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Abstract: In this work, Au nanoparticle-decorated ZnO@graphene core–shell quantum dots (Au-
ZnO@graphene QDs) were successfully prepared and firstly used to modify an ITO electrode for
the construction of a novel photoelectrochemical biosensor (Au-ZnO@graphene QDs/ITO). Char-
acterization of the prepared nanomaterials was conducted using transmission electron microscopy,
steady-state fluorescence spectroscopy and the X-ray diffraction method. The results indicated that
the synthesized ternary nanomaterials displayed excellent photoelectrochemical performance, which
was much better than that of ZnO@graphene QDs and pristine ZnO quantum dots. The graphene
and ZnO quantum dots formed an effective interfacial electric field, enhancing photogenerated
electron–hole pairs separation and leading to a remarkable improvement in the photoelectrochemical
performance of ZnO@graphene QDs. The strong surface plasmon resonance effect achieved by di-
rectly attaching Au nanoparticles to ZnO@graphene QDs led to a notable increase in the photocurrent
response through electrochemical field effect amplification. Based on the specifical recognition be-
tween cysteine and Au-ZnO@graphene QDs/ITO through the specificity of Au-S bonds, a light-driven
photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical
biosensor exhibited outstanding analytical capabilities in detecting cysteine with an extremely low
detection limit of 8.9 nM and excellent selectivity. Hence, the Au-ZnO@graphene QDs is a promising
candidate as a novel advanced photosensitive material in the field of photoelectrochemical biosensing.

Keywords: core–shell quantum dots; graphene; ZnO; Au nanoparticles; cysteine; photoelectrochemical
biosensor

1. Introduction

Cysteine, a crucial amino acid-containing thiol group, serves significant functions
in numerous biological processes. Cysteine participates in tissue protein synthesis, post-
translational modifications and the construction of active sites in certain enzymes [1]. It
was found that diseases such as acquired immune deficiency syndrome, liver injury and
Alzheimer’s disease were accompanied by cysteine deficiency [2]. Cysteine levels in the
body have been acknowledged as a significant marker for diagnosing diseases [3]. Hence,
it is crucial to investigate the functions of cysteine in cells and diagnose diseases though its
sensitive and selective detection.

Numerous techniques have been reported to monitor cysteine, including us of a colori-
metric sensor [4], the HPLC method [5], capillary electrophoresis analysis [6], spectrofluo-
rimetry [7], electrochemical methods [8,9] and photoelectrochemical (PEC) detection [10,11].
Among the different methodologies used, photoelectrochemical measurements have at-
tracted considerable interest because of their excellent analytical properties. In contrast to
electrochemical analysis, photoelectrochemical detection exhibits a significantly reduced
background as a result of the separation between excitation light sources and detection pho-
tocurrent signals. Therefore, this method demonstrates encouraging analytical uses in the
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fields of bioanalysis, environmental monitoring and medicine detection [12,13]. Despite the
mentioned advantages, the development and application of high-performance photoactive
materials are still urgent issues to be solved in photoelectrochemical sensing research.

The research community has shown significant interest in the utilization of graphene–
inorganic semiconductor composites for photocatalysis and photoelectrochemical detection
in the past few years [14,15]. Researchers have reported that the nanocomposites exhibited
significant enhancement in photocatalytic performance when large-area monodispersed
graphene combined with TiO2 [16,17], ZnO [18,19], CdS [20], ZnFe2O4 [21], etc. In the
heterostructures, inorganic semiconductor materials served as substances that absorb light
and produce charge carriers, whereas the graphene layer played the role of a superb
conductive framework, owing to its exceptional electron mobility. The enhanced PEC
property was ultimately achieved due to the significant facilitation of photogenerated
electron migration to the electrode and the efficient strengthening of charge separation [22].

