Full Characterisation of Heroin Samples Using Infrared Spectroscopy and Multivariate Calibration
Abstract
:1. Introduction
2. Results
2.1. Characterisation of the Samples
Purity Heroin (%) | 3,6-Diacetyl Morphine | Aceta- Minophen | Diacetamate | Caffeine | Codeine | Morphine | Acetyl- Codeine | 6-Monoacetyl Morphine | Papaverine | Noscapine | Methacetin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.00% | − | − | − | − | − | − | − | − | − | − | − |
S2 | 1.01% | + | + | + | + | + | + | + | + | − | + | − |
S3 | 13.90% | + | + | + | + | + | + | + | + | + | + | + |
S4 | 17.44% | + | + | + | + | + | + | + | + | − | + | + |
S5 | 14.19% | + | + | + | + | + | + | + | + | − | + | − |
S6 | 12.78% | + | + | + | + | + | + | + | + | + | + | + |
S7 | 10.80% | + | + | + | + | + | + | + | + | + | + | + |
S8 | 19.32% | + | + | + | + | + | + | + | + | + | + | + |
S9 | 9.56% | + | + | + | + | + | + | + | + | + | + | + |
S10 | 0.00% | − | − | − | − | − | − | − | − | − | − | − |
S11 | 0.00% | − | − | − | − | − | − | − | − | − | − | − |
S12 | 12.09% | + | + | + | + | + | + | + | + | + | + | − |
S13 | 11.90% | + | + | + | + | + | + | + | + | + | + | − |
S14 | 9.92% | + | + | + | + | + | + | + | + | + | + | + |
S15 | 10.08% | + | + | + | + | + | + | + | + | + | + | − |
S16 | 10.48% | + | + | + | + | + | + | + | + | + | + | − |
S17 | 10.28% | + | + | + | + | + | + | + | + | + | + | − |
S18 | 9.63% | + | + | + | + | − | + | + | + | + | + | − |
S19 | 11.86% | + | + | + | + | + | + | + | + | + | + | − |
S20 | 12.40% | + | + | + | + | − | + | + | + | + | + | − |
S21 | 22.72% | + | + | + | + | − | + | + | + | + | + | − |
S22 | 12.02% | + | + | + | + | + | + | + | + | + | + | − |
S23 | 11.04% | + | + | + | + | + | + | + | + | + | + | + |
S24 | 8.98% | + | + | + | + | − | + | + | + | + | + | − |
S25 | 10.22% | + | + | + | + | − | + | + | + | + | + | − |
S26 | 9.98% | + | + | + | + | + | + | + | + | + | + | − |
S27 | 10.04% | + | + | + | + | + | + | + | + | + | + | − |
S28 | 15.05% | + | + | + | + | − | + | + | + | + | + | − |
S29 | 16.74% | + | + | + | + | + | + | + | + | + | + | − |
S30 | 11.84% | + | + | + | + | + | + | + | + | + | + | − |
S31 | 9.99% | + | + | + | + | − | + | + | + | + | + | − |
S32 | 12.29% | + | + | + | + | − | + | + | + | + | + | − |
S33 | 56.53% | + | − | + | + | − | − | + | + | + | + | − |
S34 | 9.60% | + | + | + | + | − | + | + | + | + | + | − |
S35 | 10.43% | + | + | + | + | − | + | + | + | + | + | − |
S36 | 17.55% | + | + | + | + | + | + | + | + | + | + | − |
S37 | 17.22% | + | + | + | + | + | + | + | + | + | + | − |
S38 | 9.51% | + | + | + | + | + | + | + | + | + | + | − |
S39 | 14.44% | + | + | + | + | − | + | + | + | + | + | − |
S40 | 14.32% | + | + | + | + | + | + | + | + | + | + | − |
S41 | 17.17% | + | + | + | + | − | + | + | + | + | + | − |
S42 | 13.76% | + | + | + | + | + | + | + | + | + | + | − |
