Activation Mechanism of Ammonium Fluoride in Facile Synthesis of Hydrated Silica Derived from Ferronickel Slag-Leaching Residue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Ferronickel Slag-Leaching Residue
2.2. Facile Synthesis of Hydrated Silica through Ammonium Fluoride Roasting
2.3. Thermodynamic Analysis of the Ammonium Fluoride Roasting Process
2.4. Mechanism of Ammonium Fluoride Roasting
3. Materials and Methods
3.1. Materials
3.2. Experimental Process
3.3. Characterization Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Wang, Q.; Shi, M. Characteristics and reactivity of ferronickel slag powder. Conster. Build. Mater. 2017, 156, 773–789. [Google Scholar] [CrossRef]
- Han, F.; Zhang, H.; Li, Y.; Zhang, Z. Recycling and comprehensive utilization of ferronickel slag in concrete. J. Clean. Prod. 2023, 414, 137633. [Google Scholar] [CrossRef]
- Duan, X.; Lu, S.; Yang, J.; Yang, H.; Liu, T. Study on the synergistic mechanism of sulfuric acid and ammonium sulfate on the extraction of metals from ferronickel slag by roasting. Miner. Eng. 2023, 202, 108300. [Google Scholar] [CrossRef]
- Cao, R.; Jia, Z.; Zhang, Z.; Zhang, Y.; Banthia, N. Leaching kinetics and reactivity evaluation of ferronickel slag in alkaline conditions. Cem. Concr. Res. 2020, 137, 106202. [Google Scholar] [CrossRef]
- Gao, F.; Huang, Z.; Li, H.; Li, X.; Wang, K.; Hamza, M.F.; Wei, Y.; Fujita, T. Recovery of magnesium from ferronickel slag to prepare hydrated magnesium sulfate by hydrometallurgy method. J. Clean. Prod. 2021, 303, 127049. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X.; Zhang, Z. Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure. Conster. Build. Mater. 2014, 59, 188–194. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Ni, W.; Jia, Y.; Zhu, L.-P.; Huang, X.-Y. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J. Non-Cryst. Solids 2010, 356, 1554–1558. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Bartzas, G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl. Clay Sci. 2013, 73, 103–109. [Google Scholar] [CrossRef]
- Zulhan, Z.; Agustina, N. A novel utilization of ferronickel slag as a source of magnesium metal and ferroalloy production. J. Clean. Prod. 2021, 292, 125307. [Google Scholar] [CrossRef]
- Peng, Z.; Tang, H.; Augustine, R.; Lee, J.; Tian, W.; Chen, Y.; Gu, F.; Zhang, Y.; Li, G.; Jiang, T. From ferronickel slag to value-added refractory materials: A microwave sintering strategy. Resour. Conserv. Recycl. 2019, 149, 521–531. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Ma, M.; He, X.; Su, Y.; Strnadel, B.; Xiong, G. Microstructure and mechanical properties of activated high-alumina ferronickel slag with carbide slag and alkaline salts. J. Build. Eng. 2022, 49, 104046. [Google Scholar] [CrossRef]
- Han, C.; Hong, Y.-C. Adverse health effects of ferronickel manufacturing factory on local residents: An interrupted time series analysis. Environ. Int. 2018, 114, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Yu, Z.; Wang, L.; Zhang, P.; Wan, X.; Gao, S.; Zhao, T. Application of ferronickel slag as fine aggregate in recycled aggregate concrete and the effects on transport properties. J. Clean Prod. 2021, 304, 127149. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, C.-H.; Shim, S.-H.; Kim, J.-H.J.; Lee, H.-J.; Park, J. Performance evaluation of cement paste incorporating ferro-nickel slag powder under elevated temperatures. Case Stud. Constr. Mater. 2021, 15, e00727. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Tian, W.; Wang, Y.; Chen, Y. Study on the durability of concrete with FNS fine aggregate. J. Hazard. Mater. 2020, 381, 120936. [Google Scholar] [CrossRef]
- Meier, M.; Sonnick, S.; Asylbekov, E.; Rädle, M.; Nirschl, H. Multi-scale characterization of precipitated silica. Powder Technol. 2019, 354, 45–51. [Google Scholar] [CrossRef]
- Jal, P.; Sudarshan, M.; Saha, A.; Patel, S.; Mishra, B. Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surf. A Physicochem. Eng. Asp. 2004, 240, 173–178. [Google Scholar] [CrossRef]
- Prasertsri, S.; Rattanasom, N. Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties. Polym. Test. 2012, 31, 593–605. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, B.; Gao, W.; Qu, Y.; Wang, L.; Wang, Z.; Zhu, Y. A recyclable method for production of pure silica from rice hull ash. Powder Technol. 2012, 217, 497–501. [Google Scholar] [CrossRef]
