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Abstract: Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans iso-
merase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted
by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player
in many of the biological events and is therefore involved in several diseases, including vascular and
inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for
therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of
novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many
cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss
current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives,
quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials
of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular
mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This
advancement will aid in the development of innovative pharmaceutical treatments in the future.

Keywords: cyclophilin A; peptidyl-prolyl isomerase; cyclophilin inhibitor; cyclosporin A; cancer;
inflammatory diseases

1. Introduction

Cyclophilins are a family of ubiquitously distributed cellular proteins, consisting of
at least 16 subtypes in human genome, such as cyclophilin A, cyclophilin B, cyclophilin
D, and cyclophilin J [1–4]. Cyclophilins possess peptidyl-prolyl isomerase (PPIase) ac-
tivity, which they exhibit by facilitating the cis-trans isomerization of peptide bonds
that precede proline residues, potentially via an electrostatic handle mechanism [3,5–8].
Among them, cyclophilin A, the prototype of cyclophilins, was first identified and is well
characterized [9–11]. Cyclophilin A comprises eight antiparallel β-sheets and a pair of
α-helices; the active sites of the PPIase in cyclophilin A include Arg55, Phe60, Met61,
Gln63, Gly74, Gly75, Glu81, Lys82, Ala101, Asn102, Ala103, Thr107, Gly109, Ser110, Gln111,
Phe113, Trp121, Leu122, and His126 (Figure 1) [7,12–15]. These binding sites can be oc-
cupied by cyclosporin A (CsA), which is a potent cyclophilin A inhibitor and one of the
powerful immunosuppressive drugs, and is the most extensively studied and strongest
binding ligand of cyclophilin A [7,10,12,13,15]. Most of these structure features are evolu-
tionarily conserved in the homologues of cyclophilins [7].

Cyclophilin A is identified as a critical component in various biological processes and
associated diseases, such as protein folding/trafficking, immune responses, cell signal-
ing, vascular disease pathogenesis, viral infections, rheumatoid arthritis, atherosclerosis,
and cancer development [9,16–38]. Although the underlying mechanisms remain to be
further investigated, they are possibly multifaceted and indeed distinct regarding intra-
cellular and extracellular cyclophilin A proteins. Regarding intracellular cyclophilin A, it
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predominantly acts through the PPIase-dependent and/or -independent protein–protein
interaction [18,26,39,40]. Cyclosporine A (CsA), known for its potent inhibition of cy-
clophilin A and significant immunosuppressive properties, is well characterized, it binds
to cyclophilin A, inhibiting its PPIase activity; subsequently, the cyclophilin A–CsA com-
plex interacts with and inhibits calcineurin, it acts as a calcium/calmodulin-activated
serine/threonine-specific protein phosphatase, which obstructs the translocation of nuclear
factor of activated T-cells (NF-AT) from the cytosol to the nucleus, ultimately inhibiting
T-cell activation [41–43]. Most recently, a novel intracellular target of cyclophilin A, the
inosine-5′-monophosphate dehydrogenase 2, has been identified, which can bind with the
complex of cyclophilin A–sanglifehrin A (SFA, an inhibitor of cyclophilin A, described
below) to modulate cell proliferation and eventually inhibit T-cell activation induced by
SFA [44]. In addition, a plenty of evidence indicates that intracellular cyclophilin A plays a
crucial role in the lifecycle of various viruses, including HIV-1, influenza, hepatitis B and C,
vesicular stomatitis virus, vaccinia virus, SARS-CoV, nidovirus, feline and porcine CoV, and
rotavirus (RV), via its binding with capsid or nonstructure viral proteins [28,29,36,45–50].
Furthermore, cyclophilin A is notably overexpressed in numerous human cancers and
cancer-related cell lines [24,25,31,39,51–59]. Although its biological roles in tumor cells
remain elusive, cyclophilin A may enhance cell survival under stressful conditions, such
as those associated with the proliferation of signaling proteins, antiapoptotic proteins,
transcription factors, or cell migration regulatory proteins, including CYCS (cytochrome c,
somatic) [60], ITK (interleukin-2 inducible T-cell kinase) [61], ASK1 (apoptosis signaling-
regulating kinase 1) [40], and CRKII (CT-10 (a kind of avian virus) regulator of kinase) [39].
For instance, cyclophilin A can bind adaptor protein CRKII to sterically restrict the ac-
cessibility of CRKII Tyr221 to its kinase ABL1 (Abelson murine leukemia viral oncogene
homolog 1) or EGFR (epidermal growth factor receptor), which thereby, inhibits CRKII
phosphorylation and keeps it at the active form and enhances CRKII-mediated signaling
to promote tumor cell migration [39]. Altogether, these findings indicate that intracellular
cyclophilin A functions at multiple levels, including its critical roles in immune response,
viral infection, and tumorigenesis.
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In addition to its predominant cytosol localization, cyclophilin A can be secreted by
cells in response to inflammatory stimuli like hypoxia, infection, and oxidative
stress [21,32,62–65]. A body of evidence by in vitro studies and in vivo genetically modified
mouse models demonstrates that extracellular cyclophilin A is involved in inflammatory
diseases such as viral infection [30,45,66–69], periodontitis [70], and atherosclerosis [69] by
means of promoting cell chemotaxis and cell migration (especially leukocyte chemotaxis),
and eventually enhancing inflammation [32]. The function of extracellular cyclophilin A is
mainly mediated by the “extracellular matrix metalloprotease inducer” (EMMPIN, also
called CD147) [71]; this protein is a broadly expressed plasma membrane protein found in
various cells, including hematopoietic, epithelial, and endothelial cells [72]. The cyclophilin
A–CD147 complex initiates a signaling cascade, stimulating cell proliferation and chemo-
taxis through activation of MAPK pathways, including ERK1/2 and p38 MAPK [51,59,73].
For example, extracellular cyclophilin A was reported to be essential for vascular remod-
eling, as demonstrated by CyPA−/− mouse model [64,74,75], and mounting evidence
has highlighted its potential effect in atherosclerosis, which is a complicated, progressive
inflammatory disease [30]. Altogether, these studies suggest that cyclophilin A drives cellu-
lar functions not only via its chaperone and PPIase activity but also through cyclophilin
A-directed signal transduction in inflammatory diseases and human cancers.

Considering that cyclophilin A’s important roles in inflammatory diseases and cancers,
cyclophilin A-based targeting will be beneficial to conquer these disorders. As such, cy-
clophilin A has attracted considerable attention because of its potential use as a therapeutic
target based on its PPIase activity. Cyclosporin A (CsA), the first potent cyclophilin A
inhibitor, over three decades ago, marked a new epoch in organ transplantation [76,77].
Although CsA is an old medicine in the treatment of diseases, research on CsA has never
stopped. These studies involve the role of CsA in cancer therapeutics [55], the combi-
nation use of CsA in reducing resistance to chemotherapeutic drugs [78] and toxic side
effects [79] of antitumor drugs, the synthesis and discovery of CsA derivatives and struc-
tural analogues, the development of new functions of CsA [80,81], and identification of new
prognostic biomarkers [82], which have always been a hot research topic. Since then, numer-
ous cyclophilin A inhibitors have emerged and been characterized. In the present review,
we discuss available data about cyclophilin A inhibitors, including cyclic peptides, peptide
analogues, and other small molecule compounds, and outline the most recent advances
in clinical trials involving these agents. The exploration and refinement of cyclophilin A
inhibitors are expected to deepen current understanding of the molecular mechanisms of
these diseases and aid in the development of new pharmaceutical treatments soon.

2. Cyclic Peptides as Cyclophilin A Inhibitors
2.1. Cyclosporin A (CsA)

CsA (Compound 1, C1) (Table 1), an acyclic undecapeptide, was first discovered
by Jean-Francois Borel in 1976 [83], and approved as a potent immunosuppressant drug
by U.S. Food and Drug Administration (FDA) in 1983. CsA inhibits the PPIase activity
associated with the broad family of cyclophilins. Acting as an inhibitor of cyclophilin A, CsA
suppresses the activity of calcineurin, a calcium/calmodulin-activated serine/threonine
protein phosphatase, which abolishes dephosphorylation-dependent nuclear translocation
of transcription factor NF-AT, and ultimately suppresses T-cell activation [84,85]. Therefore,
CsA exhibits profound inhibitory effects on immunity, and has been extensively used for
immune suppression in allogeneic transplantation of bone marrow/hematopoietic stem
cells and solid organs for prevention and treatment of graft-versus-host diseases, and it
also plays a role in various inflammatory conditions, such as rheumatoid arthritis and
psoriasis [86]. Also, based on the high level of cyclophilin A in human malignancies,
CsA has been used to target human cancers, either alone or in combination with other
agents [87,88]. However, there are two possible issues for CsA. For one, the clinical use of
CsA has shown that it may be not a perfect drug because of its poor aqueous solubility and
serious side effects, including hepatotoxicity, nephrotoxicity, hyperkalemia, hyperuricemia,
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renal dysfunction, leukopenia, lymphoma, or skin cancer [89–92]. At this point, more
efforts are needed to reduce the toxicity and the off-target effects of CsA in clinic [93].
For another, since CsA has also been used in inflammatory diseases, one future direction
is to find nonimmunosuppressive CsA derivatives or novel agents to inhibit the role of
cyclophilin A in inflammation but not affect host immunity during viral infection control
or cancer treatment.

