
Enaminonitrile, in particular, is a highly reactive and versatile intermediate utilized for
the synthesis of novel heterocyclic compounds [55]. In the course of our investigation into
novel metal-free synthesis in our research group [55–61], we herein present a microwave-
mediated cascade reaction to develop 1,2,4-triazolo[1,5-a]pyridine (3) through the reaction
between enaminonitriles (1) and benzohydrazides (2), as depicted in Scheme 1. To the best
of our knowledge, there is no report available to date on the synthesis of triazolo pyridine
without use of the catalysts or additives.

2. Results and Discussion

In order to find out the optimal reaction conditions, we used enaminonitrile 1m
(1.0 equiv.) and 4-methoxybenzohydrazide 2a (2.0 equiv.) as starting materials in toluene,
stirring at 120 ◦C for 24 h. Pleasingly, the expected 1,2,4-triazolo[1,5-a]pyridine 3m was
obtained with an 83% yield (Table 1, entry 1). Encouraged by this outcome, and aiming
to improve the yield of the reaction, we conducted solvent screening, and the results are
summarized in Table 1. Solvents such as THF, DMSO, EtOH, and MeOH did not afford the
expected product, while a lower yield was observed in the case of DMF and ACN (Table 1,
entries 2–4). Notably, pyridine (76%), xylene (69%), and chlorobenzene (79%) delivered
3m in good yields (Table 1, entries 5–7). To our delight, performing the reaction in dry
toluene (86%) and incorporating molecular sieves led to an enhanced yield of 89% under a
shorter reaction time of 5 h (Table 1, entries 8, 9). Subsequently, we investigated the impact
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of varying the equivalence of hydrazide (2a). When the equivalence 2a was reduced from
2.0 equiv. to 1.0 equiv. or 1.5 equiv., the yield of 3a was significantly dropped to 27% and
51%, respectively (Table 1, entries 10, and 11). We also checked the reaction with different
additives; the use of TFA afforded a good yield of 79%, and p-TSA resulted in 72% (Table 1,
entries 12, and 13). In contrast, the reaction with different bases, including Cs2CO3, K2CO3,
and KOtBu, failed to afford the product (Table 1, entry 15).

Table 1. Optimization of reaction conditions a.
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3 DMF 24 20
4 ACN 24 17
5 Pyridine 24 76
6 Xylene 24 69
7 Chlorobenzene 24 79
8 Dry Toluene 12 86

9 e Dry Toluene 3Å MS 5 89
10 f Dry Toluene 13 27
11 g Dry Toluene 26 51
12 h Dry Toluene TFA 2 79
13 h Dry Toluene p-TSA 1 72
14 h Dry Toluene MsOH 0.5 50
15 h Dry Toluene Bases i 2 NR
16 j,k Dry Toluene 3 89
17 l,k Dry Toluene 6 28
18 m,k Dry toluene 6 62
19 n,k Dry Toluene 90 min 81
20 o,k Dry Toluene 40 min 76
21 p,k TBME 3 69

a Unless otherwise mentioned, all reactions were performed in 1m (0.10 mmol, 1.0 equiv.), 2a (0.20 mmol,
2.0 equiv.), and solvent (2.0 mL), stirred at 120 ◦C under conventional heating for the indicated time. b Isolated
yield. c Solvents: THF, DMSO, EtOH, MeOH. d NR—No reaction. e An amount of 100 mg of 3Å MS was used.
f Used 1.0 equiv. of 2a. g Used 1.5 equiv. of 2a. h An amount of 1.5 equiv. of additive was used and stirred at
140 ◦C. i Bases: Cs2CO3, K2CO3, and KOtBu. j Conducted under microwave conditions at 140 ◦C (pressure 0 bar,
power 145–160 W). k An amount of 1.5 mL of solvent was used. l Conducted under microwave conditions at
100 ◦C (pressure 1 bar, power 92–105 W). m Conducted under microwave conditions at 120 ◦C (pressure 0 bar,
power 105–115 W). n Conducted under microwave conditions at 160 ◦C (pressure 1 bar, power 180–200 W).
o Conducted under microwave conditions at 180 ◦C (pressure 2 bar, power 250–265 W). p Conducted under
microwave conditions at 140 ◦C (pressure 6 bar, power 175–190 W).

After examining various solvents and additives, we conducted further investigations
focusing on the role of reaction temperature. Interestingly, when the reaction was performed
in a microwave medium at 140 ◦C, the desired product 3m was obtained with an 89% yield
within 3 h (Table 1, entry 16). However, we observed that reducing the temperature from
140 ◦C resulted in a slightly lower yield at both 100 ◦C and 120 ◦C (Table 1, entries 17–18).
On the other hand, by increasing the reaction temperature to 160 ◦C and 180 ◦C, the
reactions were completed in 90 min and 40 min, affording 3m with yields of 81% and 76%,
respectively (Table 1, entries 18 and 19). Finally, upon switching to a green solvent such as
TBME, a 69% yield of 3m was obtained. Based on the above screening, we have determined
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that the optimal reaction conditions for this tandem reaction involve using 1 (1.0 equiv.)
and 2 (2.0 equiv.) in dry toluene (1.5 mL) under microwave conditions at 140 ◦C.

