Uncovering the Power of GPR18 Signalling: How RvD2 and Other Ligands Could Have the Potential to Modulate and Resolve Inflammation in Various Health Disorders
Abstract
:1. Introduction
1.1. Inflammation Sequence
1.2. Modulators of the Inflammatory Response
1.3. G-Protein Coupled Receptor 18 (GPR18)
2. GPR18 Ligands
2.1. GPR18 Agonists
2.2. GPR18 Antagonists
3. RvD2/GPR18 Axis in the Resolution Phase of Inflammation
3.1. Brain Injuries
3.2. Neuropathic Pain
3.3. Neurodegenerative Diseases
3.4. Cardiometabolic and Cardiovascular Diseases
3.5. Gastrointestinal Diseases
3.6. Peritonitis
3.7. Periodontitis
3.8. SARS-CoV-2-Induced Inflammation
3.9. Duchenne Muscular Dystrophy
3.10. Asthma and Lung Inflammation
3.11. Placenta Disorders
4. Non-SPM Modulators
5. Materials and Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
17HDHA | (±)17-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid |
4HDA | (±)4-hydroxy-5E,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid |
7HDHA | (±)7-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-docosahexaenoic acid |
AIS | acute ischemic stroke |
AngII | angiotensin II |
APP | beta-amyloid precursor protein |
AQP4 | aquaporin-4 |
Arg1 | arginase-1 |
BBB | blood-brain barrier |
CD | Crohn’s disease |
CHO | Chinese hamster ovary cells |
CI/R | cerebral ischemia/reperfusion |
CNS | central nervous system |
COVID-19 | coronavirus diseases 2019 |
CXCL1 | chemokine ligand 1 |
DAMPs | damage-associated molecular patterns |
DM | diabetes mellitus |
DMD | Duchenne muscular dystrophy |
DMP1 | dentin matrix acidic phosphoprotein 1 |
DRG | dorsal root ganglion |
ECM | extracellular matrix |
ECS | endocannabinoid system |
ECs | endothelial cells |
EVT | extravillous trophoblast |
FAAH | fatty acid amide hydrolase |
FDA | food and drug administration |
FDA | Food and Drug Administration |
GAFP | glial fibrillary acidic protein |
GDG | Guideline Development Group |
GM-CSF | granulocyte macrophage colony stimulating factor |
GPR18 | G-protein coupled receptor 18 |
HEK293 | human embryonic kidney 293 cells |
HLI | hind limb ischemia |
HTR-8 | normal human immortalised placental trophoblasts |
HUASMC | human umbilical artery smooth muscle cells |
IBD | inflammatory bowel diseases |
IBS | irritable bowel syndrome |
ICV | intracerebroventricular |
IL-1β | interleukin-1β |
IL-6 | interleukin-6 |
IL-8 | interleukin-8 |
IN | intranasal |
IT | intrathecal |
IV | intravenously |
LPS | lipopolysaccharide |
LTB4 | leukotriene B4 |
LXA4 | lipoxin A4 |
M1 | pro-inflammatory phenotype |
M2 | anti-inflammatory phenotype |
MAPK | mitogen-activated protein kinase |
MBP | myelin basic protein |
MCAO/R | middle cerebral artery occlusion and reperfusion |
MMP-9 | metalloproteinase-9 |
MPO | myeloperoxidase |
NAGly | N-arachidonoylglycine |
NF-κB | nuclear factor kappa B |
PGJ2 | prostaglandin J2 |
ROMO1 | reactive oxygen species modulator 1 |
RvD2 | resolvin D2 (7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid) |
SAH | subarachnoid hemorrhage |
SCI | spinal cord injury |
SNpc | substantia nigra pars compacta |
SPMs | specialised pro-resolving mediators |
TH | tyrosine hydroxylase |
TNBS | 2,4,6-trinitrobenzenesulfonic acid |
TNF-α | tumor necrosis factor alpha |
TRP | Transient Receptor Potential |
TRPV1 | transient potential receptor vanilloid 1 |
UC | ulcerative colitis |
VHS | visceral hypersensitivity |
VMR | visceralmotor response |
VSM | vascular smooth muscle |
WHO | World Health Organisation |
References
- Pal Yu, B.; Young Chung, H. The inflammatory process in aging. Rev. Clin. Gerontol. 2006, 16, 179–187. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2016, 6, 620. [Google Scholar] [CrossRef]