Table 1. Structure of cyclosporin A and its analogues.
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Other research shows that CsA decreases SARSCoV-2 replication in vitro and decreases
mortality rates of coronavirus disease 2019 (COVID-19) patients. The research found that
the nucleocapsid protein significantly depends on cyclophilin A, and identified the docking
sites of nucleocapsid with cyclophilin A [94]. Laurie et al. demonstrated the nucleocapsid
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as a potential indirect therapeutic target of CsA, which may impede coronavirus replication
by obstructing nucleocapsid folding [95].

In the latest study, researchers compared the effects of CsA and direct-acting antivirals
(DAAs), which consist of inhibitors of nonstructural proteins 5A (NS5A), NS3/4A, and
NS5B in Huh7.5.1 cells. The results showed that CsA inhibits HCV infection at the same
speed as the NS5A and NS3/4A inhibitors of DAAs. It has been reported that DAAs are
the fastest antiviral drugs in inhibiting HCV infection. This study further elucidates that
CsA can rapidly inhibit the level of infectious extracellular viruses, but it has no significant
effect on intracellular infectious viruses [96].

2.2. Cyclolinopeptides and the Analogues

Cyclolinopeptide A (CLA, C2) (Figure 2) is a homodetic cyclic nonapeptide (an ana-
logue of antamanide), which was isolated from linseeds [97]. Its bioactive conformation
was presumably attributed by the sequence Pro-Pro-Phe-Phe. The initial recognized bio-
logical activity of CLA was its capacity to inhibit the hepatocyte transport system used for
bile salts, ethanol, and cysteamine, as well as dimethylsulfoxide [98]. Importantly, CLA
was reported to bind to cyclophilin A and other cyclophilins, and the cyclophilin A–CLA
complex inhibited calcineurin-dependent T-cell activation, showing the similar mechanism
of immunosuppressive effect to CsA [99]. However, CLA has a tenfold lower affinity for
calcineurin compared to CsA and is considered nontoxic [100–103]. In addition to CLA,
another cyclic nonapeptide found in linseeds is cyclolinopeptide B (CLB, C3) (Figure 2),
which differs from CLA in its amino acid composition and sequence. CLB is characterized
as a more potent suppressor of the effector phase of delayed-type hypersensitivity reactions
than CLA [104]. The other natural cyclic peptides (C4 and C5) (Figure 2) show structural
similarities with CLA, both of which bind with bovine cyclophilin A and exhibit lower
immunosuppressive activity than CLA [102]. All cyclolinopeptides and their analogues
form complexes with cyclophilins and can, in this state, inhibit the phosphatase activity of
calcineurin [101,102,105], indicating that cyclolinopeptides might be promising inhibitors
of cyclophilin A.

2.3. Cyclosporin A Derivatives

Recently, Evers and colleagues reported a sort of novel CsA derivatives, [2-(dimethyl
or diethylamino)-ethylthio-Sar]3-[(4′-OH)MeLeu]4-CsA 3K (C6) and 3L (C7) (Figure 2) [106].
These CsA derivatives display potent anti-HIV-1 activity (IC50: ~46 nM) in vitro, while ex-
hibiting low immunosuppressive capacity (IC50: ≥1500 nM) [106]. Thus, these derivatives
could serve as novel and promising candidates for treating HIV-1 infection and may be
effectively combined with other anti-HIV-1 drugs.

2.4. Cyclosporin A Analogues

Wei and colleagues reported a line of CsA analogues, which were modified by a
solution-phase fragment coupling strategy [107]. The analogues modified at position 4
are the inhibitors for cyclophilin rotamase as potent as CsA, but lose immunosuppressive
activity; the analogues modified at position 8 also exhibit threefold lower inhibitory rota-
mase activity of cyclophilins than CsA. Meanwhile, the saturated dihydro-CsA, altered
in its binding domain, exhibits only one-fifth the potency of CsA in inhibiting cyclophilin
rotamase activity. Additionally, the dehydro Ala8-CsA analogue does not inhibit T-cell
proliferation at concentrations up to 10 µM, indicating that maintaining a d-configuration
at this position is crucial for calcineurin phosphatase inhibition. Moreover, there are other
analogues of CsA (C8–C12), which are illustrated in Table 1. These analogues’ ED50 are
around 100 nM, slightly higher than that of CsA (5 nM) [107]. Collectively, these findings
suggest that the mentioned CsA analogues are more likely to inhibit cyclophilin rotamase
without exerting immunosuppressive effects.
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CsA has a immunosuppressive effect through binding to calcineurin, especially by
the position 4 (P4), P5, and P6 side chains of CsA. In order to improve the inhibitory
effect of CsA derivatives on cyclophilin A and reduce its immunosuppressive effect, CsA
derivatives have been modified by changing the P3 side chain and substituting P4, P5, and
P6 side chains; these modifications can increase CsA derivatives binding to cyclophilin
A [49].

4MCsA, an albumin-bound CsA analogue, presents prospective inhibitory effects on
chemotactic activity and inflammation by targeting extracellular cyclophilin A. The binding
affinity of 4MCsA to cyclophilin A is similar to that of CsA, but lacks immunosuppressive
ability and cytotoxicity [108].

2.4.1. SCY-635

SCY-635 (C13) (Figure 2) is a novel CsA-based analogue that does not cause im-
munosuppression and effectively suppresses HCV replication in vitro [109]. It inhibits
cyclophilin A’s PPIase activity at nanomolar levels, but shows no perceptible inhibitory
effect on the phosphatase activity of calcineurin under the concentrations up to 2 µM.
Additionally, SCY-635 does not induce major cytochrome P450 enzymes 1A2, 2B6, and 3A4,
and is a weak inhibitor and a poor substrate for P-glycoprotein, suggesting that it may
have less potential drug–drug reaction. SCY-635 also shows synergistic antiviral activity
with interferon-alpha 2b (IFNα-2b) and additive antiviral activity with ribavirin [110,111].
Therefore, SCY-635 might be a promising novel antiviral agent with an acceptable safety
profile during treatment.

2.4.2. [Me-Ile-4]cyclosporine (NIM811)

[Me-Ile-4]cyclosporin (NIM811), i.e., N-methyl-L-isoleucine-cyclosporin (C14) (Fig-
ure 2), is an analogue of cyclosporine substituted at position 4 with N-methyl-L-isoleucine,
which is isolated from the fungus Tolypocladiumniveurn [112]. NIM811 is a first cyclosporin-
based nonimmunosuppressive inhibitor of cyclophilins. In contrast to CsA, NIM811
lacks immunosuppressive effectiveness while fully retaining its binding capacity to cy-
clophilins [112]. NIM811 exhibits a higher affinity for all cyclophilins compared to CsA [113],
which makes it a powerful suppressor for viral replication since cyclophilins, including
cyclophilin A, are involved in the formation of viral particles by interacting with capsid
proteins of a series of viruses such as HIV-1 and HCV [112–119]. In addition to binding to
cyclophilins, NIM811 can interact with the components of protein/lipid trafficking and
spliceosome pathway, which in turn contributes to the inhibition of viral replication and
particle formation [113]. Importantly, it causes a smaller degree of nephrotoxicity than CsA,
together indicating that it is possibly a better CsA analogue for virus treatment [112].

Regarding its potential role in inflammation, e.g., in coxsackievirus B3-induced my-
ocarditis, NIM811 can result in low level of metalloproteinase-9 and a reduction in inflam-
matory lesions, represented by the extent of lesion area is significantly decreased at 28 days
post-infection compared to that at 8 days post-infection when treated with NIM811 [120].
Therefore, NIM811 represents a novel promising inhibitor of cyclophilin A for inhibiting
viral infection and inflammation, but not acting as a potent immunosuppressant agent.