S43 | 10.01% | + | + | + | + | − | + | + | + | + | + | − |
S44 | 12.00% | + | + | + | + | − | + | + | + | + | + | − |
S45 | 13.76% | + | + | + | + | − | + | + | + | + | + | − |
S46 | 9.76% | + | + | + | + | − | + | + | + | + | + | − |
S47 | 9.89% | + | + | + | + | − | + | + | + | + | + | − |
S48 | 0.21% | + | + | − | + | − | − | − | + | − | − | − |
S49 | 36.61% | + | − | − | − | − | − | + | + | + | + | − |
S50 | 17.37% | + | + | + | + | + | + | + | + | + | + | − |
S51 | 17.77% | + | + | + | + | + | + | + | + | + | + | − |
S52 | 13.19% | + | + | + | + | − | + | + | + | + | + | − |
S53 | 9.17% | + | + | + | + | − | + | + | + | + | + | − |
S54 | 6.16% | + | + | + | + | − | + | + | + | + | + | − |
S55 | 9.29% | + | + | + | + | − | + | + | + | + | + | − |
S56 | 10.41% | + | + | + | + | − | + | + | + | + | + | − |
S57 | 20.23% | + | + | + | + | − | + | + | + | + | + | − |
S58 | 35.69% | + | + | + | + | − | + | + | + | + | + | − |
S59 | 14.95% | + | + | + | + | − | + | + | + | + | + | − |
S60 | 10.06% | + | + | + | + | − | + | + | + | + | + | − |
S61 | 18.76% | + | + | + | + | − | + | + | + | + | + | − |
S62 | 10.49% | + | + | + | + | − | + | + | + | + | + | − |
S63 | 10.71% | + | + | + | + | − | + | + | + | + | + | − |
S64 | 13.72% | + | + | + | + | − | + | + | + | + | + | − |
S65 | 10.08% | + | + | + | + | − | + | + | + | + | + | − |
S66 | 10.16% | + | + | + | + | − | + | + | + | + | + | − |
S67 | 10.16% | + | + | + | + | − | + | + | + | + | + | − |
S68 | 10.20% | + | + | + | + | − | + | + | + | + | + | − |
S69 | 0.42% | + | + | + | + | − | − | + | + | − | + | − |
S70 | 9.96% | + | + | + | + | − | + | + | + | + | + | − |
S71 | 5.31% | + | + | + | + | − | + | + | + | + | + | − |
S72 | 10.97% | + | + | + | + | − | + | + | + | + | + | − |
S73 | 7.61% | + | + | + | + | − | + | + | + | + | + | − |
S74 | 9.50% | + | + | + | + | − | + | + | + | + | + | − |
S75 | 18.35% | + | + | + | + | − | + | + | + | + | + | − |
S76 | 8.18% | + | + | + | + | + | + | + | + | + | + | − |
S77 | 10.97% | + | + | + | + | − | + | + | + | + | + | − |
S78 | 10.82% | + | + | + | + | − | + | + | + | + | + | − |
S79 | 10.91% | + | + | + | + | − | + | + | + | + | + | − |
S80 | 10.71% | + | + | + | + | − | + | + | + | + | + | − |
S81 | 17.74% | + | + | + | + | − | + | + | + | + | + | − |
S82 | 17.61% | + | + | + | + | − | + | + | + | + | + | − |
S83 | 0.00% | − | − | − | − | − | − | − | − | − | − | − |
S84 | 12.01% | + | + | + | + | − | + | + | + | + | + | − |
S85 | 12.16% | + | + | + | + | − | + | + | + | + | + | − |
S86 | 9.85% | + | + | + | + | − | + | + | + | + | + | − |
S87 | 9.03% | + | + | + | + | − | + | + | + | + | + | − |
S88 | 0.00% | − | − | − | − | − | − | − | − | − | − | − |
S89 | 12.33% | + | + | + | + | − | + | + | + | + | + | − |
S90 | 7.13% | + | + | + | + | − | + | + | + | + | + | − |
S91 | 17.55% | + | + | + | + | − | + | + | + | + | + | − |
