Molecular Design of Sexiphenyl-Based Liquid Crystals: Towards Temperature-Stable, Nematic Phases with Enhanced Optical Properties
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Mesomorphic Properties
2.3. Optical Properties
2.4. Spectral Properties
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gundlach, D.J.; Lin, Y.Y.; Jackson, T.N.; Schlom, D.G. Oligophenyl-based organic thin film transistors. Appl. Phys. Lett. 1997, 71, 3853–3855. [Google Scholar] [CrossRef]
- Simbrunner, C.; Hernandez-Sosa, G.; Baumgartner, E.; Hesser, G.; Roither, J.; Sitter, H.; Heiss, W. Para-sexiphenyl-CdSe/ZnS nanocrystal hybrid light emitting diodes. Appl. Phys. Lett. 2009, 94, 073505. [Google Scholar] [CrossRef]
- Andreev, A.; Matt, G.; Brabec, C.J.; Sitter, H.; Badt, D.; Seyringer, H.; Sariciftci, N.S. Highly anisotropically self-assembled structures of para-sexiphenyl grown by hot-wall epitaxy. Adv. Mater. 2000, 12, 629–633. [Google Scholar] [CrossRef]
- Ortiz, R.P.; Facchetti, A.; Marks, T.J. High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chem. Rev. 2010, 110, 205–239. [Google Scholar] [CrossRef]
- Quochi, F.; Cordella, F.; Orru, R.; Communal, J.E.; Verzeroli, P.; Mura, A.; Bongiovanni, G.; Andreev, A.; Sitter, H.; Sariciftci, N.S. Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy. Appl. Phys. Lett. 2004, 84, 4454–4456. [Google Scholar] [CrossRef]
- Andreev, A.; Quochi, F.; Cordella, F.; Mura, A.; Bongiovanni, G.; Sitter, H.; Hlawacek, G.; Teichert, C.; Sariciftci, N.S. Coherent random lasing in the deep blue from self-assembled organic nanofibers. J. Appl. Phys. 2006, 99, 034305. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Cui, Z.C.; Wang, H.; Yan, D.; Li, Y.; Shi, Z.; Wu, A.; Zhao, Z.; Luan, S. Crystallization of sexiphenyl induced by polyurethane containing terphenyl groups affording high-mobility organic thin-film transistor. Org. Electron. 2014, 15, 2295–2301. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wang, Z.; Zhou, X.; Wang, Z.; Huang, L.; Chi, L. High-Performance Bottom-Contact Organic Thin-Film Transistors by Improving the Lateral Contact. Adv. Electron. Mater. 2017, 3, 1700128. [Google Scholar] [CrossRef]
- Choi, A.; Kwon, Y.N.; Chung, J.W.; Yun, Y.; Park, J.; Lee, Y.U. Control of dielectric surface energy by dry surface treatment for high performance organic thin film transistor based on dibenzothiopheno[6,5-b:6′,5′-f] thieno[3,2-b]thiophene semiconductor. AIP Adv. 2020, 10, 025127. [Google Scholar] [CrossRef]
- Comeau, Z.J.; Cranston, R.R.; Lamontagne, H.R.; Harris, C.S.; Shuhendler, A.J.; Lessard, B.H. Surface engineering of zinc phthalocyanine organic thin-film transistors results in part-per-billion sensitivity towards cannabinoid vapor. Commun. Chem. 2022, 5, 178. [Google Scholar] [CrossRef]