In addition, NIM811 can induce apoptotic cell death of human and murine melanoma
cells. It may trigger apoptosis through transient mitochondrial depolarization, which leads
to the efflux of proteins from the intermediate space, including cytochrome c, procaspase
9, apoptosis-inducing factor, and endonuclease G, sufficient to trigger “apoptosome” for-
mation and initiate the execution phase of apoptosis [121]. However, NIM811 also has a
cytoprotective effect by inhibiting mitochondrial permeabilization transition pore (mPTP)
opening to prevent in situ mitochondrial inner membrane permeabilization and depolar-
ization [122–127], although this cytoprotective effect depends on its binding to cyclophilin
D, but not cyclophilin A [125,128]. As such, NIM811 demonstrates a complicated role in
regulation of cancer cell growth.
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In addition, NIM811 can effectively inhibit the replication of HCoV-229E. CsA and
NIM811 derivatives block the interaction between cyclophilin A and nucleocapsid proteins,
indicating the mechanism by which cyclophilin A inhibitors inhibit virus replication [129].

2.4.3. Alisporivir (Debio-025)

Debio-025 (C15) (Figure 2) is a CsA analogue that significantly disrupts the lifecycle
of the hepatitis C virus [130,131] and the replication of HIV-1 [132]. Debio-025 differs
from CsA by having an additional methyl group at position 3 of the cyclic undecapeptide
and an N-ethylvaline instead of an N-methylleucine at position 4. Unlike CsA, Debio-025
does not exhibit immunosuppressive activity in vitro and in vivo. The structure of the
cyclophilin A-Debio-025 complex, hindered by steric interference with calcineurin’s Val4
residue, contrasts with the cyclophilin A–CsA–calcineurin ternary complex, where the
Leu4 side chain fits into a hydrophobic cavity at the calcineurin interface. This provides a
rational basis for Debio-025’s nonimmunosuppressive properties [133].

Furthermore, Debio-025 inhibits cell migration. When administered in vivo in a triple-
negative breast cancer in situ model, Debio-025 alone or in combination with anti-PD-1
mAb shows antitumor efficacy, reducing tumor volume and metastatic lung dispersion. In
addition, when analyzed by NanoString immunoassay, treating Debio-025 with anti-PD-1
mAb increased T-cell signaling and innate immune signaling in the tumor microenviron-
ment [134].

2.5. Sanglifehrin A (SFA)—A Natural Product

A new class of compounds named sanglifehrins has been identified through screening
of the cyclophilin-binding substances from microbial broth extracts of Streptomyces sp. A92-
308110 [135,136]. Among 20 different sanglifehrins isolated, sanglifehrin A (SFA, C16) (Fig-
ure 2) is the most abundant. Its affinity for cyclophilins is about 60 times higher than CsA
in a cell-free competitive binding assay (IC50 = 6.9 ± 0.9 nM for SFA vs. IC50= 420 ± 56 nM
for CsA) [137]. The chemical and three-dimensional structure of SFA greatly differs from
CsA, suggesting distinct mechanisms in its immunosuppressive capacity [138]. More
surprisingly, SFA’s complex macrocyclic structure, featuring a unique tripeptide, an (E,E)-
diene unit, and a polypropionate section, results in an exceptionally strong affinity for
cyclophilins [139]. Furthermore, SFA also shows significant immunosuppressive activity in
the murine mixed lymphocyte reaction (IC50 = 170 nM) [137], and has an inhibitory effect
on T-cells [140–142] and dendritic cells [143,144]. For instance, SFA remarkably abrogates
production of bioactive IL-12p70, the major producer of IL-12 secreted by dendritic cells, to
inhibit the activity of dendritic cells [143]. These studies indicate that SFA is a novel and
potent immunosuppressant agent.

Based on the SFA structure as the lead structure, the macrocycle was simplified and
some cyclophilic protein inhibitors were synthesized. Schiene-Fischer et al. and Han et al.
have summarized this [38,49]. Now, the total synthesis of sanglifehrin A and sanglifehrin
B (SFB, C17) (Figure 2) and preparation of additional analogs have been achieved. Their
biological activity has been evaluated in Jurkat cells and they can also stabilize protein–
protein interactions [145].

2.6. Cyclosporin O (CsO)—A Natural Macrocycle

Cyclosporin O (CsO, C18) (Figure 2) and its derivatives (CP1-3, C19–C21) (Figure 2)
are macrocyclic peptides with structural diversity and more rational design. In nonpolar
media, CsO exhibits a conformation similar to CsA. CsO exhibits its own characteristics;
for example, it has a higher plasma concentration than CsA, due to its minimal binding
to cyclophilin A, lower accumulation in red blood cells, and moderate oral bioavailability
(F = 12%) [146].
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3. Small Molecular Inhibitors of Cyclophilin A
3.1. Quinoxaline Derivatives

Li and colleagues identified a novel quinoxaline derivative, 2,3-di(furan-2-yl)-6-(3-
N,N-diethyl-carbamoyl-piperidino) carbonylamino quinoxaline (DC838, C22) (Figure 2) as
a potent inhibitor against human cyclophilin A [147]. Its IC50 for cyclophilin A is 0.41 µM,
as determined by PPIase activity assay. The KD value of the cyclophilin A-DC838 complex
is 7.09 µM, and the K’D value 3.78 µM, as analyzed by surface plasmon resonance and
fluorescence titration techniques. In vivo studies also revealed that DC838 inhibits mouse
spleen cell proliferation induced by concanavalin A. In addition, the specific binding site of
DC838 to cyclophilin A has been elucidated by using molecular docking simulation at the
atomic level, providing useful information in discovering the novel immunosuppressors
based on quinoxaline derivative [147].

Meanwhile, another report identified sixteen novel small molecule inhibitors of cy-
clophilin A, also belonging to quinoxaline derivatives. This discovery was made using
a strategy that integrates focused combinatorial library design, virtual screening, and
chemical synthesis [148]. These molecules bind to cyclophilin A with binding affinities
(KD) ranging from 0.076 to 41.0 µM, and five of them (C23–C27) (Figure 2) are the potent
cyclophilin A PPIase inhibitors with IC50 values of 0.25–6.43 µM. Therefore, these novel
chemical entities could serve as leads for developing new therapies targeting the cyclophilin
A pathway in immune or cancer cells.

3.2. Cyclophilin A Inhibitor 239836

Compound 239836 (C28) (Figure 2) acts as an inhibitor of cyclophilin A (IC50 = 1.5 nM),
which is approximately 27-fold more potent than CsA, as determined by in vitro as-
says [149]. The chemical formula of this compound is C21H14ClFN2O2. Moreover, C28-
treated non-small-cell lung cancer cell line 95C showed that metalloproteinase-9 activity is
significantly decreased in a dose-dependent manner, which is a result of suppression of
cyclophilin A induced by C28 [149]. This compound is still under development.

3.3. Aryl 1-Indanylketones

A novel pair of small molecule inhibitors of cyclophilins, i.e., C29A and C29B, has
been identified on the basis of aryl 1-indanylketones, which is capable of discriminating
between cyclophilin A and cyclophilin B in vitro (Figure 3). The binding of cyclophilin A
to the inhibitor C29A has been characterized through fluorescence-anisotropy-based and
isothermal titration calorimetry-based cyclosporin competition assays. These inhibitors
specifically impair cyclophilin A- but not cyclophilin B-mediated chemotaxis of mouse CD4+

T-cells, providing in vivo biological proof of selectivity [150]. The derivative of this inhibitor,
C29A-1, enhances selectivity for cyclophilin A over other cyclophilins, especially in the
case of cyclophilin B; this inhibitor maintains the highest discriminatory ability between
cyclophilin A and B, exceeding a factor of 200. However, among the aryl 1-indanylketone
series, the most active inhibitor of cyclophilin A is C29A-2 (KI = 0.3 ± 0.1 µM), which,
meanwhile, inhibits cyclophilin B with a KI of 12 ± 5 µM, thereby discriminating between
cyclophilin A and cyclophilin B by a factor of 40. In addition, the two enantiomers of C29B-2
were also analyzed. The inhibitory (R)-enantiomer demonstrates a 40-fold selectivity for
cyclophilin A, whereas the (S)-configuration at the 1-methyl position completely negates
inhibition of both cyclophilin A and B [150,151].

3.4. Dimedone Analogues

The dimedone family of cyclophilin inhibitors, including C30–C35 (Figure 2), has
been found, which was achieved using the database-mining program LIDAEUS and in-
silico screening techniques. These dimedone analogues display a consistent “ball and
socket” binding mode, with a dimethyl group occupying the hydrophobic binding pocket
of human cyclophilin A, akin to the interaction of the natural inhibitor CsA [152]. The
most potent derivative, C35, binds to cyclophilin A with a Kd of 11.2 ± 9.2 µM. Its IC50 for
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inhibiting cyclophilins in C. elegans is 190 µM, significantly higher than CsA’s 28 µM. These
dimedone analogues offer a novel framework for synthesizing peptidomimetic molecules
with potential efficacy against cyclophilins and related inflammatory diseases [152,153].
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3.5. Gracilins—Natural Diterpenes Derivative

Gracilins is a diterpenoid compound isolated from the marine sponge
Spongionella gracilis. Natural gracilins and synthetic derivatives have shown affinity with
cyclophilic proteins. Gracilin L C36 (Figure 2) and two synthetic analogues, compounds 1
and 2 (C37–C38) (Figure 2), have shown anti-inflammatory effects in a cellular model of
inflammation. CsA is used as a control, and these compounds can reduce the expression of
inflammatory mediators and target proteins, and activate antioxidant mechanisms under
inflammatory conditions. Therefore, natural and synthetic gracilins have the potential to
be developed into anti-inflammatory drugs [154].