With the optimized conditions in hand, we explored the substrate scope of this method-
ology. Initially, numerous benzohydrazides were reacted with 4-methoxy enaminonitrile
under the standard reaction conditions, and the outcomes are summarized in Table 2. Un-
substituted benzohydrazide worked well under this condition, delivering the anticipated
product 3a in an 83% yield. EDGs on the benzohydrazide, such as methoxy and methyl-
substituted derivatives, were well tolerated, affording the desired triazolopyridines in high
yields of 3b-89% and 3c-82%. Substrates containing strong EWG were then examined,
and the CF3 group was well tolerated in our optimized conditions, yielding 3d in 73%.
However, the NO2 group delivered the equivalent product 3e in only 24% yield.

Table 2. Substrate scope of acylhydrazides a.
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7 3g 4-bromophenyl 3 43

8 3h 3-pyridinyl 3 77
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Halogen-containing substrates also efficiently underwent this tandem reaction to
deliver the expected products in moderate yields (3f, 41%, 3g, 43%). Similar to the
aromatic rings, heteroaromatic compounds such as 3-nicotinic hydrazide (76% (3h)), 2-
thiophenecarboxylic acid hydrazide (94% (3i)), and 2-furoic hydrazide (73% (3j)) gave
the final products in good-to-excellent yields. Additionally, aliphatic acyl hydrazides are
compatible under these reactions and displayed good yields (3k, 67%, and 3l, 46%). Along
with optimized microwave reaction conditions, we also carried out the reflux reaction at
120 ◦C with 100 mg of 3Å MS; almost all the obtained products showed similar yields with
microwave conditions but with a slightly prolonged reaction time (details are given in
Table 2, in the parenthesis).

Encouraged by these outcomes, we next investigated our standard conditions with
various enaminonitriles. Almost all the enaminonitriles successfully delivered the final
product in very high yield (Table 3). Enaminonitriles with EDGs such as propyl (80%, 3n)
and thiomethyl (71%, 3o) delivered the products in higher yield. EWGs such as nitro groups
delivered the corresponding product 3p in a slightly moderate yield of 48%. Enaminonitrile
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with halogens delivered the equivalent products in excellent yields (3q, 91%; 3r, 94%;
3s, 90%; 3t, 71%; and 3u, 67%). These products have the potential to undergo various
expansions through coupling reactions with the halogen functional groups. Similar to
Table 2, here also, reflux reactions were conducted for some substrates (at 120 ◦C with
100 mg of 3Å MS, data are in parenthesis of Table 3), which produced the corresponding
products in comparable yields with microwave reaction conditions but required a little
extra time to complete.

Table 3. Substrate scope of enaminonitriles a.
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To further expand the synthetic utility of this method, we conducted a scale-up reaction
(Scheme 2). An amount of 1.54 mmol of 1m efficiently reacted with 2.0 equiv. of 2a to
afford the corresponding product 3m in 88%. We performed a control experiment to gain
a deeper insight into the reaction pathways. In the presence of the radical scavenger
BHT, 3m was obtained in an excellent yield of 89%, indicating that this reaction did
not go through a radical pathway. From the application point of view, we explored
some coupling reactions [62]. Initially, a Suzuki–Miyaura cross-coupling reaction was
performed. A triazolopyridine derivative with a bromo functional group (3s) reacted
with 4-methoxyphenylboronic acid (4) in the presence of Pd(PPh3)4 to afford the coupling
product 5 in an 88% yield. Later, we carried out a Sonogashira coupling reaction between
the iodo compound (3t) and 4-ethylnylanisole (6), resulting in the coupling product 7 in a
61% yield.

Based on the above results, we propose a reaction pathway to explain the possible
formation of product 3 (Scheme 3). Initially, compound 1 undergoes transamidation with 2
to deliver the intermediate A by the removal of dimethyl amine. The nitrogen lone pair
attacks the nitrile moiety of A, affording the intermediate B, which subsequently undergoes
condensation with the carbonyl group to provide intermediate C. Finally, the elimination
of water leads to the formation of the 1,2,4-triazolo[1,5-a]pyridine 3 product.
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3. Materials and Methods
3.1. General Information

Unless noted otherwise, all reagents were purchased from commercial sources and
used as received. Reaction progress was monitored using thin-layer chromatography (TLC)
using silica gel F254 plates. Products were purified using flash column chromatography
using silica gel 60 (70–230 mesh) or by using the Biotage ‘Isolera One’ system with indicated
solvents. NMR spectra were recorded on a Jeol RESONANCE ECZ 400S (400 MHz for 1H
NMR and 100 MHz for 13C NMR). Chemical shifts are reported in ppm from tetramethylsi-
lane (TMS) with the solvent resonance resulting from incomplete deuteration as the internal
reference (CDCl3: 7.26 ppm, DMSO-d6: 2.5 ppm, 3.33 ppm of water peak) or relative to TMS
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(δ 0.0). Data are reported as follows: chemical shift δ, multiplicity (s = singlet, d = doublet,
t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, td = triplet of doublet,
ddd = doublet of doublets of doublets, ddt = doublet of doublet of triplets), coupling con-
stants (Hz), number of protons. High-resolution mass spectra (HRMS) were recorded on
either Bruker BioSciences maXis 4G or Thermo Vanquish uhplc system. Melting points
were recorded in a Stuart Cole-Parmer SMP30 apparatus. All the microwave reactions were
conducted in a Biotage initiator+. The parameters were at 140 ◦C (pressure 0 bar, power
145–160 W), at 160 ◦C (pressure 1 bar, power 180–200 W), at 180 ◦C (pressure 2 bar, power
250–265 W), and at 140 ◦C in TBME (pressure 6 bar, power 175–190 W).