Recently, ZnO/graphene hybrid nanocomposites have attracted significant research at-
tention in various applications, such as gas sensors [23,24] and electrochemical sensors [25].
Due to the combined effect of the two materials and the additional graphene function,
the ZnO/graphene composite material enhances the overall electrochemical performance
and stability of a sensor, with a fast response and a satisfactory sensing performance.
The synergistic effect of ZnO/graphene improves binding stability with macromolecules,
making it a potential candidate for gas sensor device design. Zhang et al. developed a
novel ZnO/graphene gas sensor for the selective and sensitive detection of NO2 gas at
low detection limits at room temperature [23]. Niavol et al. successfully synthesized ZnO
quantum dots modified on graphene nanoplatelets (GNP) using a simple hydrothermal
method [24]. The gas sensing performance of the developed sensor based on ZnO/GNP
for ethylene glycol is significantly enhanced. ZnO nanorods can effectively form a three-
dimensional (3D) structure with graphene. The produced hybrid nanocomposite (ZnO@G)
exhibits an extremely large surface area and high conductivity, which have been employed
in electrochemical sensor [26–29]. ZnO@G nanocomposites have been synthesized and
used for electrode surface modification to detect glucose [26], ascorbic acid, dopamine,
and uric acid [27] in a recent report. Through colloidal agglomeration effect, Yukird et al.
synthesized ZnO@G nanocomposite materials to modify electrodes and simultaneously
measure Cd2+and Pb2+ [28]. Shen’s team constructed a sensing material of a Ni-doped
ZnO/graphene nanosheets composite using a simple hydrothermal method, which was
further used for electrochemical determination of acetaminophen and 17β-estradiol [29].
The study provides a new method for designing high-performance sensing materials and
exploring their applications in trace drug determination.

ZnO nanomaterial is a kind of attractive photoactive material because it displays
low cost, non-toxicity and effective photoelectric properties. Nonetheless, pure ZnO typ-
ically has low efficiency in capturing light and separating electrons and holes [30,31].
ZnO/graphene hybrid nanocomposites have recently attracted great interest in photo-
catalysts [32] and photoelectrochemical sensors [33,34]. Liu’s team has developed a PEC
aptamer sensor based on a ZnO/graphene composite and S6 aptamer for an SK-BR-3
cancer cell assay [33]. Yan et al. proposed a simple heat treatment method to prepare
ZnO/graphene-sensitized structures. A signal-off PEC sensor for adenosine triphosphate
(ATP) detection was designed based on synthesized nanocomposites as photoactive materi-
als and ATP binding aptamers as recognition elements [34]. Nevertheless, the optimum
photocatalytic performance of ZnO/graphene hybrid material cannot be attained because
the graphene–ZnO semiconductor interface has a relatively small contact area and a low
heterojunction electric field. Recently, a simple solution method was reported to synthesize
core–shell quantum dots called ZnO@graphene quantum dots, which involved a ZnO quan-
tum dot core enveloped by a single-layer graphene shell [35]. This emissive hybrid quantum
dot was applied to develop a light-emitting diode with satisfactory results. Bu et al. fur-
ther optimized the preparation conditions of the novel nanocomposite and studied its
PEC properties and photocatalytic performance [36]. The investigations demonstrated
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that ZnO@graphene quantum dots exhibited significantly enhanced PEC performance in
comparison to those of the ZnO/graphene composite with the structure of a large-area
graphene-loaded ZnO because three-dimensional nanocoating core@shell structure can
form large contact area and strong effective interfacial electric field which promoting the
charge separation. Therefore, this new type of core@shell nanostructure material has valu-
able application potential in solar cells and photocatalysis. However, to the best of our
knowledge, this photoactive material has never been exploited for photoelectrochemical
sensing detection.