3.6. Dichloro-Benzophenone Derivative—Natural Compound

In addition to butyrolactone I (C39), V (C40), and VI (C41) (Figure 2), dichloro-
dibenzophenone derivatives, including dihydrogeodin (C42) (Figure 2), were also extracted
and isolated from the thermophilic fungus Aspergillus terreus TM8. Using 1D, 2D NMR, and
ESI HR mass data, as well as X-ray crystallography, researchers reported the structure of
dihydrogeodin (C42). The docking and molecular dynamics simulation of dihydrogeodin
with isomerase cyclophilic A showed its important prospective activity as an antiviral and
immunosuppressive factor [155].

3.7. Other Novel Small Molecular Inhibitors of Cyclophilin A

Recently, 12 bisamide compounds were designed and synthesized, and their anti-
HCV activity and cytotoxicity were tested. Among them, the bisamide derivative 7c (C43)
(Figure 2) is a promising compound with strong anti-HCV activity at subtoxic concentra-
tions. The EC50 value of 7c is 4.2 ± 0.1 µM. The CC50 value of 7c is greater than 100 µM.
The study of molecular docking indicates that 7c is located at the active site of cyclophilin
A. In addition, 7c was directly bound to cyclophilin A by surface plasmon resonance
(SPR) experiments. All these studies suggest that derivative 7c is a potent cyclophilin A
inhibitor [156].
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In another article, 16 bisamide derivatives were designed and the binding mode for
cyclophilin A was switched. Docking research has shown that 7e (C44) (Figure 2) is located
in the gatekeeper pocket, with a selectivity index exceeding 18.9. The EC50 value of 7e is
5.3 µM, but at 100 µM, it has no cytotoxicity. The SPR results indicate that 7e can bind
with cyclophilin A, with a KD of 3.66 µM. 7e as a cyclophilin A inhibitor can serve as an
alternative anti-HCV drug in future combination therapy [49].

There are also many studies on new nonpeptide small molecular cyclophilin inhibitors.
They exhibit potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis
C virus, human immunodeficiency virus, and coronaviruses [157,158].

The latest research has found that 23-demethyl 8,13-deoxygenicin (C45) (Figure 2), a
natural inhibitor of cyclophilin A, either as monotherapy or in combination with afatinib,
can inhibit the growth of cancer stem cells in non-small-cell lung cancer by disrupting the
crosstalk between cyclophilin A/CD147 and EGFR. Its mechanism of action is that C45
can inhibit proliferation and lead to apoptosis of MKN45 gastric cancer stem-like cells by
regulating the cyclophilin A/CD147-mediated signaling pathway [159,160].

4. Peptide Analogues
4.1. Heptapeptides

Based on the X-ray structure of Gag fragments: cyclophilin A complexes, Li [161]
generated 52 modified peptides to explore the interaction determinants of the complex and
to identify peptidic ligands with higher affinity than the capsid domain of the Gag protein.
Among these peptides, the presence of an N-terminal valine or substitution of the C-
terminal alanine amide with a benzylamide group (-NHBn) enhances high-affinity binding.
The combination of both modifications results in a highly potent competitor, Dav-His-
Ala-Gly-Pro-Ile-NHBn (Dav, deaminovaline; NHBn, benzylamine) (C46) (Figure 2). This
competitor exhibits a stronger affinity for cyclophilin A (Kd = 3 ± 0.5 µM) than the entire
capsid protein (Kd = 16 ± 4 µM), and has a very low affinity for FKBP12, another important
PPIase in the immunophilin family. These studies suggest that the title compound is
not a substrate of cyclophilin A, but interacts preferentially in the trans conformation for
immune suppression.

4.2. N- or C-Terminal Modification of Gag Peptide

A study employing molecular docking and 3D-QSAR approaches investigated
22 Gag peptide analogues interacting with human cyclophilin A [162]. The Lamarck-
ian Genetic Algorithm (LGA) and divide-and-conquer methods were applied to determine
the binding orientations and conformations of these peptide analogues with cyclophilin
A. Among these analogues, the peptides C47 (Dav-His-Ala-Gly-Pro-Ile-Ala-NH2), C48
(Dav-His-Ala-Gly-Pro-Ile-NH-CH2-Ph), and C49 (Dav-His-Ala-Gly-Pro-Acp-NH-CH2-Ph)
(Dav, deaminovaline; Acp, 2-aminocyclopentanecarboxylate) were identified based on a
novel interaction model. The N-termini of compounds C47, C48, and C49 were modified
by the addition of a deaminovaline group. Meanwhile, the C-termini of C48 and C49 were
modified by the addition of a benzyl group (-Ph). These new peptide analogue inhibitors
exhibit much higher inhibitory activities for cyclophilin A [162].

4.3. Trp-Gly-Pro (WGP)

Another study using the Miyazawa–Jernigan matrix and the hidden Markov model
identified a peptide, Trp-Gly-Pro (WGP), acting as an inhibitor for cyclophilin A and
FKBP12 [163]. This peptide, though smaller in molecular weight than CsA, binds to
cyclophilin A with a similar affinity, having a dissociation equilibrium constant KD of
3.41 × 10−6 M, which is in the same order as CsA (KD = 6.42 × 10−6 M). Also, WGP
inhibits cyclophilin A-mediated PPIase activity with IC50 values of 33.11 nM and 10.25 nM,
respectively. In addition, this peptide also inhibits HIV-1 infection and exhibits lower
toxicity and better oral availability and solubility than CsA, making it a potential CsA
replacement in clinical applications [164].
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4.4. Pseudopeptides

Demange [165] inserted the Glyψ (PO2R1-N) Pro motif (R = alkyl or H) into Suc-Ala-
Ala-Pro-Phe-pNA (pNA, p-nitroaniline), a peptide substrate of cyclophilin A to create a
pseudopeptide Suc-Ala-Glyψ (PO2Et-N) Pro-Phe-pNA (C50) (Figure 2). This pseudopeptide
binds to cyclophilin A with a Kd = 20 ± 5 µM and selectively inhibits the cyclophilin A’s
PPIase activity at IC50 = 15 ± 1 µM. This pseudopeptide does not inhibit the PPIase activity
of FKBP12, making compound C50 a novel transition-state mimic inhibitor of cyclophilin A.

4.5. “Self-Reproduction of Chirality” Analogues

Based on the structures of proline-containing peptides [166], both ground-state ana-
logues (C51) and transition-state analogues (C52) were prepared. While C52 shows minimal
binding to the active site (Kd = 77 µM for C52b), several ground-state analogues exhibit low
micromolar affinity (Kd = 1.5 µM for C51e) (Figure 4), suggesting their potential as lead
compounds for cyclophilin A inhibitors.
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5. Cyclophilin A Inhibitors in Clinical Trials

Cyclophilin A is implicated in many human disorders, including inflammatory dis-
eases such as viral infection and atherosclerosis, and cancers [9]. As described above, more
and more inhibitors of cyclophilin A have been identified and tested for treating these dis-
eases. Although CsA, the potent inhibitor of cyclophilin A, has been approved as a potent
immunosuppressive drug by the U.S. FDA for over three decades, many other inhibitors
are not approved yet. It is delighting, however, that a line of cyclophilin A inhibitors have
been entered into clinical trials (Table 2). Based on the potent role of cyclophilin A inhibitors
in preventing graft-versus-host immunity or rejections, these clinical trials mainly focus
on immunosuppression after liver or kidney transplantations or hematological stem cell
transplant after bone marrow failure or leukemia/lymphoma. Clinical trials of CsA, both
alone and in combination with other agents, are being undertaken to reduce its severe side
effects (especially CsA-induced skin cancer), or to investigate the optimal regime in organ
transplantation, and to detect the efficacy of antiviral infection. For example, the efficacy
and toxicity of CsA and irinotecan hydrochloride in the treatment of advanced colorectal
cancer patients resistant to fluorourea drugs have been studied in a phase 3 clinical trial.
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Also, there are two phase 4 clinical studies focusing on improving the prognosis of patients
with COVID-19 infection by CsA combined with standard of care treatment, and on the
efficacy of CsA to control HIV virus replication (Table 2). Another promising inhibitor is
Alisporivir (Debio-025, C15), which has led to testing in phase 2/3 for use in combination
with Peg-IFN and Ribavirin to treat chronic hepatitis C and inflammatory diseases. A recent
clinical trial showed that in addition to Alisporivir‘s antiviral properties, it may also be ef-
fective in preventing lung tissue damage for the patients with infections due to SARS-CoV-2
(COVID-19) (Table 2). These studies suggest that cyclophilin A inhibitors are convincing
immunosuppressant drugs for graft-versus-host diseases and inflammatory disorders.