3.2. Typical Procedure for the Preparation of Enaminonitriles [55]

The synthesis of enaminonitriles consists of two steps. The general procedure for step
1, Horner–Wadsworth–Emmons (HWE) reaction with acetophenone: In a 50 mL oven-dried
round-bottom flask, sodium hydride (60%, 9.1 mmol, 2.2 equiv.) was added, and the flask
was evacuated and backfilled with nitrogen three times. Subsequently, dry tetrahydrofuran
(0.5 M) was added, and the mixture was cooled to 0 ◦C. Diethyl cyanomethylphosphonate
(9.1 mmol, 2.2 equiv.) was then slowly added to the reaction mixture and allowed to stir for
30 min. The ice bath was removed, and acetophenone (4.15 mmol, 1.0 equiv.) was added
to the reaction mixture, which was then stirred at room temperature. Once the reaction
was completed, as monitored using TLC, solvents were evaporated, and the residue was
diluted with 30 mL of water. The reaction mixture was extracted three times (20 mL × 3)
with ethyl acetate (EtOAc), and the combined organic layers were washed with a sodium
chloride (NaCl) solution and dried with Na2SO4. The solvent was evaporated to obtain
the crude product. Purification was carried out using silica gel chromatography using a
hexanes/ethyl acetate (9:1) mixture to yield substituted α,β-unsaturated 3-phenylbut-2-
enenitrile in an E/Z mixture (92% yield, 546 mg).

General procedure for step 2, synthesis of enaminonitrile: In a 50 mL oven-dried
round-bottom flask, α,β-unsaturated 3-phenylbut-2-enenitrile (0.69 mmol, 1.0 equiv) and
NH4OAc (0.84 mmol, 1.2 equiv.) in DMSO (0.69 mL) were combined, followed by the
addition of DMF-DMA (3.49 mmol, 5.0 equiv.). The resulting reaction mixture was stirred
at 120 ◦C until completion, as monitored using TLC. Subsequently, the reaction mixture was
allowed to cool to room temperature, diluted with water, and extracted with chloroform
(20 mL × 3). The combined organic layers were washed with a saturated NaCl solution,
dried over anhydrous Na2SO4, and then evaporated. The crude product was purified using
silica gel chromatography using a hexanes/ethyl acetate mixture (9:1 to 8:2) to yield the
(4E)-5-(dimethylamino)-3-phenylpenta-2,4-dienenitrile (86%, 118 mg).

3.3. Typical Procedure for the Preparation of 1,2,4-triazolo[1,5-a]Pyridines in Microwave Conditions

In an oven-dried microwave vial (0.5–2.0 mL), enaminonitriles (1, 0.175 mmol, 1.0 equiv.)
and benzohydrazides (2, 0.35 mmol, 2.0 equiv.) were added. After evacuation and backfill-
ing with nitrogen three times, dry toluene 1.5 mL was added. The reaction vial was then
closed and microwave heating was performed at 140 ◦C. Once the reaction was completed,
as indicated by TLC, the reaction mixture was cooled to room temperature and directly
purified using silica gel column chromatography using chloroform/ethyl acetate 10:1 as
the eluent.

3.4. Typical Procedure for the Preparation of 1,2,4-triazolo[1,5-a]Pyridines in Reflux Conditions

In an oven-dried 25 mL round-bottom flask, enaminonitriles (1, 0.175 mmol, 1.0 equiv.),
benzohydrazides (2, 0.35 mmol, 2.0 equiv.), and 100 mg of 3Å MS were added. After
evacuation and backfilling with nitrogen three times, dry toluene 2.0 mL was added. Then,
Dean–Stark apparatus was fixed and refluxed at 120 ◦C. Once the reaction was completed,
as monitored using TLC, the reaction mixture was cooled to room temperature and directly
purified using silica gel column chromatography using chloroform/ethyl acetate 10:1 as
the eluent.
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3.5. Procedure for the Scale-Up Reaction

In an oven-dried microwave vial (2.0–5.0 mL), enaminonitrile (1m, 1.54 mmol, 1.0 equiv.)
and 4-methoxybenzohydrazide (2a, 3.08 mmol, 2.0 equiv.) were added. After evacuation
and backfilling with nitrogen three times, 4.0 mL of dry toluene was added. The reaction
vial was then closed and microwave heating was performed at 140 ◦C. Once the reaction was
completed, as monitored using TLC, the reaction mixture was cooled to room temperature
and directly purified using silica gel column chromatography using chloroform/ethyl
acetate 10:1 to afford the 3m in an 88% yield (406 mg).