S92 | 1.82% | + | + | + | + | − | − | + | + | + | + | − |
S93 | 4.93% | + | + | + | + | − | + | + | + | + | + | − |
S94 | 11.84% | + | + | + | + | − | + | + | + | + | + | − |
S95 | 11.62% | + | + | + | + | − | + | + | + | + | + | − |
S96 | 11.43% | + | + | + | + | − | + | + | + | + | + | − |
S97 | 6.66% | + | + | + | + | − | + | + | + | + | + | − |
S98 | 10.16% | + | + | + | + | − | + | + | + | + | + | − |
S99 | 14.31% | + | + | + | + | − | + | + | + | + | + | − |
S100 | 22.35% | + | + | + | + | − | + | + | + | + | + | − |
S101 | 11.31% | + | + | + | + | − | + | + | + | + | + | − |
S102 | 4.92% | + | + | + | + | − | + | + | + | + | + | + |
S103 | 4.30% | + | + | + | + | − | + | + | + | + | + | − |
S104 | 12.45% | + | + | + | + | − | + | + | + | + | + | − |
S105 | 11.34% | + | + | + | + | − | + | + | + | + | + | − |
S106 | 47.78% | + | + | + | + | − | − | + | + | + | + | − |
S107 | 10.16% | + | + | + | + | − | + | + | + | + | + | − |
S108 | 10.02% | + | + | + | + | − | + | + | + | + | + | − |
S109 | 14.41% | + | + | + | + | − | + | + | + | + | + | − |
S110 | 14.20% | + | + | + | + | − | + | + | + | + | + | − |
S111 | 13.01% | + | + | + | + | − | + | + | + | + | + | + |
S112 | 20.96% | + | + | + | + | − | + | + | + | + | + | − |
S113 | 44.67% | + | + | + | + | − | + | + | + | + | + | − |
S114 | 0.00% | − | + | − | + | − | − | − | − | − | − | − |
S115 | 0.00% | − | + | − | + | − | − | − | − | − | − | − |
S116 | 19.68% | + | + | + | + | − | + | + | + | + | + | − |
S117 | 1.97% | + | + | + | + | − | + | + | + | + | + | − |
S118 | 5.74% | + | + | + | + | − | + | + | + | + | + | − |
S119 | 9.60% | + | + | + | + | − | + | + | + | + | + | − |
S120 | 8.81% | + | + | + | + | − | + | + | + | + | + | − |
S121 | 23.67% | + | + | + | + | − | + | + | + | + | + | − |
S122 | 10.52% | + | + | + | + | − | + | + | + | + | + | − |
S123 | 14.21% | + | + | + | + | − | + | + | + | + | + | − |
S124 | 14.22% | + | + | + | + | − | + | + | + | + | + | − |
number positive samples | 117 | 117 | 115 | 118 | 29 | 111 | 116 | 117 | 112 | 116 | 10 |
2.2. Unsupervised Analysis
2.3. Supervised Analysis
2.3.1. Heroin
2.3.2. Acetaminophen
2.3.3. Acetylcodeine
2.3.4. Mono-Acetyl Morphine
2.3.5. Caffeine
2.3.6. Codeine
2.3.7. Diacetamate
2.3.8. Methacetin
2.3.9. Morphine
2.3.10. Noscapine
2.3.11. Papaverine
3. Methods and Materials
3.1. Standards and Samples
3.2. Sample and Standard Preparation
3.3. Data Acquisition
3.3.1. FT-Mid-IR
3.3.2. GC–MS
3.3.3. High Pressure Liquid Chromatography–Diode Array Detection (LC–DAD)
3.4. Data Pre-Processing
3.5. Principal Component Analysis (PCA)
3.6. Partial Least Squares (PLS)
3.7. Software
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council of Europe. EU Drugs Strategy 2021–2025—INTRODUCTION—Aim, Faundations and Approach. 2021. Available online: https://www.consilium.europa.eu/media/49194/eu-drugs-strategy-booklet.pdf (accessed on 22 February 2024).