Table 2. Clinical trials of inhibitors of cyclophilin A a.

Inhibitor
Number Inhibitor Name NCT Number Alone or in

Combination Sponsors Diseases Status

C1
Cyclosporin A

(CsA)

~381
cancer-related

clinical trials in
early phase 1

and phases 1, 2,
3 or 4 b

Alone or in
combination

Virginia G.
Kaklamani,
Novartis,

Allergan, NCI,
MD Anderson
Cancer Center,

and others

Breast cancer,
colon cancer,
melanoma,

nonmelanoma
skin cancer,
hematologic

cancer, colorectal
cancer, and others

Active,
recruiting,

completed, or
terminated

NCT00983424
(phase 1)

CsA
Nab-paclitaxel

Northwestern
University,

Avon
Foundation

Metastatic breast
cancer Completed

NCT00003950
(phase 2)

CsA
CPT-11

NCI, University
of Chicago

Metastatic,
advanced, or

locally recurrent
colorectal cancer

Completed

NCT00389870
(phase 3)

CsA plus
Irinotecan

University of
Leeds Colorectal cancer Completed

NCT04979884
(phase 3) Alone Alexandria

University COVID-19 Completed

NCT04392531
(phase 4) CsA plus SOC c

Instituto de
Investigación
Sanitaria de la

Fundación
Jiménez Díaz

COVID-19 Completed

NCT00979706
(phase 4)

CsA plus
HAART c

Hospital Clinic
of Barcelona HIV Completed

NCT00866684
(phase 4)

CsA as
Comparator

Charite
University,

Berlin,
Germany

Skin cancer Completed

C13 SCY-635

NCT01290965
(phase 1) Alone Scynexis Hepatitis C

infection Completed

NCT01265511
(phase 2) Alone Scynexis Hepatitis C

infection Completed

C14 NIM811 NCT00983060
(phase 2) Alone Novartis

Chronic hepatitis
C Genotype-1

relapse
Completed
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Table 2. Cont.

Inhibitor
Number Inhibitor Name NCT Number Alone or in

Combination Sponsors Diseases Status

C15
Alisporivir
(Deb 025)

NCT01975337
(phase 1) Alone

Debiopharm
International

SA
Kidney failure Completed

NCT02173574
(phase 1)

Deb 025,
EDP239

Enanta Pharma-
ceuticals

Hepatitis C
infection Completed

NCT01860326
(phase 1) Alone

Debiopharm
International

SA
Hepatitis C Completed

NCT01183169
(phase 2)

Deb 025,
Peginterferon

alfa-2a,
Ribavirin

Debiopharm
International

SA

Hepatitis C
infection Completed

NCT00537407
(phase 2)

Deb 025,
Peginterferon

alfa-2a,
Ribavirin

Debiopharm
International

SA

Chronic hepatitis
C Completed

NCT02094443
(phase 2)

Deb 025,
Ribavirin

Debiopharm
International

SA

Hepatitis C
infection Completed

NCT01215643
(phase 2)

Deb 025,
Peginterferon

alfa-2a,
Ribavirin

Debiopharm
International

SA

Hepatitis C
infection Completed

NCT04608214
(phase 2) Alone

Assistance
Publique—

Hôpitaux de
Paris

SARS-CoV-2 Completed

NCT02753699
(phase 3) Alone

Debiopharm-
International

SA

Hepatitis C
infection Completed

NCT01318694
(phase 3)

Deb 025,
Peginterferon

alfa-2a,
Ribavirin

Enanta Pharma-
ceuticals

Hepatitis C
infection Completed

Note: a, These data were retrieved from the ClinicalTrials.gov as of 28 February 2024. b, There are >1000 clinical
trials focusing on viral infection, transplantation, Sjögren’s syndrome, bone marrow failure, psoriasis, cancer, etc.,
with the status of active, recruiting, or completed. c, SOC, standard of Care; HAART, highly active antiretrovi-
ral therapy.

Intriguingly, although CsA, the potent inhibitor of cyclophilin A, may induce skin
cancer when used in transplantation [89–92,167–169], cyclophilin A has been observed to be
upregulated in many solid cancers such as breast cancer, small-cell lung cancer, pancreatic
cancer, colorectal cancer, squamous cell carcinoma, and melanoma [53]. Recent studies
show elevated cyclophilin A expression in various cancers, promoting cell proliferation,
migration/invasion, and apoptosis inhibition, with overexpression correlating with poorer
patient outcomes [55]. Cyclophilin A upregulation has also been shown to confer resis-
tance to cisplatin-induced apoptosis in several human cancer cells [170]. Similarly, an
oligo-microarray analysis by Chen et al. [171] revealed that cyclophilin A can increase
the expression of many cytokine-related, drug-transport-related, and drug-metabolism-
related genes, which may lead to increased resistance of cancer cells to anticancer drugs.
Although the underlying mechanisms of cyclophilin A on cancer development remain elu-
sive, cyclophilin A inhibitors (especially CsA) have emerged for possibilities to treat human

ClinicalTrials.gov
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malignancies, including hematological and solid cancers, in clinical trials [78,79,172,173].
For example, despite the fact that CsA alone was ineffective for treating refractory colorectal
cancer and produced significant toxicity [174], CsA in oral administration can modulate
pharmacokinetics of irinotecan, the topoisomerase inhibitor. This insight is being used to al-
leviate toxicity in patients with fluorouracil refractory metastatic colon cancer [79]. A recent
clinical trial revealed that in dose escalation cohort with advanced solid malignancies, CsA
in combination with selumetinib, which involves the use of an MEK (mitogen-activated
protein kinase/extracellular signal-regulated kinase) inhibitor, was well tolerated and
showed evidence of antitumor activity in metastatic colorectal cancer [87]. Clinical studies
support the hypothesis that cyclophilin A inhibitors could be promising in combination
therapy for several human malignancies.

Taken together, more and more promising evidence suggests that cyclophilin A in-
hibitors have been used in solid tumors in combination with established chemotherapeutic
drugs, not just used as a potent immunosuppressants after transplantation in the patients
with end-stage solid tumor or hematological diseases, but also as a direct therapeutic
method for several solid tumors. The recent clinical trials not only affirmed the thera-
peutic potential of cyclophilin A inhibitors, but also highlighted their promising clinical
application. These studies have enhanced researchers’ confidence in the development and
approval of new drugs targeting cyclophilin A.

6. Conclusions and Perspectives

Cyclophilin A is recognized for its significant role in various biological processes and
its association with numerous human disorders, such as inflammatory diseases and cancers,
through its chaperone and peptidyl-prolyl isomerase (PPIase) activities. Its inhibitors
have been discovered and characterized, and include the cyclic peptides (e.g., the first
identified inhibitor CsA, SCY-635, and Alisporivir), the small molecule inhibitors (e.g.,
DC838), and the peptide analogues (e.g., WGP). In addition to CsA, several other inhibitors
have entered clinical trials to assess their pharmacokinetics, efficacy, and safety. In addition
to the classical roles of cyclophilin A inhibitors, plenty of clinical trials are focusing on the
efficacy of the inhibitors in human hematological and even solid cancers.