3.6. Procedure for the Reaction with Radical Scavenger

In an oven-dried microwave vial (0.5–2.0 mL), enaminonitrile (1m, 0.225 mmol,
1.0 equiv.), benzohydrazide (2a, 0.45 mmol, 2.0 equiv.), and BHT (0.09 mmol, 4.0 equiv.)
were added. After evacuation and backfilling with nitrogen three times, 2.0 mL of dry
toluene was added. The reaction vial was then closed, and microwave heating was per-
formed at 140 ◦C. Once the reaction was completed, as monitored using TLC, the reaction
mixture was cooled to room temperature and directly purified using silica gel column
chromatography using chloroform/ethyl acetate (10:1) to afford the 3m in an 89% (60 mg).

3.7. Procedure for the Suzuki–Miyaura Coupling Reaction

A reaction mixture of 7-(4-bromophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]-
pyridine (3s, 18.1 mg, 0.0476 mmol, 1.0 equiv.), 4-methoxyphenylboronic acid (4, 14.5 mg,
2.0 equiv.), Pd(PPh3)4 (5.5 mg, 0.1 equiv.), and K2CO3 (9.9 mg, 1.5 equiv.) in degassed
ethanol (1.0 mL) was stirred at 80 ◦C for 12 h using sand bath. The reaction progress was
monitored using TLC, and once the reaction was completed, the reaction mixture was
concentrated under reduced pressure, diluted with ethyl acetate (10 mL), and washed
with brine (5 mL × 2). The aqueous layer was extracted with DCM (10 mL × 2). The
combined organic layers were dried over MgSO4 and concentrated under reduced pressure
to give the crude product, which was purified using silica gel column chromatography
using DCM: EtOAc (0 -> 5%) to afford the coupled product 5 in an 88% yield (17.1 mg) as a
pale-yellow solid.

3.8. Procedure for the Sonogashira Coupling Reaction

A mixture of 7-(4-iodophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3t,
16.1 mg, 0.0377 mmol, 1.0 equiv), 4-ethynylanisole (6, 6.0 mg, 1.2 equiv.), Pd(PPh3)2Cl2
(2.6 mg, 0.1 equiv.), CuI (0.7 mg, 0.1 equiv.), and Et3N (0.5 mL) in toluene (1.0 mL) was stirred
at 100 ◦C for 9 h under nitrogen atmosphere. The reaction progress was monitored using
TLC, and once the reaction was completed, the reaction mixture was concentrated under
reduced pressure, diluted with ethyl acetate (10mL), and washed with brine (5 mL × 2).
The water layer was extracted with dichloromethane (10 mL × 2). The combined organic
layers were dried over MgSO4 and concentrated under reduced pressure to give the crude
product, which was purified using silica gel column chromatography by using DCM:
EtOAc (0 to 5%) to afford the coupled product 7 in 61% yield (9.9 mg) as a pale-yellow solid.

3.9. Anlytical Data of Synthezised Compounds

7-(4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[1,5-a]pyridine (3a)
M.W: yield 82.6% (43.0 mg, SM was used 39.5 mg), reflux: yield 85.1% (39.2 mg, SM

was used 39.5 mg); pale yellow solid; mp: 141–143 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.59
(dd, J = 4.6, 2.4 Hz, 1H), 8.32–8.29 (m, 2H), 7.89 (dd, J = 3.2, 0.8 Hz, 1H), 7.65–7.60 (m, 2H),
7.54–7.47 (m, 3H), 7.25 (td, J = 7.9, 2.0 Hz, 1H), 7.04 (dd, J = 5.6, 3.4 Hz, 2H), 3.88 (s, 3H); 13C
NMR (100 MHz, CDCl3): δ 160.7, 160.7, 152.0, 130.4, 130.2, 128.9, 128.4, 128.1, 127.5, 114.8,
113.7, 113.6, 112.0, 111.9, 55.6; HRMS (ESI) m/z [M + H]+: calcd for C19H16N3O: 302.1293;
Found: 302.1289.

2,7-bis(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3b)
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M.W: yield 88.3% (51.2 mg, SM was used 40.0 mg), reflux: yield 88.3% (67.5 mg, SM
was used 52.7 mg); pale yellow solid; mp: 188–190 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.56
(d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.8 Hz, 2H), 7.88 (s, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.24 (d,
J = 6.8 Hz, 1H), 7.05–7.01 (m, 4H), 3.88 (s, 3H), 3.88 (S, 3H); 13C NMR (100 MHz, CDCl3):
δ 164.0, 161.6, 160.7, 151.7, 143.1, 130.2, 129.0, 128.4, 128.0, 122.9, 114.8, 114.3, 113.5, 111.6,
55.6, 55.5; HRMS (ESI) m/z [M + H]+: calcd for C20H18N3O2: 332.1399; Found: 332.1393.

7-(4-methoxyphenyl)-2-(p-tolyl)-[1,2,4]triazolo[1,5-a]pyridine (3c)
Yield 81.3% (48.9 mg, SM was used 43.5 mg); yellow solid; mp: 155–157 ◦C; 1H NMR

(400 MHz, CDCl3): δ 8.55 (d, J = 6.8 Hz, 1H), 8.18 (d, J = 7.6 Hz, 2H), 7.84 (s, 1H), 7.60 (d,
J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 7.19 (dd, J = 5.6, 1.6 Hz, 1H), 7.01 (d, J = 8.4 Hz,
2H), 3.86 (S, 3H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 164.7, 160.5, 152.1, 142.6,
140.4, 130.3, 129.6, 128.3, 128.0, 127.9, 127.3, 114.8, 113.3, 111.9, 55.5, 21.6; HRMS (ESI) m/z
[M + H]+: calcd for C20H18N3O: 316.1449; Found: 316.1445.