Another crucial aspect of the PEC system design is the light absorption of the photoelec-
trode materials. To enhance the absorption of visible light by metal oxide semiconductors,
noble metals such as Au can be incorporated, taking advantage of their surface plasmon res-
onance (SPR) characteristic [37]. In this work, Au nanoparticle-sensitized ZnO@graphene
core–shell quantum dots (Au-ZnO@graphene QDs) were successfully prepared through
simple synthesis and modification methods. The results indicated that this novel ternary
nanomaterial displayed an excellent photoelectrochemical performance, which was much
better than that of pure ZnO quantum dots and ZnO@graphene QDs. Attaching Au
nanoparticles directly to ZnO@graphene QDs provides a robust surface plasmon resonance
effect, resulting in a significantly enhanced photocurrent response through electrochemical
field effect amplification. Therefore, we developed an innovative PEC biosensing platform
using Au-ZnO@graphene QDs ternary nanocomposites, which exhibited an enhanced
photocurrent response to cysteine oxidation. The prepared biosensor exhibited excellent
sensitivity, extensive linearity, exceptional selectivity, and notable reproducibility in de-
tecting cysteine. The photoelectrochemical sensing method was successfully employed to
quantify cysteine levels in both human serum and urine.

2. Results and Discussion
2.1. Characterization of the Prepared Nanomaterials

Figure 1A,B display the transition electron microscopy (TEM) morphologies of
ZnO@graphene QDs. The TEM image under low magnification in Figure 1A exhibits
that nanoparticles with an average size of approximately 15 nm are uniformly distributed.
The red arrows point out the outer graphene shell. The magnified HRTEM image cap-
tured from the layer encircling ZnO QDs is displayed in the close red squared region, in
which a hexagonal atomic lattice with uniform contrast can be clearly distinguished. In
addition, the distance between carbon atoms was measured to be approximately 0.14 nm,
indicating that the layer is composed of monolayer graphene. The HRTEM image of one
ZnO@graphene QD (Figure 1B) clearly displayed the (002) crystal plane of ZnO. The above
results demonstrate that this hybrid quantum dot which possesses core–shell structure, is
comprised of a ZnO core enveloped by a single-layer graphene shell.

The X-ray diffraction technique was employed to investigate the composition and
structure. The crystal structure of the ZnO QDs (Figure 1C curve a) showed the char-
acteristic diffraction peaks of wurtzite ZnO at 31.8◦, 34.1◦, 36.4◦ and 49.8◦, which were
related to the (100), (002), (101) and (102) planes (JCPDS 36-1451) [30]. In contrast, the XRD
diffractograms of ZnO@graphene QDs exhibited all the diffraction peaks of ZnO QDs and
showcased an additional wide and intense peak at 25.8◦ (curve b). This peak corresponds to
the (002) crystal plane of graphene [22], suggesting the successful modification of graphene
on ZnO QDs. Moreover, the diffraction peaks of ZnO did not change after coating the
graphene, indicating that the crystal lattice of ZnO is not doped by graphene and its crystal
structure is not influenced. Furthermore, the diffraction peak (14.8◦) of GO is not observed
in curve b, demonstrating that graphene layer in the hybrid quantum dot has a high degree
of reduction [14]. The above result further proved that the ZnO core was covered with a
graphene shell to form a core@shell structure.

Figure 1D presents UV–vis absorption spectra and TEM morphology of Au nanopar-
ticles. AuNPs with an average size of about 13 nm exhibited an absorption maximum at
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520 nm, implying that AuNPs with good monodispersity can efficiently absorb the visible
light [38].
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Figure 1. (A) TEM images of ZnO@graphene QDs; (B) HRTEM images of ZnO@graphene QDs;
(C) XRD spectra of (a) ZnO QDs, (b) ZnO@graphene QDs, and (c) graphene oxide; (D) UV–vis
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2.2. Optical Property of the Prepared Nanomaterials

Steady-state fluorescence spectroscopy (PL) and UV–Vis diffuse reflectance spec-
troscopy (DRS) were applied for optical performance analysis. The DRS results in Figure 2A
demonstrated that the bandgap absorption edge of ZnO QDs was in the ultraviolet region.
After coating with graphene, the optical absorption edge of ZnO@graphene QDs was
red-shifted to 410 nm, which was attributed to the zero-bandgap structure and the broad
spectral absorption capability of graphene. In the whole ultraviolet and visible region
addition, ZnO@graphene QDs composite showed stronger absorption intensity than that
of ZnO QDs, which revealed that the optical absorption performance of ZnO QDs can be
significantly enhanced due to the graphene modification effect.
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Figure 2. (A) DRS spectra of (a) ZnO QDs and (b) ZnO@graphene QDs; (B) PL spectra of (a) ZnO
QDs and (b) ZnO@graphene QDs.