Since cyclophilin A has multifaceted roles in addition to immune response, there may
be four future aspects and directions for the development of cyclophilin A inhibitors: (i)
Identifying more potent inhibitors to target the PPIase activity of cyclophilin A effectively.
It is a challenging and prospective direction to design novel inhibitors with anti-PPIase
activity of cyclophilin A in the aspect of new technologies in drug design and discovery,
such as PROTAC strategy [175], machine learning, artificial intelligence, quantum com-
puting, and combined with existing computational drug design platform. (ii) Employing
a diverse set of cyclophilin A conformations to identify and design the potential novel
inhibitors. Accelerated molecules dynamics (aMD) has been applied to investigate the
complex biomolecules. Considering the diverse functions of cyclophilin A in organisms,
aMD is shown to be able to generate multiple of structures of a drug target, cyclophilin
A [176]. These structures can be further used for structure-based computer-aided drug
discovery and docking, and, thus, in the identification and design of potential novel in-
hibitors. (iii) Discovering nonimmunosuppressive inhibitors to advance the development
of therapeutics for cyclophilin A-related cancers without compromising immune function.
Research has shown that the expression of cyclophilin A is enhanced in HCC cells, and
overexpressed cyclophilin A promotes HCC metastasis by upregulating matrix metallopro-
teinases MMP3 and MMP9 [57,177]. Therefore, one promising direction is to discover the
inhibitors that can suppress the overexpression of cyclophilin A or the expression of MMP3
and MMP9, which, thus, will exclusively inhibit tumor growth but have no immunosup-
pressive effect. Recently, cyclophilin A short hairpin RNA, which has been identified as a
nonimmunosuppressive PPIase inhibitor, can inhibit prolactin-stimulated signaling and
regulate prolactin/Jak2-mediated tumor cell growth and migration [178]. This result may
help us develop drugs for treating cancer based on cyclophilin A without interrupting
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immunity. (iv) Developing inhibitors that specifically target extracellular cyclophilin A
through the cyclophilin A–CD147 complex. Previous studies have found that extracellular
cyclophilin A stimulates cell proliferation by activating the ERK1/2 signaling pathway
and CD147. Importantly, knocking down CD147 on hepatoma cells leads to a significant
increase in T-cell chemotaxis by cyclophilin A induction both in vivo and in vitro [37].
These findings may provide a potential approach to discover novel cyclophilin A inhibitors
to control cyclophilin A–CD147-related cancers.

However, it is important to note that many mechanistic details of cyclophilin A are
still unknown and warrant further investigation., e.g., the fundamental roles of cyclophilin
A in cancer development and progression, and the alternative receptors of extracellular
cyclophilin A in addition to CD147. Moreover, many of the identified inhibitors are still
under development. It is also urgent to discover novel and efficient candidate inhibitors of
cyclophilin A to improve therapy regimen to reduce the toxicity and the off-target effects
of the inhibitors themselves or the therapeutic drugs when used in combination. On the
other hand, as CsA is also used in inflammatory diseases, finding nonimmunosuppressive
CsA derivatives or new drugs that inhibit the role of cyclophilin A in inflammation and do
not affect host immunity during viral infection control or cancer treatment still have a long
way to go.

In summary, although the immunosuppressive agent CsA is well characterized, a wide
range of cyclophilin inhibitors have emerged. These compounds have been proven to be
effective against inflammation and cancer both in vivo and in vitro, and some are currently
undergoing clinical trial evaluations. These advances have promoted the development of
new drugs and encouraged further development of approved drugs, providing a promising
strategy for treating inflammatory diseases and cancers.
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129. Ma-Lauer, Y.; Zheng, Y.; Malešević, M.; von Brunn, B.; Fischer, G.; von Brunn, A. Influences of cyclosporin A and non-
immunosuppressive derivatives on cellular cyclophilins and viral nucleocapsid protein during human coronavirus 229E replica-
tion. Antivir. Res. 2020, 173, 104620. [CrossRef]

130. Quarato, G.; D’Aprile, A.; Gavillet, B.; Vuagniaux, G.; Moradpour, D.; Capitanio, N.; Piccoli, C. The cyclophilin inhibitor
alisporivir prevents hepatitis C virus–mediated mitochondrial dysfunction. Hepatology 2012, 55, 1333–1343. [CrossRef]

131. Chatterji, U.; Bobardt, M.; Selvarajah, S.; Yang, F.; Tang, H.; Sakamoto, N.; Vuagniaux, G.; Parkinson, T.; Gallay, P. The isomerase
active site of cyclophilin A is critical for hepatitis C virus replication. J. Biol. Chem. 2009, 284, 16998–17005. [CrossRef]

132. Daelemans, D.; Dumont, J.M.; Rosenwirth, B.; Clercq, E.D.; Pannecouque, C. Debio-025 inhibits HIV-1 by interfering with an early
event in the replication cycle. Antivir. Res. 2010, 85, 418–421. [CrossRef]

133. Landrieu, I.; Hanoulle, X.; Bonachera, F.; Hamel, A.; Sibille, N.; Yin, Y.; Wieruszeski, J.M.; Horvath, D.; Wei, Q.; Vuagniaux,
G.; et al. Structural basis for the non-immunosuppressive character of the cyclosporin A analogue Debio 025. Biochemistry 2010,
49, 4679–4686. [CrossRef] [PubMed]

134. Davra, V.; Saleh, T.; Geng, K.; Kimani, S.; Mehta, D.; Kasikara, C.; Smith, B. Cyclophilin A Inhibitor Debio-025 Targets Crk,
Reduces Metastasis, and Induces Tumor Immunogenicity in Breast Cancer. Mol. Cancer Res. 2020, 18, 1189–1201. [CrossRef]

135. Sanglier, J.J.; Quesniaux, V.; Fehr, T.; Hofmann, H.; Mahnke, M.; Memmert, K.; Schuler, W.; Zenke, G.; Gschwind, L.; Maurer,
C.; et al. Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from Streptomyces sp. A92-308110. I.
Taxonomy, fermentation, isolation and biological activity. J. Antibiot. 1999, 52, 466–473. [CrossRef] [PubMed]

136. Fehr, T.; Kallen, J.; Oberer, L.; Sanglier, J.J.; Schilling, W. Sanglifehrins A, B, C and D, Novel Cyclophilin-binding Compounds
Isolated from Streptomyces sp. A92-308110. II. Structure Elucidation, Stereochemistry and Physico-chemical Properties. J. Antibiot.
1999, 52, 474–479. [CrossRef] [PubMed]

137. Zenke, G.; Strittmatter, U.; Fuchs, S.; Quesniaux, V.F.; Brinkmann, V.; Schuler, W.; Zurini, M.; Enz, A.; Billich, A.; Sanglier, J.J.; et al.
Sanglifehrin A, a Novel Cyclophilin-Binding Compound Showing Immunosuppressive Activity with a New Mechanism of
Action. J. Immunol. 2001, 166, 7165–7171. [CrossRef] [PubMed]

138. Kallen, J.; Sedrani, R.; Zenke, G.; Wagner, J. Structure of human cyclophilin A in complex with the novel immunosuppressant
sanglifehrin A at 1.6 A resolution. J. Biol. Chem. 2005, 280, 21965–21971. [CrossRef] [PubMed]

139. Sedrani, R.; Kallen, J.; Martin Cabrejas, L.M.; Papageorgiou, C.D.; Senia, F.; Rohrbach, S.; Wagner, D.; Thai, B.; Jutzi Eme, A.M.;
France, J.; et al. Sanglifehrin-cyclophilin interaction: Degradation work, synthetic macrocyclic analogues, X-ray crystal structure,
and binding data. J. Am. Chem. Soc. 2003, 125, 3849–3859. [CrossRef] [PubMed]

https://doi.org/10.1128/jvi.70.9.5751-5757.1996
https://doi.org/10.1099/0022-1317-78-4-825
https://doi.org/10.1016/j.bbrc.2006.03.059
https://doi.org/10.1016/j.yjmcc.2012.03.004
https://doi.org/10.1006/excr.2000.4838
https://www.ncbi.nlm.nih.gov/pubmed/10739650
https://doi.org/10.1124/mol.62.1.22
https://www.ncbi.nlm.nih.gov/pubmed/12065751
https://doi.org/10.1111/j.1600-6143.2007.01770.x
https://www.ncbi.nlm.nih.gov/pubmed/17456198
https://doi.org/10.1089/neu.2006.0122
https://doi.org/10.1002/hep.21912
https://doi.org/10.1371/journal.pone.0101067
https://doi.org/10.1097/TP.0b013e318204bdb2
https://doi.org/10.1016/S0014-5793(01)03314-2
https://doi.org/10.1016/j.antiviral.2019.104620
https://doi.org/10.1002/hep.25514
https://doi.org/10.1074/jbc.M109.007625
https://doi.org/10.1016/j.antiviral.2009.10.009
https://doi.org/10.1021/bi1003266
https://www.ncbi.nlm.nih.gov/pubmed/20423153
https://doi.org/10.1158/1541-7786.MCR-19-1144
https://doi.org/10.7164/antibiotics.52.466
https://www.ncbi.nlm.nih.gov/pubmed/10480570
https://doi.org/10.7164/antibiotics.52.474
https://www.ncbi.nlm.nih.gov/pubmed/10480571
https://doi.org/10.4049/jimmunol.166.12.7165
https://www.ncbi.nlm.nih.gov/pubmed/11390463
https://doi.org/10.1074/jbc.M501623200
https://www.ncbi.nlm.nih.gov/pubmed/15772070
https://doi.org/10.1021/ja021327y
https://www.ncbi.nlm.nih.gov/pubmed/12656618