- Gerace, E.; Seganti, F.; Luciano, C.; Lombardo, T.; Di Corcia, D.; Teifel, H.; Vincenti, M.; Salomone, A. On-site identification of psychoactive drugs by portable Raman spectroscopy during drug-checking service in electronic music events. Drug Alcohol Rev. 2019, 38, 50–56. [Google Scholar] [CrossRef]
- Giné, C.V.; Vilamala, M.V.; Measham, F.; Brunt, T.M.; Bücheli, A.; Paulos, C.; Valente, H.; Martins, D.; Libois, B.; Tögel-Lins, K.; et al. The utility of drug checking services as monitoring tools and more: A response to Pirona et al. Int. J. Drug Policy 2017, 45, 46–47. [Google Scholar] [CrossRef]
- Goncalves, R.; Titier, K.; Latour, V.; Peyré, A.; Castaing, N.; Daveluy, A.; Molimard, M. Suitability of infrared spectroscopy for drug checking in harm reduction centres. Int. J. Drug Policy 2021, 88, 103037. [Google Scholar] [CrossRef]
- McCrae, K.; Tobias, S.; Tupper, K.; Arredondo, J.; Henry, B.; Mema, S.; Wood, E.; Ti, L. Drug checking services at music festivals and events in a Canadian setting. Drug Alcohol Depend. 2019, 205, 107589. [Google Scholar] [CrossRef] [PubMed]
- Tupper, K.W.; McCrae, K.; Garber, I.; Lysyshyn, M.; Wood, E. Initial results of a drug checking pilot program to detect fentanyl adulteration in a Canadian setting. Drug Alcohol Depend. 2018, 190, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Belackova, V.; Salmon, A.M.; Day, C.A.; Ritter, A.; Shanahan, M.; Hedrich, D.; Kerr, T.; Jauncey, M. Drug consumption rooms: A systematic review of evaluation methodologies. Drug Alcohol Rev. 2019, 38, 406–422. [Google Scholar] [CrossRef]
- Fregonese, M.; Albino, A.; Covino, C.; Gili, A.; Bacci, M.; Nicoletti, A.; Gambelunghe, C. Drug Checking as Strategy for Harm Reduction in Recreational Contests: Evaluation of Two Different Drug Analysis Methodologies. Front. Psychiatry 2021, 12, 596895. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Stansfield, C.; Hassan, V. Festival testing: A survey of suspected drugs seized from New Zealand music festivals, December 2018 to March 2019. Forensic Sci. Int. 2020, 313, 110367. [Google Scholar] [CrossRef]
- McCrae, K.; Tobias, S.; Grant, C.; Lysyshyn, M.; Laing, R.; Wood, E.; Ti, L. Assessing the limit of detection of Fourier-transform infrared spectroscopy and immunoassay strips for fentanyl in a real-world setting. Drug Alcohol Rev. 2020, 39, 98–102. [Google Scholar] [CrossRef]
- Wallace, B.; Hills, R.; Rothwell, J.; Kumar, D.; Garber, I.; van Roode, T.; Larnder, A.; Pagan, F.; Aasen, J.; Weatherston, J.; et al. Implementing an integrated multi-technology platform for drug checking: Social, scientific, and technological considerations. Drug Test. Anal. 2021, 13, 734–746. [Google Scholar] [CrossRef]
- Moros, J.; Galipienso, N.; Vilches, R.; Garrigues, S.; de la Guardia, M. Nondestructive Direct Determination of Heroin in Seized Illicit Street Drugs by Diffuse Reflectance near-Infrared Spectroscopy. Anal. Chem. 2008, 80, 7257–7265. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, N.R.; Jovanović, M.; Marini, F.; Ražić, S. Chemometric Approach to a Rapid Attenuated Total Reflection Fourier Transform Infrared Analysis of Complex Heroin-Based Mixtures. Appl. Spectrosc. 2021, 75, 545–555. [Google Scholar] [CrossRef]
- Karch, L.; Tobias, S.; Schmidt, C.; Doe-Simkins, M.; Carter, N.; Salisbury-Afshar, E.; Carlberg-Racich, S. Results from a mobile drug checking pilot program using three technologies in Chicago, IL, USA. Drug Alcohol Depend. 2021, 228, 108976. [Google Scholar] [CrossRef] [PubMed]
- Ti, L.; Tobias, S.; Lysyshyn, M.; Laing, R.; Nosova, E.; Choi, J.; Arredondo, J.; McCrae, K.; Tupper, K.; Wood, E. Detecting fentanyl using point-of-care drug checking technologies: A validation study. Drug Alcohol Depend. 2020, 212, 108006. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, T.; Briggs, D.; Kimber, J.; Jones, S.; Holloway, G. Crack–heroin speedball injection and its implications for vein care: Qualitative study. Addiction 2007, 102, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Duvauchelle, C.L.; Sapoznik, T.; Kornetsky, C. The Synergistic Effects of Combining Cocaine and Heroin (“Speedball”) Using a Progressive-Ratio Schedule of Drug Reinforcement. Pharmacol. Biochem. Behav. 1998, 61, 297–302. [Google Scholar] [CrossRef]