- Watanabe, S.; Alexander, M.; Misharin, A.V.; Budinger, G.R.S. The role of macrophages in the resolution of inflammation. J. Clin. Investig. 2019, 129, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Topete, D.; Cidlowski, J.A. One hormone, two actions: Anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2015, 22, 20–32. [Google Scholar] [CrossRef]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 2015, 7, a016311. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Systems approach to inflammation resolution: Identification of novel anti-inflammatory and pro-resolving mediators. J. Thromb. Haemost. 2009, 7, 44–48. [Google Scholar] [CrossRef]
- Serhan, C.N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Asp. Med. 2017, 58, 1–11. [Google Scholar] [CrossRef]
- Valente, M.; Dentoni, M.; Bellizzi, F.; Kuris, F.; Gigli, G.L. Specialized Pro-Resolving Mediators in Neuroinflammation: Overview of Studies and Perspectives of Clinical Applications. Molecules 2022, 27, 4836. [Google Scholar] [CrossRef] [PubMed]
- Mastromarino, M.; Lacivita, E.; Colabufo, N.A.; Leopoldo, M. G-Protein Coupled Receptors Involved in the Resolution of Inflammation: Ligands and Therapeutic Perspectives. Mini Rev. Med. Chem. 2020, 20, 2090–2103. [Google Scholar] [CrossRef]
- Gantz, I.; Muraoka, A.; Yang, Y.K.; Samuelson, L.C.; Zimmerman, E.M.; Cook, H.; Yamada, T. Cloning and chromosomal localization localisation of a gene (GPR18) encoding a novel seven transmembrane receptor highly expressed in spleen and testis. Genomics 1997, 42, 462–466. [Google Scholar] [CrossRef]
- Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C.; et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 4903–4908. [Google Scholar] [CrossRef] [PubMed]
- Console-Bram, L.; Brailoiu, E.; Brailoiu, G.C.; Sharir, H.; Abood, M.E. Activation of GPR18 by cannabinoid compounds: A tale of biased agonism. Br. J. Pharmacol. 2014, 171, 3908–3917. [Google Scholar] [CrossRef]
- Burstein, S.H.; McQuain, C.A.; Ross, A.H.; Salmonsen, R.A.; Zurier, R.E. Resolution of inflammation by N-arachidonoylglycine. J. Cell Biochem. 2011, 112, 3227–3233. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Langmead, C.J.; Riddy, D.M. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol. Transl. Sci. 2020, 3, 88–106. [Google Scholar] [CrossRef]
- Chiang, N.; Dalli, J.; Colas, R.A.; Serhan, C.N. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J. Exp. Med. 2015, 212, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef]
- Finlay, D.B.; Joseph, W.R.; Grimsey, N.L.; Glass, M. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine. PeerJ 2016, 4, e1835. [Google Scholar] [CrossRef]
- Schoeder, C.T.; Mahardhika, A.B.; Drabczyńska, A.; Kieć-Kononowicz, K.; Müller, C.E. Discovery of Tricyclic Xanthines as Agonists of the Cannabinoid-Activated Orphan G-Protein-Coupled Receptor GPR18. ACS Med. Chem. Lett. 2020, 11, 2024–2031. [Google Scholar] [CrossRef]
- Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog. Chem. Org. Nat. Prod. 2017, 103, 103–131. [Google Scholar] [CrossRef]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar] [CrossRef]
- McPartland, J.M.; Glass, M.; Pertwee, R.G. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: Interspecies differences. Br. J. Pharmacol. 2007, 152, 583–593. [Google Scholar] [CrossRef]
- Yuan, Y.; Liao, Q.; Xue, M.; Shi, Y.; Rong, L.; Song, Z.; Tong, Z.; Zheng, W.; Zhu, Q.; Cui, X.; et al. Shufeng Jiedu Capsules Alleviate Lipopolysaccharide-Induced Acute Lung Inflammatory Injury via Activation of GPR18 by Verbenalin. Cell Physiol. Biochem. 2018, 50, 629–639. [Google Scholar] [CrossRef]