As displayed in Figure 2B, the 380 nm fluorescence emission peak of ZnO quan-
tum dots is attributed to the electron transition from the valence band to the conduction
band in ZnO QDs. The PL spectra of ZnO@graphene QDs (curve b) exhibited two ad-
ditional emission peaks at 406 nm and 432 nm, owing to the creation of C-O-Zn bonds
that connect graphene and ZnO, resulting in the formation of core–shell structures. When
ZnO@graphene QDs are excited by light, some electrons enter the lowest occupied molecu-
lar orbitals of G–O with an epoxy bond in the graphene shell, resulting in the two additional
emission peaks. In addition, PL spectra can reflect the separation efficiency of photogener-
ated charges in optoelectronic substances [35]. The PL intensity of ZnO@graphene QDs is
lower than that of ZnO QDs, suggesting that composite material efficiently suppresses the
recombination of electron–hole pairs and possesses outstanding optical properties.

2.3. PEC Performance of the Sensor

The PEC properties of Au-ZnO@graphene QDs nanocomposites was investigated by
measuring the photocurrent density on various modified electrodes in pH 7.0 phosphate
buffer under white light irradiation at a working voltage of 0.0 V. The bare ITO electrode
had no photocurrent response (Figure 3 curve a). Curve b in Figure 3 exhibited a low
photocurrent density of 0.2 µA/cm2 on the ITO electrode modified with ZnO QDs, which
can be attributed to inadequate light absorption and insufficient separation of electrons
and holes. In comparison, ZnO@graphene QDs/ITO exhibited approximately a three times
higher photocurrent compared to ZnO QDs/ITO (curve c). This demonstrates that the
three-dimensional nanocoating core@shell structure effectively inhibits the recombination
of charge carriers, resulting in enhanced photoelectrochemical activity. Following the
modification of AuNPs on ZnO@graphene QDs/ITO, the photocurrent signal exhibited an
approximately 4-fold increase compared to ZnO QDs/ITO (curve d). The result demon-
strated that the direct adhesion of AuNPs to ZnO@graphene QDs provides a robust SPR
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effect to further improve the optical absorption performance of nanocomposites in the
whole visible region, resulting in a significantly enhanced photocurrent response. As seen
in curve e, the Au-ZnO@graphene QDs/ITO electrode showed an enhanced photocurrent
density of 1.1 µA/cm2 when cysteine was present, indicating that cysteine as an electron
donor can effectively promote the separation of electron–hole pairs which leads to further
ascent of the photocurrent response.
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Figure 3. Photocurrent responses of (a) ITO, (b) ZnO QDs/ITO, (c) ZnO@graphene QDs/ITO, (d) Au-
ZnO@graphene QDs/ITO in 0.1 M phosphate buffer (pH 7.0) and (e) Au-ZnO@graphene QDs/ITO
in 0.1 M phosphate buffer containing 10 µM cysteine at an applied potential of 0.0 V under the
irradiation of a xenon light source.