- Antoine, J.; Hogge, M.; De Donder, E.; Verstuyf, G.; Plettinckx, E.; Gremeaux, L. Which drugs of choice are on the rise or in decline? A trend analysis of Belgium’s treatment settings (2015–2019). Drugs Habits Soc. Policy 2022, 23, 104–115. [Google Scholar] [CrossRef]
- Deconinck, E.; Duchateau, C.; Balcaen, M.; Gremeaux, L.; Courselle, P. Chemometrics and infrared spectroscopy—A winning team for the analysis of illicit drug products. Rev. Anal. Chem. 2022, 41, 228–255. [Google Scholar] [CrossRef]
- Moros, J.; Kuligowski, J.; Quintás, G.; Garrigues, S.; de la Guardia, M. New cut-off criterion for uninformative variable elimination in multivariate calibration of near-infrared spectra for the determination of heroin in illicit street drugs. Anal. Chim. Acta 2008, 630, 150–160. [Google Scholar] [CrossRef]
- Coppey, F.; Bécue, A.; Sacré, P.-Y.; Ziemons, E.M.; Hubert, P.; Esseiva, P. Providing illicit drugs results in five seconds using ultra-portable NIR technology: An opportunity for forensic laboratories to cope with the trend toward the decentralization of forensic capabilities. Forensic Sci. Int. 2020, 317, 110498. [Google Scholar] [CrossRef]
- Melucci, D.; Monti, D.; D’elia, M.; Luciano, G. Rapid In Situ Repeatable Analysis of Drugs in Powder Form Using Reflectance Near-Infrared Spectroscopy and Multivariate Calibration: Rapid in Situ Repeatable Analysis of Drugs. J. Forensic Sci. 2012, 57, 86–92. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Niu, F.; Fan, L.; Teng, X.; Zhang, C.; He, X. Characterization of Heroin and Its Additives by Attenuated Total Reflection (ATR)—Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis. Anal. Lett. 2020, 53, 2656–2670. [Google Scholar] [CrossRef]
- Custers, D.; Cauwenbergh, T.; Bothy, J.; Courselle, P.; De Beer, J.; Apers, S.; Deconinck, E. ATR-FTIR spectroscopy and chemometrics: An interesting tool to discriminate and characterize counterfeit medicines. J. Pharm. Biomed. Anal. 2015, 112, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, E.; Bothy, J.; Desmedt, B.; Courselle, P.; De Beer, J. Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy. J. Pharm. Biomed. Anal. 2014, 98, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, Z.; Barhdadi, S.; De Braekeleer, K.; Delporte, C.; Adams, E.; Deconinck, E. Spectroscopy and Chemometrics for Conformity Analysis of e-Liquids: Illegal Additive Detection and Nicotine Characterization. Chemosensors 2024, 12, 9. [Google Scholar] [CrossRef]
- Deconinck, E.; Bothy, J.; Barhdadi, S.; Courselle, P. Discriminating nicotine and non-nicotine containing e-liquids using infrared spectroscopy. J. Pharm. Biomed. Anal. 2016, 120, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.; Ingle, P.; Khole, A.H.; Zhang, S.; Yang, Z.; Beya, M.; Bureš, D.; Cozzolino, D. Discrimination of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) binary mixtures using a portable near infrared instrument combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122506. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.D.; Vianna, S.G.; Cunha, P.H.; Folli, G.S.; de Paulo, E.H.; Moro, M.K.; Romão, W.; de Oliveira, E.C.; Filgueiras, P.R. Characterization of crude oils with a portable NIR spectrometer. Microchem. J. 2022, 181, 107696. [Google Scholar] [CrossRef]
- Kim, J.; Semyalo, D.; Rho, T.-G.; Bae, H.; Cho, B.-K. Non-Destructive Detection of Abnormal Chicken Eggs by Using an Optimized Spectral Analysis System. Sensors 2022, 22, 9826. [Google Scholar] [CrossRef]
- Merves, M.L.; Goldberger, B.A. HEROIN. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2005; pp. 260–266. [Google Scholar] [CrossRef]
- Boerner, U.; Abbott, S.; Roe, R.L. The Metabolism of Morphine and Heroin in Man. Drug Metab. Rev. 1975, 4, 39–73. [Google Scholar] [CrossRef]
- Eigenvector Research, Inc. Tools: Permutation Test. 2014. Available online: https://wiki.eigenvector.com/index.php?title=Tools:_Permutation_Test#:~:text=Permutation%20tests%20are%20another%20way,conditions%20but%20on%20random%20data (accessed on 22 February 2024).