- Morales, P.; Lago-Fernandez, A.; Hurst, D.P.; Sotudeh, N.; Brailoiu, E.; Reggio, P.H.; Abood, M.E.; Jagerovic, N. Therapeutic Exploitation of GPR18: Beyond the Cannabinoids? J. Med. Chem. 2020, 63, 14216–14227. [Google Scholar] [CrossRef]
- Kohno, M.; Hasegawa, H.; Inoue, A.; Muraoka, M.; Miyazaki, T.; Oka, K.; Yasukawa, M. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 2006, 347, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [PubMed]
- Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, C.E. Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. Eur. J. Med. Chem. 2018, 155, 381–397. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Dalli, J.; Claria, J.; Serhan, C.N. E. coli peritonitis initiates D-series Resolvin-metabolome. FASEB J. 2013, 27, 822.9. [Google Scholar] [CrossRef]
- Clària, J.; Dalli, J.; Yacoubian, S.; Gao, F.; Serhan, C.N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol. 2012, 189, 2597–2605. [Google Scholar] [CrossRef]
- Ashton, J.C. The Atypical Cannabinoid O-1602: Targets, Actions, and the Central Nervous System. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 233–239. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020, 86, 1241–1257. [Google Scholar] [CrossRef]
- Frankowska, M.; Wydra, K.; Suder, A.; Zaniewska, M.; Gawliński, D.; Miszkiel, J.; Furgała-Wojas, A.; Sałat, K.; Filip, M.; Müller, C.E.; et al. Novel GPR18 Ligands in Rodent Pharmacological Tests: Effects on Mood, Pain, and Eating Disorders. Int. J. Mol. Sci. 2023, 24, 9046. [Google Scholar] [CrossRef]
- Jagerovic, N.; Lago, F.A.; Morales, L.P.; Abood, M.E.; Brailoiu, E.; Magalhaes, L.L.; Zhao, P.; Reggio, P.H.; Hurst, D.P.; Chafi, N.S. Pyrazolylbenzene-1,3-diols for Diseases Associated with g Protein-Coupled Receptor 18 and in Combination with Transient Receptor Potential Vanilloid 1. European Patent Application EP20382324, 27 October 2021. [Google Scholar]
- Offertáler, L.; Mo, F.-M.; Bátkai, S.; Liu, J.; Begg, M.; Razdan, R.K.; Martin, B.R.; Bukoski, R.D.; Kunos, G. Selective Ligands and Cellular Effectors of a G Protein-Coupled Endothelial Cannabinoid Receptor. Mol. Pharmacol. 2003, 63, 699–705. [Google Scholar] [CrossRef]
- McHugh, D.; Hu, S.S.J.; Rimmerman, N.; Juknat, A.; Vogel, Z.; Walker, J.M.; Bradshaw, H.B. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci. 2010, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Rempel, V.; Atzler, K.; Behrenswerth, A.; Karcz, T.; Schoeder, C.; Hinz, S.; Kaleta, M.; Thimm, D.; Kiec-Kononowicz, K.; Müller, C.E. Bicyclic imidazole-4-one derivatives: A new class of antagonists for the orphan G protein-coupled receptors GPR18 and GPR55. Med. Chem. Commun. 2014, 5, 632–649. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia states and nomenclature: A field at its crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.E.D.; Medeiros, M.; Porfirio, J.; Tavares, W.; Pessôa, L.; Grinberg, L.; Leite, R.E.P.; Ferretti-Rebustini, R.E.L.; Suemoto, C.K.; Filho, W.J.; et al. Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. J. Neurosci. 2020, 40, 4622–4643. [Google Scholar] [CrossRef]
- Tan, Y.-L.; Yuan, Y.; Tian, L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry 2020, 25, 351–367. [Google Scholar] [CrossRef]
- Hermes, D.J.; Yadav-Samudrala, B.J.; Xu, C.; Paniccia, J.E.; Meeker, R.B.; Armstrong, M.L.; Reisdorph, N.; Cravatt, B.F.; Mackie, K.; Lichtman, A.H.; et al. GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration. Exp. Neurol. 2021, 341, 113699. [Google Scholar] [CrossRef]