A schematic diagram of Au-ZnO@graphene QDs/ITO for cysteine detection is pre-
sented in Scheme 1. During the conversion of photocurrents, the electrons on the valence
band (VB) of the ZnO are firstly excited to the conduction band (CB) of ZnO to generate
electron–hole pairs after absorbing white light. Afterward, the excitation electrons on CB
of the ZnO core swiftly transfer to the graphene shell due to well-matched energy levels
and subsequently inject into the ITO electrode for the formation of a current in the external
circuit. Then, electron donor cysteine in PB captures the separated holes, resulting in the
oxidization of cysteine. The consumption of the photogenerated holes by cysteine effec-
tively suppress charge recombination, leading to an enhanced photocurrent response in the
existence of cysteine. The improvement of the photoelectrochemical properties of the PEC
sensor is attributed to several factors as follows: (1) The three-dimensional nanocoating
core@shell structure can form a large contact area and a strong effective interfacial electric
field due to the firm and uniform bonding of the ZnO core and graphene shell, promoting
charge separation. (2) The graphene shell has excellent conductivity which can bring
about rapid charge transport. (3) Because plasmonic Au nanoparticles have excellent light
absorption capability and good conductivity, AuNPs-doped ZnO@graphene QDs nanohy-
brids exhibit enhanced incident light absorption and improved photoelectric conversion
efficiency due to the amplified electrochemical field effect by the surface plasmon resonance
of AuNPs. (4) During the detection process, cysteine can be selectively captured by the
Au-S bond. The specifical recognition function between cysteine and Au-ZnO@graphene
QDs/ITO through the specificity of Au-S bonds enhances the selectivity of the sensor. The
above charge transfer mechanism further confirms that the Au-ZnO@graphene QDs het-
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erostructure exhibits distinctly enhanced PEC activity contributing to a higher separation
efficiency of photoexcited charges, faster migration rates of electrons, and an excellent
synergistic effect.
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Scheme 1. The charge transport pathway and detection principle of PEC cysteine sensor.

2.4. Photoelectrochemical Sensing of Cysteine

The experimental parameters of the PEC sensor for detecting cysteine were optimized
to obtain the best performance. The applied detection potential is a vital influence factor
for the sensitivity of the sensor. The photocurrent intensity increased with the increase
in voltage in the range of −0.3~0.0 V. However, the trend of photocurrent changes with
potential tended to be gentle after 0.0 V. In order to eliminate the interference of some
coexisting reducing substances, a lower potential is more suitable for the photoelectric
detection of cysteine. Therefore, 0.0 V was chosen to be the optimized applied potential to
ensure the sensitivity and selectivity of detection.

Figure 4A illustrates the photocurrent responses of the PEC sensor in different con-
centrations of cysteine under the optimum conditions, in which the photocurrent density
gradually increased alone with the concentration. The sensor has a linear response in the
0.1 to 150 µM cysteine concentration range with a detection limit of 8.9 nM based on 3σ/S
(Figure 4B). The regression equation was Jp (µA/cm2) = 0.8280 + 0.0273c (µM) (R = 0.9993).
In comparison to previously reported PEC methods, the PEC sensor described in the
present work possesses a wider linear response range and higher sensitivity, demonstrating
its exceptional analytical performance in detecting cysteine (Table 1). Furthermore, the
proposed PEC sensor showed outstanding advantages in simple structure, convenient
operation, economy and fast detection.

Table 1. Comparison of cysteine assay by various reported PEC sensors.

Working Electrode Linear Range (µM) Detection Limit (nM) Reference

Nafion/CdS-MV/ITO 0.2–2.8 100 [10]
Au-SnO2/CdS/ITO 0.4–120 100 [11]
PTh/TiO2/FTO 10–800 12,800 [39]
CuO−Cu2O/GCE 0.2–10 50 [40]
CA-TiO2/FTO 2.0–100 650 [41]
ZnTAPc-Gr/ITO 0.25–113 11.4 [42]
ITO/g-C3N4/Au 10–40 9200 [43]
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Table 1. Cont.

Working Electrode Linear Range (µM) Detection Limit (nM) Reference

Bi2MoO6/TiO2 0.5–600 150 [44]
TiO2-Au-BiOI 0.8–200 70 [45]
Au-ZnO@graphene
QDs/ITO 0.1–150 8.9 This work
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response of (a): 0.1, (b): 0.5, (c): 1.0, (d): 4.0 µM cysteine. (B) The linear calibration plot between
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2.5. Reproducibility, Stability, and Selectivity

To assess the reproducibility, six sensors were prepared independently and applied
for detecting cysteine at a concentration of 10 µM. The present evaluation yielded an
RSD of 3.58%, giving favorable repeatability. To examine the stability of the sensor, the
photocurrent responses of the same concentration of cysteine on the same sensor were
measured 10 times (Figure 5). The RSD of 4.31% suggests that the current response has
good stability and the PEC sensor has desirable reusability.