- Sarawade, P.B.; Kim, J.-K.; Hilonga, A.; Quang, D.V.; Kim, H.T. Effect of drying technique on the physicochemical properties of sodium silicate-based mesoporous precipitated silica. Appl. Surf. Sci. 2011, 258, 955–961. [Google Scholar] [CrossRef]
- Jesionowski, T.; Krysztafkiewicz, A. Comparison of the techniques used to modify amorphous hydrated silicas. J. Non-Cryst. Solids 2000, 277, 45–57. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Peng, Z.; Su, Z.; Tang, H.; Tian, W.; Liang, G.; Lee, J.; Rao, M.; Li, G.; et al. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. J. Hazard. Mater. 2019, 374, 83–91. [Google Scholar] [CrossRef]
- Ju, J.; Feng, Y.; Li, H.; Xu, C.; Xue, Z.; Wang, B. Extraction of valuable metals from minerals and industrial solid wastes via the ammonium sulfate roasting process: A systematic review. Chem. Eng. J. 2023, 457, 141197. [Google Scholar] [CrossRef]
- Yang, X.; Huang, W.; Fang, Q.; Ouyang, H. Pressure leaching of manganotantalite by sulfuric acid using ammonium fluoride as an assistant reagent. Hydrometallurgy 2018, 175, 348–353. [Google Scholar] [CrossRef]
- Sharafeev, S.M.; Pogrebenkov, V.M. Phase Formation Processes in Natural Magnesium Silicates of Various Structures by Ammonium Fluoride Treatment. Refract. Ind. Ceram. 2020, 61, 200–206. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C.; Mi, X.; Wang, Z.; Han, J.; Zeng, G.; Liu, P.; Guan, Q.; Ji, H.; Huang, S. Extraction of lithium from coal fly ash by low-temperature ammonium fluoride activation-assisted leaching. Sep. Purif. Technol. 2021, 279, 119757. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, J.; Mao, Q.; Zhang, Z.; You, Z.; Tang, L.; Zhong, Q. A promising regeneration of waste carbon residue from spent Lithium-ion batteries via low-temperature fluorination roasting and water leaching. Chem. Eng. J. 2022, 430, 132703. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, J.; Wanaldi, R.; Zhou, X.; Wang, H.; Zhou, C.; Yang, J. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J. Hazard. Mater. 2021, 402, 123491. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, H.F.; Neuefeind, J.; Neumann, H.-B.; Schneider, J.R.; Zeidler, M.D. Amorphous silica studied by high energy X-ray diffraction. J. Non-Cryst. Solids 1995, 188, 63–74. [Google Scholar] [CrossRef]
- Demyanova, L.P.; Rimkevich, V.S.; Buynovskiy, A.S. Elaboration of nanometric amorphous silica from quartz-based minerals using the fluorination method. J. Fluor. Chem. 2011, 132, 1067–1071. [Google Scholar] [CrossRef]
- Demyanova, L.P.; Zaeva, A.S.; Buinovskiy, A.S. Influence of activation of quartz grain surface on efficiency of the process of processing the quartz sand grains with fluoride technology. Theor. Found. Chem. Eng. 2013, 47, 766–771. [Google Scholar] [CrossRef]
Chemical Composition | SiO2 | CaO | Fe2O3 | Al2O3 | MgO | Cr2O3 | SO3 | MnO |
Contents (wt%) | 81.34 | 6.84 | 4.21 | 3.98 | 1.59 | 0.73 | 0.31 | 0.52 |
Chemical Composition | TiO2 | K2O | Na2O | NiO | SrO | Cl | ZnO | P2O5 |
Contents (wt%) | 0.2 | 0.11 | 0.09 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Products | SiO2 Content | SiO2 Recovery/% | ||
---|---|---|---|---|
XRF/wt% | ICP/g·L−1 | Separate | Cumulative | |
FNS-leaching residue | 81.34 | 79.62 | 100 | 100 |
Roasting products | 29.47 | 28.00 | 100 | 100 |
Water-leaching solution | -- | 28.91 | 99.53 | 99.53 |
Crude hydrated silica | 94.49 | 92.35 | 96.12 | 95.67 |
Purified hydrated silica | 99.94 | 99.68 | 99.41 | 95.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Zhang, Y.; Li, D.; Liu, T.; Jiang, Y. Activation Mechanism of Ammonium Fluoride in Facile Synthesis of Hydrated Silica Derived from Ferronickel Slag-Leaching Residue. Molecules 2024, 29, 905. https://doi.org/10.3390/molecules29040905
Duan X, Zhang Y, Li D, Liu T, Jiang Y. Activation Mechanism of Ammonium Fluoride in Facile Synthesis of Hydrated Silica Derived from Ferronickel Slag-Leaching Residue. Molecules. 2024; 29(4):905. https://doi.org/10.3390/molecules29040905
Chicago/Turabian StyleDuan, Xuqin, Yu Zhang, Dong Li, Tong Liu, and Yanjun Jiang. 2024. "Activation Mechanism of Ammonium Fluoride in Facile Synthesis of Hydrated Silica Derived from Ferronickel Slag-Leaching Residue" Molecules 29, no. 4: 905. https://doi.org/10.3390/molecules29040905
APA StyleDuan, X., Zhang, Y., Li, D., Liu, T., & Jiang, Y. (2024). Activation Mechanism of Ammonium Fluoride in Facile Synthesis of Hydrated Silica Derived from Ferronickel Slag-Leaching Residue. Molecules, 29(4), 905. https://doi.org/10.3390/molecules29040905