7-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[1,5-a]pyridine (3d)
Yield 73.2% (60.3 mg, SM was used 50.8 mg); pale yellow solid; mp: 219–221 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.61 (d, J = 7.2 Hz, 1H), 8.43 (d J = 7.6 Hz, 2H), 7.90 (s, 1H), 7.77
(d, J = 7.6 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.05 (d, J = 8.4 Hz, 2H),
3.89 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 161.7, 152.0, 143.3, 139.4, 135.3, 130.1, 129.1,
128.0, 127.1, 123.4, 119.5, 114.4, 113.5, 112.4, 55.5, 21.3. 19F NMR (376 MHz, CDCl3): δ -62.7;
HRMS (ESI) m/z [M + H]+: calcd for C20H15F3N3O: 370.1167; Found: 370.1165.

7-(4-methoxyphenyl)-2-(4-nitrophenyl)-[1,2,4]triazolo[1,5-a]pyridine (3e)
M.W: yield 24.0% (5.6 mg, SM was used 15.3 mg), reflux: yield 23.8% (8.6 mg, SM

was used 24.0 mg); pale yellow solid; mp: 177–179 ◦C; 1H NMR (400 MHz, CDCl3): δ
8.62 (d, J = 7.2 Hz, 1H), 8.48 (d, J = 8.8 Hz, 2H), 8.36 (d, J = 8.8 Hz, 2H), 7.91 (s, 1H), 7.65
(d, J = 8.8 Hz, 2H), 7.33 (dd, J = 5.6, 1.6 Hz, 1H), 7.06 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H); 13C
NMR (100 MHz, DMSO-d6): δ 161.4, 160.0, 151.6, 148.2, 142.0, 136.4, 128.4, 127.9, 127.5,
123.6, 114.4, 113.7, 111.1, 54.9; HRMS (ESI) m/z [M + H]+: calcd for C20H15N4O3: 347.1144;
Found: 347.1135.

2-(4-chlorophenyl)-7-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3f)
M.W: yield 40.8% (28.8 mg, SM was used 48.2 mg), reflux: yield 42.1% (14.5, SM was

used 23.5 mg); pale yellow solid; mp: 202–204 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.57 (d,
J = 6.4 Hz, 1H), 8.23 (dt, J = 8.8, 2.2 Hz, 2H), 7.86 (q, J = 0.9 Hz, 1H), 7.62 (dt, J = 9.2, 2.6 Hz,
2H), 7.47 (dt, J = 8.8, 2.2 Hz, 2H), 7.26 (dd, J = 4.4, 2.4 Hz, 1H), 7.04 (dt, J = 8.8, 2.7 Hz, 2H),
3.88 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 163.5, 160.7, 152.1, 143.1, 136.4, 130.1, 129.2,
129.2, 128.8, 128.4, 128.0, 114.9, 113.8, 112.0, 55.6; HRMS (ESI) m/z [M + H]+: calcd for
C19H15ClN3O: 336.0904; Found: 336.0899.

2-(4-bromophenyl)-7-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3g)
Yield 43.0% (31.3 mg, SM was used 43.8 mg); pale yellow solid; mp: 209–211 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.60 (d, J = 7.2 Hz, 1H), 8.26 (d, J = 9.2 Hz, 2H), 7.91 (s, 1H),
7.65 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H), 7.22–7.20 (m, 1H), 7.03 (d, J = 8.4 Hz, 2H),
3.88 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 163.5, 160.6, 151.2, 140.2, 136.2, 131.5, 128.7,
128.3, 128.0, 123.0, 122.0, 114.0, 112.3, 111.7, 54.9; HRMS (ESI) m/z [M + H]+: calcd for
C19H15BrN3O: 380.0398; Found: 380.0390.

7-(4-methoxyphenyl)-2-(pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyridine (3h)
Yield 76.3% (48.4 mg, SM was used 47.8 mg); pale yellow solid; mp: 173–175 ◦C; 1H

NMR (400 MHz, CDCl3): δ 9.53 (s, 1H), 8.71 (d, J = 5.2 Hz, 1H), 8.61–8.58 (m, 2H), 7.88 (q,
J = 0.9 Hz, 1H), 7.64 (dt, J = 8.8, 2.7 Hz, 2H), 7.48 (dd, J = 5.2, 5.0 Hz, 2H), 7.29 (dd, J = 5.6,
1.8 Hz, 1H), 7.05 (dt, J = 9.2, 2.5 Hz, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 162.2,
160.7, 152.4, 150.3, 148.2, 143.1, 135.2, 130.1, 128.4, 128.1, 127.4, 124.0, 114.9, 114.0, 112.2, 55.6;
HRMS (ESI) m/z [M + H]+: calcd for C18H15N4O: 303.1245; Found: 303.1242.