- European Directorate for the Quality of Medicines and Health Care (EDQM). Qualification of Equipment, Annex 4: Qualification of IR Spectrophotmeters (PA/PH/OMCL (07) 12 DEF CORR). 2007. Available online: https://www.edqm.eu/en/quality-management-qm-documents (accessed on 22 February 2024).
- Massart, D.L. Handbook of Chemometrics and Qualimetrics; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Gorry, P.A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Anal. Chem. 1990, 62, 570–573. [Google Scholar] [CrossRef]
- Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Deconinck, E.; Van Campenhout, R.; Aouadi, C.; Canfyn, M.; Bothy, J.L.; Gremeaux, L.; Blanckaert, P.; Courselle, P. Combining attenuated total reflectance-infrared spectroscopy and chemometrics for the identification and the dosage estimation of MDMA tablets. Talanta 2019, 195, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, E.; Aït-Kaci, C.; Raes, A.; Canfyn, M.; Bothy, J.; Duchateau, C.; Mees, C.; De Braekeleer, K.; Gremaux, L.; Blanckaert, P. An infrared spectroscopic approach to characterise white powders, easily applicable in the context of drug checking, drug prevention and on-site analysis. Drug Test. Anal. 2021, 13, 679–693. [Google Scholar] [CrossRef]
- Smith, M.; Logan, M.; Bazley, M.; Blanchfield, J.; Stokes, R.; Blanco, A.; McGee, R. A Semi-quantitative method for the detection of fentanyl using surface-enhanced Raman scattering (SERS) with a handheld Raman instrument. J. Forensic Sci. 2021, 66, 505–519. [Google Scholar] [CrossRef]
- Wang, K.; Xu, B.; Wu, J.; Zhu, Y.; Guo, L.; Xie, J. Elucidating fentanyls differentiation from morphines in chemical and biological samples with surface-enhanced Raman spectroscopy. Electrophoresis 2019, 40, 2193–2203. [Google Scholar] [CrossRef]
- Mirsafavi, R.; Moskovits, M.; Meinhart, C. Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy. Analyst 2020, 145, 3440–3446. [Google Scholar] [CrossRef]
- Wang, L.; Vendrell-Dones, M.O.; Deriu, C.; Doğruer, S.; Harrington, P.d.B.; McCord, B. Multivariate Analysis Aided Surface-Enhanced Raman Spectroscopy (MVA-SERS) Multiplex Quantitative Detection of Trace Fentanyl in Illicit Drug Mixtures Using a Handheld Raman Spectrometer. Appl. Spectrosc. 2021, 75, 1225–1236. [Google Scholar] [CrossRef]
- Atta, S.; Vo-Dinh, T. Ultra-trace SERS detection of cocaine and heroin using bimetallic gold–silver nanostars (BGNS-Ag). Anal. Chim. Acta 2023, 1251, 340956. [Google Scholar] [CrossRef] [PubMed]
- Akçan, R.; Yildirim, M.; Ilhan, H.; Güven, B.; Tamer, U.; Sağlam, N. Surface enhanced Raman spectroscopy as a novel tool for rapid quantification of heroin and metabolites in saliva. Turk. J. Med. Sci. 2020, 50, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Masterson, A.N.; Hati, S.; Ren, G.; Liyanage, T.; Manicke, N.E.; Goodpaster, J.V.; Sardar, R. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Anal. Chem. 2021, 93, 2578–2588. [Google Scholar] [CrossRef] [PubMed]