- Meghdadi, F.; Tasch, S.; Winkler, B.; Fischer, W.; Stelzer, F.; Leising, G. Blue electroluminescence devices based on parahexaphenyl. Synth. Met. 1997, 85, 1441–1442. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Sun, R.G.; Meghdadi, F.; Leising, G.; Swager, T.M.; Epstein, A.J. Color variable multilayer light emitting devices based on conjugated polymers and oligomers. Synth. Met. 1999, 102, 889–892. [Google Scholar] [CrossRef]
- Yanagi, H.; Okamoto, S.; Mikami, T. Organic electroluminescent device with epitaxial p-sexiphenyl films. Synth. Met. 1997, 91, 91–93. [Google Scholar] [CrossRef]
- Zojer, E.; Koch, N.; Puschnig, P.; Meghdadi, F.; Niko, A.; Resel, R.; Ambrosch-Draxl, C.; Knupfer, M.; Fink, J.; Brédas, J.L.; et al. Structure, morphology, and optical properties of highly ordered films of para-sexiphenyl. Phys. Rev. B 2000, 61, 16538–16549. [Google Scholar] [CrossRef]
- Kirmse, H.; Sparenberg, M.; Zykov, A.; Sadofev, S.; Kowarik, S.; Blumstengel, S. Structure of p-Sexiphenyl Nanocrystallites in ZnO Revealed by High-Resolution Transmission Electron Microscopy. Cryst. Growth Des. 2016, 16, 2789–2794. [Google Scholar] [CrossRef]
- Leising, G.; Tasch, S.; Brandstatter, C.; Meghdadi, F.; Froyer, G.; Athouel, L. Red-green-blue light emission from a thin film electroluminescence device based on parahexaphenyl. Adv. Mater. 1997, 9, 33–36. [Google Scholar] [CrossRef]
- Winder, C.; Andreev, A.; Sitter, H.; Matt, G.; Sariciftci, N.S.; Meissner, D. Optoelectronic devices based on para-sexiphenyl films grown by Hot Wall Epitaxy. Synth. Met. 2003, 139, 573–576. [Google Scholar] [CrossRef]
- Meinhardt, G.; Graupner, W.; Feistritzer, G.; Schröder, R.; List, E.; Pogantsch, A.; Dicker, G.; Schlicke, B.; Schulte, N.; Schlüter, A.D.; et al. Optoelectronic devices made from multilayer and molecularly doped organic layers. Proc. SPIE 1999, 3623, 46–57. [Google Scholar]
- Wagner, M.; Setvin, M.; Schmid, M.; Diebold, U. Sexiphenyl on Cu(100): Nc-AFM tip functionalization and identification. Surf. Sci. 2018, 678, 124–127. [Google Scholar] [CrossRef]
- Bhagat, S.; Leal, W.D.; Majewski, M.B.; Simbrunner, J.; Hofer, S.; Resel, R.; Salzmann, I. Aggregate formation in crystalline blends of alpha-sexithiophene and para-sexiphenyl. Electron. Struct. 2021, 3, 034004. [Google Scholar] [CrossRef]
- Li, J.; Solianyk, L.; Schmidt, N.; Baker, B.; Gottardi, S.; Moreno Lopez, J.C.; Enache, M.; Monjas, L.; van der Vlag, R.; Havenith, R.W.A.; et al. Low-Dimensional Metal-Organic Coordination Structures on Graphene. J. Phys. Chem. C 2019, 123, 12730–12735. [Google Scholar] [CrossRef] [PubMed]
- Palczynski, K.; Herrmann, P.; Heimel, G.; Heimel, G.; Dzubiella, J. Characterization of step-edge barrier crossing of para-sexiphenyl on the ZnO (10(1)over-bar0) surface. Phys. Chem. Chem. Phys. 2016, 18, 25329–25341. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Hofinger, J.; Setvin, M.; Boatner, L.A.; Schmid, M.; Diebold, U. Prototypical Organic-Oxide Interface: Intramolecular Resolution of Sexiphenyl on In2O3(111). ACS Appl. Mater. Inter. 2018, 10, 14175–14182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Dong, J.P.; Li, G.J.; Liu, C.; Xie, Q.; Wang, L.; Wang, L.J.; You, M. Bilayer polymer dielectric systems for high response NO2 gas sensors. Mater. Lett. 2021, 1, 288. [Google Scholar] [CrossRef]