- Zhang, T.; Zuo, G.; Zhang, H. GPR18 Agonist Resolvin D2 Reduces Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage by Multiple Protective Mechanisms. Cell. Mol. Neurobiol. 2022, 42, 2379–2392. [Google Scholar] [CrossRef]
- Tang, X.; Liu, L.; Miao, Z.; Zhang, J.; Cai, X.; Zhao, B.Q.; Chen, G.; Schultzberg, M.; Zhao, Y.; Wang, X. Resolution of inflammation is disturbed in acute ischemic stroke with diabetes mellitus and rescued by resolvin D2 treatment. Free Radic. Biol. Med. 2022, 188, 194–205. [Google Scholar] [CrossRef]
- Miao, Z.; Tang, X.; Schultzberg, M.; Zhao, Y.; Wang, X. Plasma Resolvin D2 to Leukotriene B(4) Ratio Is Reduced in Diabetic Patients with Ischemic Stroke and Related to Prognosis. Biomed. Res. Int. 2021, 2021, 6657646. [Google Scholar] [CrossRef]
- Zuo, G.; Zhang, D.; Mu, R.; Shen, H.; Li, X.; Wang, Z.; Li, H.; Chen, G. Resolvin D2 protects against cerebral ischemia/reperfusion injury in rats. Mol. Brain 2018, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.G.; Fivelman, B.; Duffy, S.S.; Makker, P.G.; Perera, C.J.; Moalem-Taylor, G. Cytokines in Neuropathic Pain and Associated Depression. Mod. Trends Pharmacopsychiatry 2015, 30, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, X.; Tian, D.; Yang, W.; Xue, S.; Cao, Z.; Sun, T. Resolvin D2 activates anti-inflammatory microglia via restoring autophagy flux and alleviate neuropathic pain following spinal cord injury in rats. Exp. Neurol. 2023, 370, 114573. [Google Scholar] [CrossRef]
- Pang, J.; Xin, P.; Kong, Y.; Wang, Z.; Wang, X. Resolvin D2 Reduces Chronic Neuropathic Pain and Bone Cancer Pain via Spinal Inhibition of IL-17 Secretion, CXCL1 Release and Astrocyte Activation in Mice. Brain Sci. 2023, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Hitora-Imamura, N.; Deyama, S.; Minami, M. Resolvin D2 attenuates chronic pain-induced depression-like behavior in mice. Neuropsychopharmacol. Rep. 2021, 41, 426–429. [Google Scholar] [CrossRef]
- Deyama, S.; Ishikawa, Y.; Yoshikawa, K.; Shimoda, K.; Ide, S.; Satoh, M.; Minami, M. Resolvin D1 and D2 Reverse Lipopolysaccharide-Induced Depression-Like Behaviors Through the mTORC1 Signaling Pathway. Int. J. Neuropsychopharmacol. 2017, 20, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Deyama, S.; Shimoda, K.; Yoshikawa, K.; Ide, S.; Satoh, M.; Minami, M. Rapid and sustained antidepressant effects of resolvin D1 and D2 in a chronic unpredictable stress model. Behav. Brain Res. 2017, 332, 233–236. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Zhang, R.; Qiao, S.; Fan, J. Resolvin D2 recovers neural injury by suppressing inflammatory mediators expression in lipopolysaccharide-induced Parkinson’s disease rat model. Biochem. Biophys. Res. Commun. 2015, 460, 799–805. [Google Scholar] [CrossRef]
- Melaku, L.; Dabi, A. The cellular biology of atherosclerosis with atherosclerotic lesion classification and biomarkers. Bull. Natl. Res. Cent. 2021, 45, 225. [Google Scholar] [CrossRef]
- Spite, M.; Fredman, G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. Adv. Pharmacol. 2023, 97, 257–281. [Google Scholar] [CrossRef]
- Bardin, M.; Pawelzik, S.C.; Lagrange, J.; Mahdi, A.; Arnardottir, H.; Regnault, V.; Feve, B.; Lacolley, P.; Michel, J.B.; Mercier, N.; et al. The resolvin D2—GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice. Biochem. Pharmacol. 2022, 201, 115075. [Google Scholar] [CrossRef]
- Zhang, M.J.; Sansbury, B.E.; Hellmann, J.; Baker, J.F.; Guo, L.; Parmer, C.M.; Prenner, J.C.; Conklin, D.J.; Bhatnagar, A.; Creager, M.A.; et al. Resolvin D2 Enhances Postischemic Revascularization While Resolving Inflammation. Circulation 2016, 134, 666–680. [Google Scholar] [CrossRef] [PubMed]