7-(4-methoxyphenyl)-2-(thiophen-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (3i)
M.W: yield 94.1% (57.2 mg, SM was used 45.1 mg), reflux: yield 85.2% (28.0 mg, SM

was used 24.4 mg); pale yellow solid; mp: 150–152 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.54
(d, J = 6.8 Hz, 1H), 7.90 (dd, J = 2.8, 0.8 Hz,1H), 7.82 (d, J = 0.8 Hz, 1H), 7.60 (dt, J = 8.4,
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2.6 Hz 2H), 7.45 (dd, J = 3.6, 1.4 Hz, 1H), 7.22 (dd, J = 5.2, 1.8 Hz, 1H), 7.17 (dd, J = 3.6,
1.6 Hz, 1H), 7.02 (dt, J = 9.2, 2.4 Hz, 2H), 3.86 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 160.6,
152.0, 143.0, 133.6, 130.1, 128.4, 128.2, 128.0, 127.9, 127.8, 114.8, 113.5, 111.7, 55.5; HRMS
(ESI) m/z [M + H]+: calcd for C17H14N3OS: 308.0857; Found: 308.0852.

2-(furan-2-yl)-7-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3j)
Yield 72.5% (46.6 mg, SM was used 50.5 mg); pale yellow solid; mp: 137–139 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.59 (d, J = 6.8 Hz, 1H), 7.87 (s,1H), 7.64–7.62 (m, 3H), 7.30–7.26
(m, 2H), 7.05 (d, J = 6.8 Hz, 2H), 6.60 (s, 1H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl3): δ
160.7, 157.2, 151.7, 146.1, 144.4, 143.4, 130.1, 128.5, 128.1, 114.8, 113.9, 112.0, 111.9, 111.7, 55.6;
HRMS (ESI) m/z [M + H]+: calcd for C17H14N3O2: 292.1086; Found: 292.1081.

7-(4-methoxyphenyl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (3k)
M.W: yield 66.7% (30.6 mg, SM was used 43.8 mg), reflux: 65.5% (13.8 mg, SM was

used 20.0 mg); brown solid; mp: 192–194 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.47 (d,
J = 7.2 Hz, 1H), 7.73 (d, J = 0.8 Hz, 1H), 7.58 (dt, J = 9.2, 2.5 Hz, 2H), 7.17 (dd, J = 5.2, 2.0 Hz,
1H), 7.01 (dt, J = 9.2, 2.6 Hz, 2H), 3.86 (s, 3H), 2.60 (s, 3H); 13C NMR (100 MHz, CDCl3): δ
164.4, 160.6, 151.7, 142.6, 130.3, 128.4, 127.6, 114.7, 112.9, 111.5, 55.5, 14.6; HRMS (ESI) m/z
[M + H]+: calcd for C14H14N3O: 240.1136; Found: 240.1131.

2-heptyl-7-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3l)
Yield 46.2% (31.4 mg, SM was used 48.0 mg); pale yellow solid; mp: 224–226 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.47 (d, J = 7.2 Hz, 1H), 7.74 (s, 1H), 7.57 (d, J = 8.8 Hz, 2H), 7.15
(dd, J = 5.6, 1.6 Hz, 1H), 7.00 (d, J = 4.4 Hz, 2H), 3.84 (s, 3H), 2.90 (t, J = 7.8 Hz, 2H), 1.86 (p,
J = 5.8 Hz, 2H), 1.41–1.26 (m, 9H), 0.85 (t, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ
168.3, 160.5, 151.7, 142.4, 130.4, 128.3, 127.7, 114.7, 112.8, 111.7, 55.5, 31.8, 29.5, 29.2, 29.0, 28.5,
22.7, 14.2; HRMS (ESI) m/z [M + H]+: calcd for C20H26N3O: 324.2075; Found: 324.2070.

2-(4-methoxyphenyl)-7-phenyl-[1,2,4]triazolo[1,5-a]pyridine (3m)
M.W: yield 89.0% (64.9 mg, SM was used 48.0 mg), reflux: yield 89.0% (39.7 mg, SM

was used 29.4 mg); pale yellow solid; mp: 179–181 ◦C; 1H NMR (400 MHz, CDCl3): δ
8.60–8.57 (m, 1H), 8.24 (d, J = 8.4 Hz, 2H), 7.90 (s, 1H), 7.69–7.61 (m, 2H), 7.55–7.44 (m, 3H),
7.27–7.23 (m, 1H), 7.03 (dd, J = 6.8, 2.0 Hz, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl3):
δ 164.6, 161.4, 152.0, 143.0, 138.1, 129.4, 129.1, 128.9, 128.0, 127.2, 123.3, 114.2, 113.4, 112.8,
55.5; HRMS (ESI) m/z [M + H]+: calcd for C19H16N3O: 302.1293; Found: 302.1288.