- Tobias, S.; Grant, C.J.; Laing, R.; Arredondo, J.; Lysyshyn, M.; Buxton, J.; Tupper, K.W.; Wood, E.; Ti, L. Time-Series Analysis of Fentanyl Concentration in the Unregulated Opioid Drug Supply in a Canadian Setting. Am. J. Epidemiol. 2022, 191, 241–247. [Google Scholar] [CrossRef] [PubMed]
Compound | Nr. Training Samples (Ratio Positive/ Negative) | Nr. Test Set Samples (Ration Positive/ Negative | Data Pre-Treatment | Nr. PLS Factors | Ccr for Calibration (%) | Ccr for Cross Validation (%) | Ccr for Prediction (%) | Sensitivity (%) CV-Test Set | Specificity (%) CV-Test Set | Precision (%) CV-Test Set |
---|---|---|---|---|---|---|---|---|---|---|
Heroin | 100 (97/3) | 25 (21/4) | 2nd derivative | 9 | 98.99 | 98.99 | 96.00 | 100.00–100.00 | 66.67–75.00 | 98.98–95.45 |
Acetaminophen | 100 (97/3) | 25 (21/4) | SNV | 2 | 100.00 | 98.99 | 96.00 | 100.00–95.45 | 66.67–100.00 | 98.98–100.00 |
Acetyl codeine | 100 (97/3) | 25 (20/5) | SNV | 5 | 98.99 | 98.99 | 96.00 | 100.00–100.00 | 66.67–80.00 | 98.98–95.00 |
Mono-acetylmorphine | 100 (97/3) | 25 (21/4) | 2nd derivative | 9 | 98.99 | 98.99 | 96.00 | 100.00–100.00 | 66.67–75.00 | 98.98–95.23 |
Caffeine | 100 (97/3) | 25 (22/3) | 2nd derivative | 8 | 100.00 | 98.99 | 96.00 | 100.00–95.45 | 66.67–100.00 | 98.98–100.00 |
Codeine | 100 (24/73) | 25 (5/20) | Autoscaling | 15 | 92.93 | 82.83 | 80.00 | 62.50–60.00 | 90.41–85.00 | 68.18–50.00 |
Diacetamate | 100 (96/4) | 25 (20/5) | 2nd derivative | 14 | 98.99 | 97.98 | 96.00 | 100.00–100.00 | 50.00–80.00 | 97.96–95.23 |
Methacetine | 100 (6/94) | 25 (4/21) | - | - | - | - | - | - | - | - |
Morphine | 100 (94/6) | 25 (21/4) | SNV | 3 | 96.97 | 96.97 | 88.00 | 100.00–100.00 | 50.00–25.00 | 96.90–87.50 |
Noscapine | 100 (97/3) | 25 (20/5) | SNV | 5 | 98.99 | 98.99 | 96.00 | 100.00–100.00 | 66.67–80.00 | 98.98–95.23 |
Papaverine | 100 (95/5) | 25 (19/6) | Autoscaling | 5 | 97.98 | 97.98 | 92.00 | 100.00–100.00 | 97.89–89.47 | 97.94–90.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deconinck, E.; Lievens, S.; Canfyn, M.; Van Campenhout, P.; Debehault, L.; Gremaux, L.; Balcaen, M. Full Characterisation of Heroin Samples Using Infrared Spectroscopy and Multivariate Calibration. Molecules 2024, 29, 1116. https://doi.org/10.3390/molecules29051116
Deconinck E, Lievens S, Canfyn M, Van Campenhout P, Debehault L, Gremaux L, Balcaen M. Full Characterisation of Heroin Samples Using Infrared Spectroscopy and Multivariate Calibration. Molecules. 2024; 29(5):1116. https://doi.org/10.3390/molecules29051116
Chicago/Turabian StyleDeconinck, Eric, Sybrien Lievens, Michael Canfyn, Peter Van Campenhout, Loic Debehault, Lies Gremaux, and Margot Balcaen. 2024. "Full Characterisation of Heroin Samples Using Infrared Spectroscopy and Multivariate Calibration" Molecules 29, no. 5: 1116. https://doi.org/10.3390/molecules29051116
APA StyleDeconinck, E., Lievens, S., Canfyn, M., Van Campenhout, P., Debehault, L., Gremaux, L., & Balcaen, M. (2024). Full Characterisation of Heroin Samples Using Infrared Spectroscopy and Multivariate Calibration. Molecules, 29(5), 1116. https://doi.org/10.3390/molecules29051116