- Díaz Del Campo, L.S.; García-Redondo, A.B.; Rodríguez, C.; Zaragoza, C.; Duro-Sánchez, S.; Palmas, F.; de Benito-Bueno, A.; Socuéllamos, P.G.; Peraza, D.A.; Rodrigues-Díez, R.; et al. Resolvin D2 Attenuates Cardiovascular Damage in Angiotensin II-Induced Hypertension. Hypertension 2023, 80, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Schicho, R.; Storr, M. Alternative targets within the endocannabinoid system for future treatment of gastrointestinal diseases. Can. J. Gastroenterol. 2011, 25, 377–383. [Google Scholar] [CrossRef]
- Dicker, M.; Li, Y.; Giles, D.A.; Verstichel, G.; Castelan, V.C.; Ascui-Gac, G.; Chou, T.F.; Perez-Jeldres, T.; Cheroutre, H.; Kronenberg, M. CD4(+)-mediated colitis in mice is independent of the GPR183 and GPR18 pathways. Front. Immunol. 2022, 13, 1034648. [Google Scholar] [CrossRef]
- Pascoal, L.B.; Palma, B.B.; Chaim, F.H.; Nogueira, G.; Rodrigues, B.L.; Ayrizono, M.L.S.; Velloso, L.A.; Leal, R.F. P081 Resolvin D2 attenuates colonic inflammation of Crohn’s disease patients. J. Crohn’s Colitis 2021, 15, S182. [Google Scholar] [CrossRef]
- Pascoal, L.B.; Bombassaro, B.; Ramalho, A.F.; Coope, A.; Moura, R.F.; Correa-da-Silva, F.; Ignacio-Souza, L.; Razolli, D.; de Oliveira, D.; Catharino, R.; et al. Resolvin RvD2 reduces hypothalamic inflammation and rescues mice from diet-induced obesity. J. Neuroinflamm. 2017, 14, 5. [Google Scholar] [CrossRef]
- Perna, E.; Aguilera-Lizarraga, J.; Florens, M.V.; Jain, P.; Theofanous, S.A.; Hanning, N.; Man, J.G.D.; Berg, M.; Winter, B.D.; Alpizar, Y.A.; et al. Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. Gut 2021, 70, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Clayton, N.; Breslin, N.P.; Harman, I.; Bountra, C.; McLaren, A.; O’Morain, C.A. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol. Motil. 2000, 12, 449–457. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Y.; Wang, Y.; Lv, F.; Liu, L.; Li, Z. Resolvin D2 suppresses NLRP3 inflammasome by promoting autophagy in macrophages. Exp. Ther. Med. 2021, 22, 1222. [Google Scholar] [CrossRef]
- Sundarasivarao, P.Y.K.; Walker, J.M.; Rodriguez, A.; Spur, B.W.; Yin, K. Resolvin D2 induces anti-microbial mechanisms in a model of infectious peritonitis and secondary lung infection. Front. Immunol. 2022, 13, 1011944. [Google Scholar] [CrossRef] [PubMed]
- Spite, M.; Norling, L.V.; Summers, L.; Yang, R.; Cooper, D.; Petasis, N.A.; Flower, R.J.; Perretti, M.; Serhan, C.N. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 2009, 461, 1287–1291. [Google Scholar] [CrossRef]
- Siddiqui, Y.D.; Omori, K.; Ito, T.; Yamashiro, K.; Nakamura, S.; Okamoto, K.; Ono, M.; Yamamoto, T.; Van Dyke, T.E.; Takashiba, S. Resolvin D2 Induces Resolution of Periapical Inflammation and Promotes Healing of Periapical Lesions in Rat Periapical Periodontitis. Front. Immunol. 2019, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.; Bokka, N.R.; Maddipati, K.R.; Ayilavarapu, S.; Weltman, R.; Zhu, L.; Chen, W.; Zheng, W.J.; Angelov, N.; Van Dyke, T.E.; et al. Distinct Profiles of Specialized Pro-resolving Lipid Mediators and Corresponding Receptor Gene Expression in Periodontal Inflammation. Front. Immunol. 2020, 11, 1307. [Google Scholar] [CrossRef]
- Hsu, J. Covid-19: What now for remdesivir? BMJ 2020, 371, m4457. [Google Scholar] [CrossRef]
- Du, P.; Wang, G.Y.; Zhao, R.; An, Z.L.; Liu, L.H. Eicosanoid Metabolomic Profile of Remdesivir Treatment in Rat Plasma by High-Performance Liquid Chromatography Mass Spectrometry. Front. Pharmacol. 2021, 12, 747450. [Google Scholar] [CrossRef]