An interference experiment was conducted to evaluate the specificity of the sensor
toward its target analyte. As displayed in Figure 6, eleven common interferences including
lysine (Lys), histidine (His), phenylalanine (Phe), tyrosine (Tyr), glutamic acid (Glu), ascor-
bic acid (AA), uric acid (UA), glucose, dopamine (DA), glutathione (GSH), and nicotinamide
adenine dinucleotide (NADH) had no significant influence on the photocurrent response
of cysteine. The mixed solution of all interfering substances and cysteine brought out a
negligible photocurrent change compared to the detection signal generated by cysteine
alone. The corresponding raw data and figure are provided in the Supplementary Materials.
As shown in the current vs. time data plot (Figure S1), the photocurrent curve of cysteine
remained basically stable when a certain concentration of interfering substances was added
to the cysteine sample, indicating that these introduced interferents have no response.
The above results suggest that the proposed method has excellent selectivity for detecting
cysteine, owing to the specifical recognition between cysteine and Au-ZnO@graphene
QDs/ITO through the specificity of Au-S bonds.
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2.6. Application in Real Sample Analysis

The reported cysteine concentration in human clinical fluids including serum, urine,
and intracellular fluid is usually in the range of 30–200 µM [45]. The proposed sensor has a
measurement range of cysteine concentration that is sufficient for clinical fluid detection.
To assess the feasibility of the PEC sensor on detecting actual samples, the amount of
cysteine in human urine and serum was measured. Human serum samples collected from a
community hospital were diluted by 20-fold for detecting the photocurrent response of the
PEC sensor. Human urine samples obtained from two healthy volunteers were immediately
detected via an analysis after a 10-fold sample dilution. The standard addition technique
was used for quantitative analysis. The results in Table 2 display that the average recoveries
varied from 98.7 to 101.6%, demonstrating the developed strategy can be successfully
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used for complex real sample analysis. The cysteine concentration in urine and serum
detected via this method were both reasonably consistent with the results reported in the
literature [46], definitely indicating the method’s practicability in clinical fluids detection.

Table 2. Real sample analysis and recovery rate test in human serum and urine samples (n = 6).

Sample Original (µM) Added (µM) Found (µM) Recovery (%) RSD (%)

Serum 1 6.57 5.00 11.47 99.1 3.3
Serum 2 6.97 5.00 12.16 101.6 2.8
Urine 1 10.61 10.0 20.34 98.7 2.0
Urine 2 13.56 10.0 23.28 98.8 1.6

3. Materials and Methods
3.1. Chemicals

XFNANO Materials Tech Co. Ltd. (Nanjing, China) supplied graphene oxide (GO)
with a diameter ranging from 0.5 to 5 µm, a thickness of 0.8 to 1.2 nm, a single layer ratio
exceeding 99%, and a purity level surpassing 99%. Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China) provided zinc acetate dihydrate, N,N-dimethylformamide (DMF),
chloroauric acid, cysteine, lysine, histidine, phenylalanine, glutamic acid, tyrosine, sodium
citrate, glucose, glutathione, ascorbic acid, uric acid (analytical grade). Furthermore, 0.1 M
KH2PO4 and 0.1 M Na2HPO4 stock solutions were combined to prepare the phosphate
buffer (PB).