- Postnikov, V.A.; Kulishov, A.A.; Borshchev, O.V.; Svidchenko, E.A.; Surin, N.M. Growth of p-Sexiphenyl Crystals and its Trymethylsilyl Derivative from the Vapor Phase. J. Surf. Investig. 2021, 15, 24–27. [Google Scholar] [CrossRef]
- Keegstra, M.A.; Cimrova, V.; Neher, D.; Scherf, U. Synthesis and electroluminescent properties of quaterphenyl and sexiphenyl containing copolymers. Macromol. Chem. Phys. 1996, 197, 2511–2519. [Google Scholar] [CrossRef]
- Lewis, I.C.; Kovac, C.A. Liquid-Crystal Transitions of Para-Sexiphenyl. Mol. Cryst. Liq. Cryst. 1979, 51, 173–178. [Google Scholar] [CrossRef]
- Lewis, I.C.; Barr, J.B. Differential Scanning Calorimetry of P-Sexiphenyl. Mol. Cryst. Liq. Cryst. 1981, 72, 65–66. [Google Scholar] [CrossRef]
- Zhong, T.J.; Mandle, R.; Saez, I.; Cowling, S.J.; Goodby, J. Rods to discs in the study of mesomorphism in discotic liquid crystals. Liq. Cryst. 2018, 45, 2274–2293. [Google Scholar] [CrossRef]
- Goodby, J.W.; Mandle, R.J.; Davis, E.J.; Zhong, T.J.; Cowling, S.J. What makes a liquid crystal? The effect of free volume on soft matter. Liq. Cryst. 2015, 42, 593–622. [Google Scholar] [CrossRef]
- Irvine, P.A.; Wu, D.C.; Flory, P.J. Liquid-Crystalline Transitions in Homologous Para-Phenylenes and Their Mixtures. 1. Experimental Results. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1984, 80, 1795–1806. [Google Scholar]
- Zafiropoulos, N.A.; Choi, E.J.; Dingernans, T.; Lin, W.; Samulski, E.T. New all-aromatic liquid crystal architectures. Chem. Mater. 2008, 20, 3821–3831. [Google Scholar] [CrossRef]
- Palczynski, K.; Heimel, G.; Heyda, J.; Dzubiella, J. Growth and Characterization of Molecular Crystals of para-Sexiphenyl by All-Atom Computer Simulations. Cryst. Growth Des. 2014, 14, 3791–3799. [Google Scholar] [CrossRef]
- Athouel, L.; Froyer, G.; Riou, M.T.; Schott, M. Structural studies of parasexiphenyl thin films: Importance of the deposition parameters. Thin Solid Films 1996, 274, 35–45. [Google Scholar] [CrossRef]
- Subramaniam, G.; Gilpin, R.K.; Pinkerton, A.A. Structure of 2′,3′′-Dimethyl-Para-Sexiphenyl by X-ray and Semiempirical Methods. Mol. Cryst. Liq. Cryst 1992, 213, 229–236. [Google Scholar] [CrossRef]
- Guiglion, P.; Zwijnenburg, M.A. Contrasting the optical properties of the different isomers of oligophenylene. Phys. Chem. Chem. Phys. 2015, 17, 17854–17863. [Google Scholar] [CrossRef]
- Choluj, A.; Kula, P.; Dabrowski, R.; Tykarska, M.; Jaroszewicz, L. Synthesis and mesomorphic properties of laterally fluorinated alkyl 4″-alkylterphenyl-4-yl carbonate liquid crystals. J. Mater. Chem. C 2014, 2, 891–900. [Google Scholar] [CrossRef]