- Recchiuti, A.; Patruno, S.; Mattoscio, D.; Isopi, E.; Pomilio, A.; Lamolinara, A.; Iezzi, M.; Pecce, R.; Romano, M. Resolvin D1 and D2 reduce SARS-CoV-2-induced inflammatory responses in cystic fibrosis macrophages. FASEB J. 2021, 35, e21441. [Google Scholar] [CrossRef]
- Mussbacher, M.; Derler, M.; Basílio, J.; Schmid, J.A. NF-κB in monocytes and macrophages—An inflammatory master regulator in multitalented immune cells. Front. Immunol. 2023, 14, 1134661. [Google Scholar] [CrossRef]
- Dort, J.; Orfi, Z.; Fabre, P.; Molina, T.; Conte, T.C.; Greffard, K.; Pellerito, O.; Bilodeau, J.-F.; Dumont, N.A. Resolvin-D2 targets myogenic cells and improves muscle regeneration in Duchenne muscular dystrophy. Nat. Commun. 2021, 12, 6264. [Google Scholar] [CrossRef]
- Deng, B.; Wehling-Henricks, M.; Villalta, S.A.; Wang, Y.; Tidball, J.G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 2012, 189, 3669–3680. [Google Scholar] [CrossRef]
- Peh, H.Y.; Brüggemann, T.R.; Duvall, M.G.; Nshimiyimana, R.; Nijmeh, J.; Cinelli, M.A.; Israel, E.; Serhan, C.N.; Levy, B.D. Resolvin D2 regulates type 2 inflammatory responses and promotes resolution of mouse allergic inflammation. Allergy 2023, 79, 739–743. [Google Scholar] [CrossRef]
- Granger, D.; Senchenkova, E. Inflammation and the Microcirculation. Colloq. Ser. Integr. Syst. Physiol. Mol. Funct. 2010, 2, 1–87. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Su, Y.; Wang, Z. Lung Inflammation Resolution by RvD1 and RvD2 in a Receptor-Dependent Manner. Pharmaceutics 2023, 15, 1527. [Google Scholar] [CrossRef] [PubMed]
- Hein, A.L.; Mukherjee, M.; Talmon, G.A.; Natarajan, S.K.; Nordgren, T.M.; Lyden, E.; Hanson, C.K.; Cox, J.L.; Santiago-Pintado, A.; Molani, M.A.; et al. QuPath Digital Immunohistochemical Analysis of Placental Tissue. J. Pathol. Inf. 2021, 12, 40. [Google Scholar] [CrossRef]
- Ulu, A.; Sahoo, P.K.; Yuil-Valdes, A.G.; Mukherjee, M.; Van Ormer, M.; Muthuraj, P.G.; Thompson, M.; Anderson Berry, A.; Hanson, C.K.; Natarajan, S.K.; et al. Omega-3 Fatty Acid-Derived Resolvin D2 Regulates Human Placental Vascular Smooth Muscle and Extravillous Trophoblast Activities. Int. J. Mol. Sci. 2019, 20, 4402. [Google Scholar] [CrossRef]
- Ward, E.J.; Bert, S.; Fanti, S.; Malone, K.M.; Maughan, R.T.; Gkantsinikoudi, C.; Prin, F.; Volpato, L.K.; Piovezan, A.P.; Graham, G.J.; et al. Placental Inflammation Leads to Abnormal Embryonic Heart Development. Circulation 2023, 147, 956–972. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.A.; Gallagher, K.; Beck, C.; Kumar, R.; Gernand, A.D. Maternal-Fetal Inflammation in the Placenta and the Developmental Origins of Health and Disease. Front. Immunol. 2020, 11, 531543. [Google Scholar] [CrossRef]
- Takenouchi, R.; Inoue, K.; Kambe, Y.; Miyata, A. N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochem. Biophys. Res. Commun. 2012, 418, 366–371. [Google Scholar] [CrossRef]
- Wilhelmsen, K.; Khakpour, S.; Tran, A.; Sheehan, K.; Schumacher, M.; Xu, F.; Hellman, J. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells. J. Biol. Chem. 2014, 289, 13079–13100. [Google Scholar] [CrossRef]
- Kozłowska, H.; Malinowska, B.; Baranowska-Kuczko, M.; Kusaczuk, M.; Nesterowicz, M.; Kozłowski, M.; Müller, C.E.; Kieć-Kononowicz, K.; Schlicker, E. GPR18-Mediated Relaxation of Human Isolated Pulmonary Arteries. Int. J. Mol. Sci. 2022, 23, 1427. [Google Scholar] [CrossRef]
- Fabisiak, A.; Fabisiak, N.; Mokrowiecka, A.; Malecka-Panas, E.; Jacenik, D.; Kordek, R.; Zielińska, M.; Kieć-Kononowicz, K.; Fichna, J. Novel selective agonist of GPR18, PSB-KK-1415 exerts potent anti-inflammatory and anti-nociceptive activities in animal models of intestinal inflammation and inflammatory pain. Neurogastroenterol. Motil. 2021, 33, e14003. [Google Scholar] [CrossRef]