Molecules 2024, 29, 1235 23 of 24

140. Zhang, L.H.; Liu, J.O. Sanglifehrin A, a Novel Cyclophilin-Binding Immunosuppressant, Inhibits IL-2-Dependent T Cell
Proliferation at the G1 Phase of the Cell Cycle. J. Immunol. 2001, 166, 5611–5618. [CrossRef] [PubMed]

141. Zhang, L.H.; Youn, H.D.; Liu, J.O. Inhibition of cell cycle progression by the novel cyclophilin ligand sanglifehrin A is mediated
through the NFkappa B-dependent activation of p53. J. Biol. Chem. 2001, 276, 43534–43540. [CrossRef]

142. Allen, A.; Zheng, Y.; Gardner, L.; Safford, M.; Horton, M.R.; Powell, J.D. The novel cyclophilin binding compound, sanglifehrin A,
disassociates G1 cell cycle arrest from tolerance induction. J. Immunol. 2004, 172, 4797–4803. [CrossRef]

143. Steinschulte, C.; Taner, T.; Thomson, A.W.; Bein, G.; Hackstein, H. Cutting edge: Sanglifehrin A, a novel cyclophilin-binding
immunosuppressant blocks bioactive IL-12 production by human dendritic cells. J. Immunol. 2003, 171, 542–546. [CrossRef]

144. Woltman, A.M.; Schlagwein, N.; van der Kooij, S.W.; Van Kooten, C. The Novel Cyclophilin-Binding Drug Sanglifehrin A
Specifically Affects Antigen Uptake Receptor Expression and Endocytic Capacity of Human Dendritic Cells. J. Immunol. 2004,
172, 6482–6489. [CrossRef]

145. Chang, C.F.; Flaxman, H.A.; Woo, C.M. Enantioselective Synthesis and Biological Evaluation of Sanglifehrin A and B and Analogs.
Angew. Chem. Int. Ed. 2021, 60, 17045–17052. [CrossRef] [PubMed]

146. Lee, D.; Lee, S.; Choi, J.; Song, Y.K.; Kim, M.J.; Shin, D.S.; Bae, M.A.; Kim, Y.C. Interplay among Conformation, Intramolecular
Hydrogen Bonds, and Chameleonicity in the Membrane Permeability and Cyclophilin A Binding of Macrocyclic Peptide
Cyclosporin O Derivatives. J. Med. Chem. 2021, 64, 8272–8286. [CrossRef] [PubMed]

147. Li, J.; Chen, J.; Zhang, L.; Wang, F.; Gui, C.; Zhang, L.; Qin, Y.; Xu, Q.; Liu, H.; Nan, F.; et al. One novel quinoxaline derivative as a
potent human cyclophilin A inhibitor shows highly inhibitory activity against mouse spleen cell proliferation. Bioorg. Med. Chem.
2006, 14, 5527–5534. [CrossRef] [PubMed]

148. Li, J.; Zhang, J.; Chen, J.; Luo, X.; Zhu, W.; Shen, J.; Liu, H.; Shen, X.; Jiang, H. Strategy for Discovering Chemical Inhibitors of
Human Cyclophilin A:? Focused Library Design, Virtual Screening, Chemical Synthesis and Bioassay. J. Comb. Chem. 2006, 8,
326–337. [CrossRef]

149. Qian, Z.; Zhao, X.; Jiang, M.; Jia, W.; Zhang, C.; Wang, Y.; Li, B.; Yue, W. Downregulation of Cyclophilin A by siRNA diminishes
non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9. BMC Cancer 2012, 12, 442.
[CrossRef]

150. Daum, S.; Schumann, M.; Mathea, S.; Aumüller, T.; Balsley, M.A.; Constant, S.L.; De Lacroix, B.F.A.; Kruska, F.; Braun, M.;
Schiene-Fischer, C. Isoform-Specific Inhibition of Cyclophilins. Biochemistry 2009, 48, 6268–6277. [CrossRef] [PubMed]

151. Sambasivarao, S.V.; Acevedo, O. Computational Insight into Small Molecule Inhibition of Cyclophilins. J. Chem. Inf. Model. 2011,
51, 475–482. [CrossRef] [PubMed]

152. Yang, Y.; Moir, E.; Kontopidis, G.; Taylor, P.; Wear, M.A.; Malone, K.; Dunsmore, C.J.; Page, A.P.; Turner, N.J.; Walkinshaw, M.D.
Structure-based discovery of a family of synthetic cyclophilin inhibitors showing a cyclosporin-A phenotype in Caenorhabditis
elegans. Biochem. Biophys. Res. Commun. 2007, 363, 1013–1019. [CrossRef] [PubMed]

153. Dunsmore, C.J.; Malone, K.J.; Bailey, K.R.; Wear, M.A.; Florance, H.; Shirran, S.; Barran, P.E.; Page, A.P.; Walkinshaw, M.D.; Turner,
N.J. Design and Synthesis of Conformationally Constrained Cyclophilin Inhibitors Showing a Cyclosporin-A Phenotype in C.
elegans. ChemBioChem 2011, 12, 802–810. [CrossRef]

154. Gegunde, S.; Alfonso, A.; Alonso, E.; Alvariño, R.; Botana, L.M. Gracilin-Derivatives as Lead Compounds for Anti-inflammatory
Effects. Cell Mol. Neurobiol. 2020, 40, 603–615. [CrossRef] [PubMed]

155. Hamed, A.; Ismail, M.; El-Metwally, M.M.; Frese, M.; Stammler, H.G.; Sewald, N.; Shaaban, M. X-ray, structural assignment and
molecular docking study of dihydrogeodin from Aspergillus Terreus TM8. Nat. Prod. Res. 2019, 33, 117–121. [CrossRef]

156. Li, X.; Han, J.; Lee, H.W.; Yoon, Y.S.; Jin, Y.; Khadka, D.B.; Yang, S.; Kim, M.; Cho, W.J. SAR study of bisamides as cyclophilin
a inhibitors for the development of host-targeting therapy for hepatitis C virus infection. Bioorg. Med. Chem. 2020, 28, 115679.
[CrossRef]

157. Nevers, Q.; Ruiz, I.; Ahnou, N.; Donati, F.; Brillet, R.; Softic, L.; Chazal, M.; Jouvenet, N.; Fourati, S.; Baudesson, C.; et al.
Characterization of the Anti-Hepatitis C Virus Activity of New Nonpeptidic Small-Molecule Cyclophilin Inhibitors with the
Potential for Broad Anti-Flaviviridae Activity. Antimicrob. Agents Chemother. 2018, 62, e00126-18. [CrossRef]

158. Ahmed-Belkacem, A.; Colliandre, L.; Ahnou, N.; Nevers, Q.; Gelin, M.; Bessin, Y.; Brillet, R.; Cala, O.; Douguet, D.; Bourguet,
W.; et al. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral
activities. Nat. Commun. 2016, 7, 12777. [CrossRef]

159. Han, J.M.; Kim, S.M.; Kim, H.L.; Cho, H.J.; Jung, H.J. Natural Cyclophilin A Inhibitors Suppress the Growth of Cancer Stem
Cells in Non-Small Cell Lung Cancer by Disrupting Crosstalk between CypA/CD147 and EGFR. Int. J. Mol. Sci. 2023, 24, 9437.
[CrossRef]

160. Cho, H.J.; Jung, H.J. Cyclophilin A Inhibitors Suppress Proliferation and Induce Apoptosis of MKN45 Gastric Cancer Stem-like
Cells by Regulating CypA/CD147-Mediated Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 4734. [CrossRef]

161. Li, Q.; Moutiez, M.; Charbonnier, J.B.; Vaudry, K.; Ménez, A.; Quéméneur, E.; Dugave, C. Design of a Gag pentapeptide analogue
that binds human cyclophilin A more efficiently than the entire capsid protein: New insights for the development of novel
anti-HIV-1 drugs. J. Med. Chem. 2000, 43, 1770–1779. [CrossRef] [PubMed]