- Iioka, R.; Yorozu, K.; Sakai, Y.; Kawai, R.; Hatae, N.; Takashima, K.; Tanabe, G.; Wasada, H.; Yoshimatsu, M. Synthesis of Azepino[1,2]indole-10-amines via [6+1] Annulation of Ynenitriles with Reformatsky Reagent. Eur. J. Org. Chem. 2021, 2021, 1553–1558. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. 12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Compound | Phase Transition Temperatures [°C]/(Enthalpy Change ΔH [kJ mol−1]) | |
---|---|---|
Heating Process | Cooling Process | |
Sexi_Ph1 | Cr1 77.9 (−7.0) Cr2 293.1 (−55.3) N 345.8 (−3.8) Iso | Iso 347.2 (2.2) N 273.5 (0.9) SmA 243.7 (22.3) Cr2 74.5 (5.6) Cr1 |
Sexi_Ph2 | Cr 155.0 (−30.6) N 302.9 (−2.5) Iso | Iso 303.0 (2.3) N 111.6 (30.3) Cr2 −39.2 (0.6) Cr1 |
Sexi_Ph3 | Cr1 49.8 (−4.3) Cr2 157.7 (−36.7) N 244.2 (−2.4) Iso | Iso 244.4 (2.3) N 117.4 (23.2) Cr2 48.7 (7.3) Cr1 |
Sexi_Ph4 | Cr 147.1 (−17.3) N 356.0 (−2.6) Iso | Iso 357.0 (2.5) N 104.3 (16.8) Cr |
Sexi_Ph5 | Cr 148.9 (−22.8) N 330.0 (−2.2) Iso | Iso 329.8 (2.1) N 103.5 (13.1) Cr |
Sexi_Ph6 | Cr 149.0 (−26.0) N 271.8 (−2.5) Iso | Iso 272.2 (2.4) N 103.0 (28.0) Cr |
Compound | n | wt % | Properties |
---|---|---|---|
1 | 32 | TN-Iso = 63.6 °C TCr-N < −20 °C η = 21.2 mPa·s Δn = 0.07; 20 °C (636 nm) Δε = −1.3; 20 °C (1 kHz) | |
2 | 31 | ||
5 | 37 |
Compound | 443 nm | 636 nm | 1550 nm | ||||||
---|---|---|---|---|---|---|---|---|---|
no | ne | Δn | no | ne | Δn | no | ne | Δn | |
Sexi_Ph4 | 1.6236 | 2.2105 | 0.5869 | 1.5859 | 2.0842 | 0.4983 | 1.5751 | 1.9638 | 0.3887 |
Sexi_Ph5 | 1.6255 | 2.2072 | 0.5817 | 1.5954 | 2.0807 | 0.4853 | 1.5816 | 1.9577 | 0.3761 |
Sexi_Ph6 | 1.6261 | 2.2011 | 0.5750 | 1.5950 | 2.0741 | 0.4791 | 1.5814 | 1.9518 | 0.3704 |
Compound | [nm] | [L mol−1 cm−1] | [nm] | δν [nm] | |
---|---|---|---|---|---|
Sexi_Ph1 | 299 | 89,086 | 364 | 0.79 | 65 |
Sexi_Ph2 | 297 | 66,972 | 370 | 0.68 | 73 |
Sexi_Ph3 | 294 | 74,250 | 372 | 0.80 | 78 |
Sexi_Ph4 | 298 | 74,025 | 368 | 0.77 | 70 |
Sexi_Ph5 | 296 | 73,039 | 371 | 0.79 | 75 |
Sexi_Ph6 | 294 | 73,897 | 370 | 0.73 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herman, J.; Harmata, P.; Rychłowicz, N.; Kula, P. Molecular Design of Sexiphenyl-Based Liquid Crystals: Towards Temperature-Stable, Nematic Phases with Enhanced Optical Properties. Molecules 2024, 29, 946. https://doi.org/10.3390/molecules29050946
Herman J, Harmata P, Rychłowicz N, Kula P. Molecular Design of Sexiphenyl-Based Liquid Crystals: Towards Temperature-Stable, Nematic Phases with Enhanced Optical Properties. Molecules. 2024; 29(5):946. https://doi.org/10.3390/molecules29050946
Chicago/Turabian StyleHerman, Jakub, Piotr Harmata, Natan Rychłowicz, and Przemysław Kula. 2024. "Molecular Design of Sexiphenyl-Based Liquid Crystals: Towards Temperature-Stable, Nematic Phases with Enhanced Optical Properties" Molecules 29, no. 5: 946. https://doi.org/10.3390/molecules29050946
APA StyleHerman, J., Harmata, P., Rychłowicz, N., & Kula, P. (2024). Molecular Design of Sexiphenyl-Based Liquid Crystals: Towards Temperature-Stable, Nematic Phases with Enhanced Optical Properties. Molecules, 29(5), 946. https://doi.org/10.3390/molecules29050946