- Dort, J.; Orfi, Z.; Fiscaletti, M.; Campeau, P.M.; Dumont, N.A. Gpr18 agonist dampens inflammation, enhances myogenesis, and restores muscle function in models of Duchenne muscular dystrophy. Front. Cell Dev. Biol. 2023, 11, 1187253. [Google Scholar] [CrossRef]
- Kotańska, M.; Kubacka, M.; Bednarski, M.; Nicosia, N.; Szafarz, M.; Jawień, W.; Müller, C.E.; Kieć-Kononowicz, K. The GPR18 Agonist PSB-KD-107 Exerts Endothelium-Dependent Vasorelaxant Effects. Pharmaceuticals 2021, 14, 799. [Google Scholar] [CrossRef]
- Simcocks, A.C.; Jenkin, K.A.; O’Keefe, L.; Samuel, C.S.; Mathai, M.L.; McAinch, A.J.; Hryciw, D.H. Atypical cannabinoid ligands O-1602 and O-1918 administered chronically in diet-induced obesity. Endocr. Connect. 2019, 8, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Simcocks, A.C.; O’Keefe, L.; Jenkin, K.A.; Cornall, L.M.; Grinfeld, E.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity. Int. J. Mol. Sci. 2020, 21, 5922. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Cao, Z.; Wang, W.; Zhou, N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr. Mol. Pharmacol. 2019, 12, 239–248. [Google Scholar] [CrossRef] [PubMed]
Target Diseases | Type of Study | Type of Cells/Host | Dose | Effects/Mechanism of Action | Ref. |
---|---|---|---|---|---|
subarachnoid haemorrhage (SAH) | in vivo | male Sprague–Dawley rats (with endovascular perforation) | 0.9 μg/kg single, IN a administration |
| [41] |
diabetes mellitus (DM)-related acute ischemic stroke (AIS) | in vivo | male C57BL/6J mice (high fat diet+streptozotocin) | 1 nM |
| [42] |
in vitro | macrophages from AIS patient | ||||
cerebral ischemia/reperfusion (CI/R) injury | in vivo | male Sprague-Dawley rats (after middle cerebral artery occlusion) | 50–100 μg/kg IP b single administration |
| [44] |
spinal cord injury (SCI), neuropathic pain | in vivo | male Sprague-Dawley rats (after laminectomy) | 50 ng/kg IT c administration for 7 days |
| [46] |
chronic constriction injury (CCI), neuropathic pain | in vivo | male C57BL/6J mice | 500 ng/mouse IT administration on days 4, 5 and 6 following the CCI or single administration on day 14 following the CCI |
| [47] |
neuropathic pain | in vivo | male BALB/c mice (after unilateral spared nerve injury) | 10 ng ICV d administration |
| [48] |
Parkinson’s disease | in vitro | primary microglia, | 1.25–20 μM |
| [51] |
in vivo | male Sprague-Dawley rats (LPS-injected) | 25–100 ng/kg single injection |
| ||
atherosclerotic lesions | in vivo | ApoE+/+ C57BL/6J mice and ApoE−/− C57BL/6J mice | 100 ng/mouse IP administration 3 times/week for 4 weeks |
| [54] |
hind limb ischemia (HLI) | in vivo | male C57BL/6J mice (after transection of the femoral artery and vein) | 100 ng/mouse subcutaneously administration daily for 14 days |
| [55] |
hypertension | in vivo | C57BL/6J mice (infused with angiotensin II) | 100 ng/mouse every second day for 14 days |
| [56] |
Crohn’s disease (CD) | ex vivo | colonic biopsy | not given |
| [59] |
obesity | in vivo | male Swiss mice (on a high-fat diet) | 3 ng/mouse or 50 ng/mouse ICV administration daily for 11 days |
| [60] |
irritable bowel syndrome (IBS) | in vitro | dorsal root ganglion (DRG) neurons | 10 nM or 1 μM |
| [61] |
in vivo | BALB/c mice with post-infectious or post-inflammation visceral hypersensitivity | 300 ng/mouse IP administration every other day for 1 week | |||
periodontitis | in vivo | male Wistar rats | 20 ng/mouse administration directly to the root canal |