162. Cui, M.; Huang, X.; Luo, X.; Briggs, J.M.; Ji, R.; Chen, K.; Shen, J.; Jiang, H. Molecular docking and 3D-QSAR studies on gag
peptide analogue inhibitors interacting with human cyclophilin A. J. Med. Chem. 2002, 45, 5249–5259. [CrossRef]

https://doi.org/10.4049/jimmunol.166.9.5611
https://www.ncbi.nlm.nih.gov/pubmed/11313401
https://doi.org/10.1074/jbc.M104257200
https://doi.org/10.4049/jimmunol.172.8.4797
https://doi.org/10.4049/jimmunol.171.2.542
https://doi.org/10.4049/jimmunol.172.10.6482
https://doi.org/10.1002/anie.202103022
https://www.ncbi.nlm.nih.gov/pubmed/34014025
https://doi.org/10.1021/acs.jmedchem.1c00211
https://www.ncbi.nlm.nih.gov/pubmed/34096287
https://doi.org/10.1016/j.bmc.2006.04.026
https://www.ncbi.nlm.nih.gov/pubmed/16682211
https://doi.org/10.1021/cc0501561
https://doi.org/10.1186/1471-2407-12-442
https://doi.org/10.1021/bi9007287
https://www.ncbi.nlm.nih.gov/pubmed/19480458
https://doi.org/10.1021/ci1004114
https://www.ncbi.nlm.nih.gov/pubmed/21194235
https://doi.org/10.1016/j.bbrc.2007.09.079
https://www.ncbi.nlm.nih.gov/pubmed/17927958
https://doi.org/10.1002/cbic.201000413
https://doi.org/10.1007/s10571-019-00758-5
https://www.ncbi.nlm.nih.gov/pubmed/31729596
https://doi.org/10.1080/14786419.2018.1431642
https://doi.org/10.1016/j.bmc.2020.115679
https://doi.org/10.1128/AAC.00126-18
https://doi.org/10.1038/ncomms12777
https://doi.org/10.3390/ijms24119437
https://doi.org/10.3390/ijms24054734
https://doi.org/10.1021/jm9903139
https://www.ncbi.nlm.nih.gov/pubmed/10794694
https://doi.org/10.1021/jm020082x


Molecules 2024, 29, 1235 24 of 24

163. Pang, X.; Zhou, L.; Zhang, M.; Xie, F.; Yu, L.; Zhang, L.; Xu, L.; Zhang, X. A mathematical model for peptide inhibitor design. J.
Comput. Biol. 2010, 17, 1081–1093. [CrossRef]

164. Pang, X.; Zhang, M.; Zhou, L.; Xie, F.; Lu, H.; He, W.; Jiang, S.; Yu, L.; Zhang, X. Discovery of a potent peptidic cyclophilin A
inhibitor Trp-Gly-Pro. Eur. J. Med. Chem. 2011, 46, 1701–1705. [CrossRef]

165. Demange, L.; Moutiez, M.; Dugave, C. Synthesis and evaluation of Glyψ(PO2R-N)Pro-containing pseudopeptides as novel
inhibitors of the human cyclophilin hCyp-18. J. Med. Chem. 2002, 45, 3928–3933. [CrossRef]

166. Wang, H.C.; Kim, K.; Bakhtiar, R.; Germanas, J.P. Structure-Activity Studies of Ground- and Transition-State Analogue Inhibitors
of Cyclophilin. J. Med. Chem. 2001, 44, 2593–2600. [CrossRef]

167. Dantal, J.; Hourmant, M.; Cantarovich, D.; Giral, M.; Blancho, G.; Dreno, B.; Soulillou, J.P. Effect of long-term immunosuppression
in kidney-graft recipients on cancer incidence: Randomised comparison of two cyclosporin regimen. Lancet 1998, 351, 623–628.
[CrossRef]

168. Muellenhoff, M.W. KJ Cyclosporine and skin cancer: An international dermatologic perspective over 25 years of experience.
A comprehensive review and pursuit to define safe use of cyclosporine in dermatology. J. Dermatol. Treat. 2012, 23, 290–304.
[CrossRef] [PubMed]

169. Euvrard, S.; Kanitakis, J.; Claudy, A. Skin cancers after organ transplantation. N. Engl. J. Med. 2003, 348, 1681–1691. [CrossRef]
[PubMed]

170. Choi, K.J.; Piao, Y.J.; Lim, M.J.; Kim, J.H.; Ha, J.; Choe, W.; Kim, S.S. Overexpressed cyclophilin A in cancer cells renders resistance
to hypoxia- and cisplatin-induced cell death. Cancer Res. 2007, 67, 3654–3662. [CrossRef]

171. Chen, S.; Zhang, M.; Ma, H.; Saiyin, H.; Shen, S.; Xi, J.; Wan, B.; Yu, L. Oligo-microarray analysis reveals the role of cyclophilin A
in drug resistance. Cancer Chemother. Pharmacol. 2008, 61, 459–469. [CrossRef] [PubMed]

172. Zhao, X.; Zhou, K.; Jing, L.; Zhang, L.; Peng, G.; Li, Y.; Ye, L.; Li, J.; Fan, H.; Li, Y.; et al. Treatment of T-cell large granular
lymphocyte leukemia with cyclosporine A: Experience in a Chinese single institution. Leuk. Res. 2013, 37, 547–551. [CrossRef]
[PubMed]

173. Middleton, G.; Brown, S.; Lowe, C.; Maughan, T.; Gwyther, S.; Oliver, A.; Richman, S.; Blake, D.; Napp, V.; Marshall, H.; et al.
A randomised phase III trial of the pharmacokinetic biomodulation of irinotecan using oral ciclosporin in advanced colorectal
cancer: Results of the Panitumumab, Irinotecan & Ciclosporin in COLOrectal cancer therapy trial (PICCOLO). Eur. J. Cancer 2013,
49, 3507–3516.

174. Murren, J.R.; Ganpule, S.; Sarris, A.; Durivage, H.; Davis, C.; Makuch, R.; Handschumacher, R.E.; Marsh, J.C. A phase II trial
of cyclosporin A in the treatment of refractory metastatic colorectal cancer. Am. J. Clin. Oncol. 1991, 14, 208–210. [CrossRef]
[PubMed]

175. Wang, C.; Zheng, C.; Wang, H.; Zhang, L.; Liu, Z.; Xu, P. The state of the art of PROTAC technologies for drug discovery. Eur. J.
Med. Chem. 2022, 235, 114290. [CrossRef]

176. Rodriguez-Bussey, I.G.; Doshi, U.; Hamelberg, D. Enhanced molecular dynamics sampling of drug target conformations.
Biopolymers 2016, 105, 35–42. [CrossRef]

177. Zhang, M.; Dai, C.; Zhu, H.; Chen, S.; Wu, Y.; Li, Q.; Zeng, X.; Wang, W.; Zuo, J.; Zhou, M.; et al. Cyclophilin A promotes human
hepatocellular carcinoma cell metastasis via regulation of MMP3 and MMP9. Mol. Cell Biochem. 2011, 357, 387–395. [CrossRef]

178. Hakim, S.; Craig, J.M.; Koblinski, J.E.; Clevenger, C.V. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-
Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020, 23, 101581. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1089/cmb.2009.0272
https://doi.org/10.1016/j.ejmech.2011.02.023
https://doi.org/10.1021/jm020865i
https://doi.org/10.1021/jm010009r
https://doi.org/10.1016/S0140-6736(97)08496-1
https://doi.org/10.3109/09546634.2011.590792
https://www.ncbi.nlm.nih.gov/pubmed/21936704
https://doi.org/10.1056/NEJMra022137
https://www.ncbi.nlm.nih.gov/pubmed/12711744
https://doi.org/10.1158/0008-5472.CAN-06-1759
https://doi.org/10.1007/s00280-007-0491-y
https://www.ncbi.nlm.nih.gov/pubmed/17520256
https://doi.org/10.1016/j.leukres.2013.01.017
https://www.ncbi.nlm.nih.gov/pubmed/23395383
https://doi.org/10.1097/00000421-199106000-00007
https://www.ncbi.nlm.nih.gov/pubmed/2031507
https://doi.org/10.1016/j.ejmech.2022.114290
https://doi.org/10.1002/bip.22740
https://doi.org/10.1007/s11010-011-0909-z
https://doi.org/10.1016/j.isci.2020.101581

	Introduction 
	Cyclic Peptides as Cyclophilin A Inhibitors 
	Cyclosporin A (CsA) 
	Cyclolinopeptides and the Analogues 
	Cyclosporin A Derivatives 
	Cyclosporin A Analogues 
	SCY-635 
	[Me-Ile-4]cyclosporine (NIM811) 
	Alisporivir (Debio-025) 

	Sanglifehrin A (SFA)—A Natural Product 
	Cyclosporin O (CsO)—A Natural Macrocycle 

	Small Molecular Inhibitors of Cyclophilin A 
	Quinoxaline Derivatives 
	Cyclophilin A Inhibitor 239836 
	Aryl 1-Indanylketones 
	Dimedone Analogues 
	Gracilins—Natural Diterpenes Derivative 
	Dichloro-Benzophenone Derivative—Natural Compound 
	Other Novel Small Molecular Inhibitors of Cyclophilin A 

	Peptide Analogues 
	Heptapeptides 
	N- or C-Terminal Modification of Gag Peptide 
	Trp-Gly-Pro (WGP) 
	Pseudopeptides 
	“Self-Reproduction of Chirality” Analogues 

	Cyclophilin A Inhibitors in Clinical Trials 
	Conclusions and Perspectives 
	References