2-(4-methoxyphenyl)-7-(4-propylphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3n)
M.W: yield 80.0% (48.0 mg, SM was used 42.0 mg), reflux: yield 84.1% (24.8 mg, SM

was used 20.7 mg); pale yellow solid; mp: 158–160 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.58
(d, J = 7.6 Hz, 1H), 8.24 (d, J = 8.8 Hz, 2H), 7.89 (d, J = 1.2 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H),
7.32 (d, J = 8.0 Hz, 2H), 3.88 (s, 3H), 2.66 (t, J = 7.6 Hz, 2H), 2.04 (h, J = 3.6 Hz, 2H), 0.98 (t,
J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 164.5, 161.4, 152.0, 144.1, 143.1, 135.3, 129.5,
128.9, 127.9, 127.0, 123.3, 114.2, 113.4, 112.3, 55.4, 37.8, 24.5, 13.9; HRMS (ESI) m/z [M + H]+:
calcd for C22H22N3O: 344.1763; Found: 344.1755.

2-(4-methoxyphenyl)-7-(4-(methylthio)phenyl)-[1,2,4]triazolo[1,5-a]pyridine (3o)
M.W: yield 70.5% (59.0 mg, SM was used 58.8 mg), reflux: yield 54.2% (16.7 mg, SM

was used 21.7 mg); pale yellow solid; mp: 201–203 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.57
(d, J = 7.6 Hz, 1H), 8.23 (d, J = 8.0 Hz, 2H), 7.88 (s, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.35 (d,
J = 8.4 Hz, 2H), 7.23–7.21 (m, 1H), 7.01 (d, J = 8.8 Hz, 2H) 3.87 (s, 3H), 2.53 (S, 3H); 13C NMR
(100 MHz, CDCl3): δ 164.5, 161.7, 151.9, 142.7, 140.7, 134.6, 129.2, 128.1, 127.5, 127.2, 123.2,
114.4, 113.2, 112.1, 55.5, 15.7; HRMS (ESI) m/z [M + H]+: calcd for C20H18N3OS: 348.1170;
Found: 348.1168.

2-(4-methoxyphenyl)-7-(2-nitrophenyl)-[1,2,4]triazolo[1,5-a]pyridine (3p)
M.W: yield 48.2% (27.5, SM was used 40.1 mg), reflux: yield 47.1% (29.0 mg, SM was

used 43.3 mg); pale yellow solid; mp: 170–172 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.57 (d,
J = 6.8 Hz, 1H), 8.23 (d, J = 9.2 Hz, 2H), 8.04 (d, J = 7.2 Hz 1H), 7.71 (td, J = 7.6, 1.3 Hz, 1H),
7.68 (s, 1H), 7.61 (td, J = 7.6, 1.1 Hz, 1H), 7.50 (dd, J = 6.8, 0.8 Hz, 1H), 7.02 (d, J = 8.8 Hz,
2H), 6.89 (dd, J = 5.6, 1.6 Hz, 1H), 3.88 (S, 3H); 13C NMR (100 MHz, CDCl3): δ 164.7, 161.5,
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151.4, 148.5, 140.1, 134.0, 133.4, 131.8, 129.8, 129.0, 127.9, 125.0, 123.0, 114.7, 114.3, 114.2, 55.5;
HRMS (ESI) m/z [M + H]+: calcd for C19H15N4O3: 347.1144; Found: 347.1138.

7-(4-fluorophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3q)
Yield 91.1% (62.8 mg, SM was used 46.6 mg); pale yellow solid; mp: 197–199 ◦C;

1H NMR (400 MHz, CDCl3): δ 8.59 (d, J = 6.8 Hz, 1H), 8.24 (d, J = 8.8 Hz, 2H), 7.87 (s,
1H), 7.67–7.63 (m, 2H), 7.23–7.18 (m, 3H), 7.03 (d, J = 9.2 Hz, 2H), 3.88 (s, 3H); 13C NMR
(100 MHz, CDCl3): δ 164.8, 164.4, 162.3, 161.6, 151.7, 142.3, 134.2, 129.1, 129.0, 129.0, 128.2,
123.0, 116.4 (d, J = 21.1 Hz), 114.3, 113.4, 112.6, 55.5; 19F NMR (376 MHz, CDCl3): δ -112.7;
HRMS (ESI) m/z [M + H]+: calcd for C19H15FN3O: 320.1199; Found: 320.1194.

7-(4-chlorophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3r)
Yield 93.6% (57.4 mg, SM was used 42.5 mg); pale yellow solid; mp: 231–233 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.59 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.89 (s, 1H),
7.60 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 6.8 Hz, 1H), 7.03 (d, J = 8.8 Hz,
2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 164.7, 161.8, 151.8, 142.0, 136.6, 135.6,
129.7, 129.2, 128.5, 128.3, 123.2, 114.4, 113.2, 112,9 55.5; HRMS (ESI) m/z [M + H]+: calcd for
C19H15ClN3O: 336.0903; Found: 336.0898.

7-(4-bromophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3s)
Yield 90.1% (58.6 mg, SM was used 47.5 mg); pale yellow solid; mp: 220–222 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.61 (d, J = 6.8 Hz, 1H), 8.23 (dt, J = 8.8, 2.6 Hz, 2H), 7.19 (s, 1H),
7.65 (dt, J = 8.4, 2.0 Hz, 2H), 7.54 (dt, J = 8.4, 2.1 Hz, 2H), 7.19 (dd, J = 5.6, 1.8 Hz, 1H), 7.03
(dt, J = 8.8, 2.5 Hz, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, DMSO-d6): δ 163.5, 160.6, 151.2,
140.2, 136.1, 131.6, 128.6, 128.3, 128.0, 122.9, 122.0, 114.0, 112.3, 111.6, 54.9; HRMS (ESI) m/z
[M + H]+: calcd for C19H15BrN3O: 380.0398; Found: 380.0393.