3.2. Apparatus

D8-Advance X-ray diffractometer (Bruker AXS, Karlsruhe, Germany), UV-2600 UV-
visible spectrophotometer (Shimadzu, Kyoto, Japan), JEM-2100 transmission electron mi-
croscope (JEOL, Tokyo, Japan), and FLS920 fluorescence spectrometer (Edinburgh, Britain)
were used to characterize the prepared nanomaterials. PEC experiments were performed
on a homemade PEC system, which included a 350 W xenon lamp as the irradiation source
and a LK3200A electrochemical workstation (LANLIKE, Lanxi, China) for photocurrent
detection.

3.3. Preparation of ZnO@graphene Quantum Dots

The core–shell nanocomposite was prepared via the chemical synthesis method after
some modification for the previous literature [35]. Briefly, GO suspension (1 mg/mL) was
prepared by dispersing GO in DMF under sonication for 10 min. Zinc acetate solution
was obtained by dissolving 0.23 g of Zn (CH3COO)2·2H2O in 50 mL DMF. After gradually
adding the GO suspension to the stirred zinc acetate solution, the resulting mixture was
refluxed continuously at 95 ◦C for 5 h. Finally, the product was centrifuged and washed
thoroughly with absolute ethanol and ultrapure water. The grayish white powder was
obtained after vacuum drying for 12 h. The uncoated ZnO QDs were also synthesized via
the same method except that GO was not added.

3.4. Construction of PEC Sensor

Before its modification, the ITO slices (0.5 × 4 cm2) were sequentially ultrasonically
cleaned in acetone and ethanol for 20 min. The AuNPs were synthesized by reducing hydro-
gen tetrechloroaurate with sodium citrate [38]. Au nanoparticle-sensitized ZnO@graphene
core–shell quantum dots (Au-ZnO@graphene QDs) were prepared as follows: A stable
suspension was prepared by ultrasonically dispersing 10 mg of ZnO@graphene QDs in
1.0 mL of doubly distilled water for 30 min. Then, Au-ZnO@graphene QDs nanocomposites
were obtained by ultrasonicating the mixed solution for 30 min after adding 1 mL of AuNPs
colloidal solution to the above suspension. Subsequently, 10 µL of the Au-ZnO@graphene
QDs solution was coated on a clean ITO electrode (0.25 cm2) and then air-dried. The
formed PEC sensor was noted as Au-ZnO@graphene QDs/ITO. For the sake of comparison,
ZnO@graphene QDs/ITO was constructed via the same process.
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3.5. Photoelectrochemical Detection of Cysteine

Photoelectrochemical detections were performed on a homemade PEC system, which
included an irradiation source as the light excitation system and a electrochemical worksta-
tion for photocurrent detection. The detection system consisted of a photoelectrochemical
cell and a data-processing system. The photoelectrochemical cell was composed of a tra-
ditional electrochemical three-electrode system. A three-electrode cell with a saturated
calomel electrode, a platinum sheet electrode and a modified ITO electrode (0.25 cm2) was
employed for PEC measurements. White light was generated by a xenon lamp with a power
output of 350 W. The distance from the working electrode to the light source remained
constant at 20 cm. The current–time curve method was applied to measure the photocurrent
in pH 7.0 PB containing different concentrations of cysteine with an illumination interval of
20 s. During operation, the working voltage was set to 0.0 V. The experiment was conducted
at ambient temperature.

4. Conclusions

In summary, on the basis of Au nanoparticle-sensitized ZnO@graphene core–shell
quantum dots as photoactive materials, we constructed a novel photoelectrochemical
biosensor with high sensitivity for cysteine detection. The nanocoating core@shell structure
with a built-in electric field and strong surface plasmon resonance effect allowed the syn-
thesized ternary nanomaterials to exhibit an excellent photoelectrochemical performance.
The specifical recognition between cysteine and Au-ZnO@graphene QDs/ITO through the
specificity of Au-S bonds enhanced the selectivity for cysteine detection. We afforded a
simple, fast, selective, and ultrasensitive photoelectrochemical technique for sensing trace
cysteine in clinical detection. The study provided a new approach for designing high-
performance PEC sensing materials and exploring their applications in biological research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29051002/s1, Figure S1: The current vs. time data plot of
the sensor.
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