7-(4-iodophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3t)
Yield 70.7% (50.1 mg, SM was used 53.9 mg), reflux: yield 75.6% (28.7 mg, SM was

used 28.7 mg); pale yellow solid; mp: 228–230 ◦C; M.W: 1H NMR (400 MHz, CDCl3): δ
8.60 (d, J = 6.8 Hz, 1H), 8.23 (dt, J = 9.2, 2.6 Hz, 2H), 7.88 (s, 1H), 7.85 (d, J = 8.8 Hz, 2H),
7.40 (d, J = 8.4 Hz, 2H), 7.20 (dd, J = 5.2, 1.8 Hz, 1H), 7.03 (dt, J = 8.8, 2.4 Hz, 2H), 3.87 (S,
3H); 13C NMR (100 MHz, DMSO-d6): δ 163.5, 160.6, 151.1, 140.4, 137.5, 136.5, 128.6, 128.3,
128.0, 123.0, 113.9, 112.2, 111.5, 94.6, 54.9; HRMS (ESI) m/z [M + H]+: calcd for C19H15IN3O:
428.0259; Found: 428.0254.

7-(2,5-dichlorophenyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (3u)
Yield 67% (38.9 mg, SM was used 41.9 mg); pale yellow solid; mp: 225–227 ◦C; 1H

NMR (400 MHz, CDCl3): δ 8.60 (d, J = 7.2 Hz, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 2.0 Hz,
1H), 7.46 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 7.36 (dd, J = 8.8 Hz, J = 2.8 Hz, 1H), 7.05
(dd, J = 7.2 Hz, J = 2.0 Hz, 1H), 7.03 (d, J = 8.4 Hz, 2H), 3.89 (s, 3H); 13C NMR (100 MHz,
CDCl3): δ 165.1, 161.7, 151.5, 139.9, 139.3, 133.4, 131.7, 131.0, 130.9, 130.0, 129.2, 127.7, 123.4,
116.5, 115.2, 114.4, 55.5; HRMS (ESI) m/z [M + H]+: calcd for C19H14Cl2N3O: 370.0514;
Found: 370.0508.

7-(4′-methoxy-[1,1′-biphenyl]-4-yl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridine (5)
Yield 88% (17.1 mg, SM used 18.1 mg); pale yellow solid; mp: 208–210 ◦C; NMR was

conducted at 373 K because of poor solubility of 5. 1H NMR (400 MHz, DMSO-d6): δ 8.91
(d, J = 7.6 Hz, 1H), 8.17 (d, J = 8.8 Hz, 2H), 8.08 (d, J = 1.2 Hz, 1H), 7.93 (d, J = 8.0 Hz,
2H), 7.78 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.8 Hz, 2H), 7.51 (dd, J = 7.6 Hz, J = 1.2 Hz, 1H),
7.10 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 3H); 13C NMR (100
MHz, DMSO-d6) δ 163.4, 160.5, 159.0, 151.2, 141.0, 140.0, 134.9, 131.3, 128.1, 127.9, 127.2,
126.9, 126.3, 123.0, 114.2, 113.9, 112.3, 111.1, 54.9, 54.8; HRMS (ESI) m/z [M + H]+: calcd for
C26H22N3O2: 408.1712; Found: 408.1707.

2-(4-methoxyphenyl)-7-(4-((4-methoxyphenyl)ethynyl)phenyl)-[1,2,4]triazolo[1,5-a]-
pyridine (7)

Yield 61% (9.9 mg, SM used 16.1 mg); pale yellow solid; mp: 233–235 ◦C; NMR was
conducted at 413 K because of poor solubility of 7. 1H NMR (400 MHz, DMSO-d6) δ 8.92
(d, J = 7.6 Hz, 1H), 8.17 (d, J = 8.8 Hz, 2H), 8.09 (d, J = 1.6 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H),
7.67 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.50 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.10
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(d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H); 13C NMR (100 MHz,
DMSO-d6) δ 163.4, 160.5, 159.3, 151.0, 140.3, 136.3, 132.2, 131.1, 127.9, 127.8, 126.4, 123.0,
122.9, 114.0, 113.9, 113.8, 112.0, 111.4, 90.4, 87.0, 54.8 (two methoxy groups appeared at one
peak); HRMS (ESI) m/z [M + H]+: calcd for C28H22N3O2: 432.1712; Found: 432.1707.

4. Conclusions

We demonstrated a microwave-mediated cascade synthesis of 1,2,4-triazolo [1,5-
a]pyridines in good-to-excellent yields. Various enaminonitriles and benzo- and hetero-
hydrazides successfully yielded the final products. Additionally, our protocol can be used for
scale-up synthesis, and facile transformation of the resulting triazolopyridines was explored.
This strategy operates without the need for catalysts, additives, or workups and utilizes a
minimal amount of solvent. These features make this methodology highly attractive.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules29040894/s1. 1H NMR and 13C-NMR are available online.
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