| [67] |
COVID-19 | in vitro | macrophages from peripheral blood | 10 nM |
| [71] |
Duchenne muscular dystrophy (DMD) | in vivo ex vivo in vitro | male mdx mice muscles single myofibers, monocytes/macrophages | 5 μg/kg/day for 7 or 21 days IP administration 200 nM |
| [73] |
asthma | in vivo | Balb/c mice (intratracheal administration of house dust mite extract) | 100 ng/mouse IN administration on days 15 and 16 after sensitisation with house dust mites |
| [75] |
lung inflammation | in vitro in vivo | co-culture of HL60 and HUVEC cells CD1 mice | 50 ng/mL 100 ng/mouse IV administration |
| [77] |
placenta disorder | in vitro | HUASMC HTR8 | 1 nM or 100 nM 100 nM |
| [79] |
peritonitis | in vivo | mice injected with LPS, monosodium, or alum | 1 μg/mouse single IP administration |
| [64] |
in vitro | macrophages with induced inflammasome | 10 nM |
| ||
infectious peritonitis and secondary lung infection | in vivo | male C57BL/6 mice (after cecal ligation and puncture) | 100 ng/mouse via tail vein |
| [65] |
Compound | Type of Study | Test | Dose/s | Observed Effect | Ref. |
---|---|---|---|---|---|
O-1602 | in vivo | diet-induced obesity (Sprague–Dawley rats) | 5 mg/kg for 6 weeks IP a |
| [88] |
in vivo | diet-induced obesity (Sprague–Dawley rats) | 5 mg/kg for 6 weeks IP |
| [89] | |
PSB-KD107 | in vitro | influence on rat aorta precontracted with phenylephrine (Wistar rats) | ---- |
| [87] |
in vitro | platelet aggregation test (Wistar rats) | 0.1 mM |
| ||
in vitro | ferric reducing antioxidant power (FRAP) assay | 0.1–1 mM |
| ||
in vitro | 2,2-Diphenyl-1-picryl-hydrazyl-hydrate free radical (DPPH) assay | 0.1 mM 1 mM |
| ||
in vivo | influence on blood pressure (normotensive Wistar rats) | single (10 mg/kg, IP) multiple (8 days, once daily 10 mg/kg, IP) |
| ||
in vivo | the effect on normal electrocardiogram (Wistar rats) | single (10 mg/kg IP) multiple—8 days, once daily 10 mg/kg IP |
| ||
in vivo | inflammation in dystrophic mdx mice (C57BL/10) | 1 mg/kg for 3 weeks, IP |
| [86] | |
PSB-MZ-1415 | in vitro | isolated human pulmonary arteries (hPAs) | --- |
| [84] |
in vivo | forced swim test (Albino Swiss mice) | 30 mg/kg, IP |
| [32] | |
in vivo | four-plate test (Albino Swiss mice) | 1 mg/kg, IP |
| ||
in vivo | hot plate test (Albino Swiss mice) | 1 mg/kg, 3 mg/kg, 10 mg/kg, 30 mg/kg, IP |
| ||
in vivo | oxaliplatin-induced neuropathic pain (oxaliplatin 10 mg/kg, IP) (Albino Swiss mice) von Frey test 3 h: early-phase allodynia 7 days: late-phase allodynia cold plate test | 30 mg/kg, IP |
| ||
in vivo | food intake test (Albino Swiss mice) | 30 mg/kg, IP |
| ||
in vivo | semi-chronic TNBS-induced colitis (balb/C mice) | 1 mg/kg for 4 days (once or twice daily), b IC |
| [85] | |
in vivo | chronic TNBS-induced colitis (balb/C mice) | 1 mg/kg for 7 days (once daily), IC |
| ||
in vivo | mustard oil-induced pain (balb/C mice) | 1 mg/kg for 4 days, IC |
| ||
PSB-MZ-1440 | in vitro | isolated human pulmonary arteries | --- |
| [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honkisz-Orzechowska, E.; Łażewska, D.; Baran, G.; Kieć-Kononowicz, K. Uncovering the Power of GPR18 Signalling: How RvD2 and Other Ligands Could Have the Potential to Modulate and Resolve Inflammation in Various Health Disorders. Molecules 2024, 29, 1258. https://doi.org/10.3390/molecules29061258
Honkisz-Orzechowska E, Łażewska D, Baran G, Kieć-Kononowicz K. Uncovering the Power of GPR18 Signalling: How RvD2 and Other Ligands Could Have the Potential to Modulate and Resolve Inflammation in Various Health Disorders. Molecules. 2024; 29(6):1258. https://doi.org/10.3390/molecules29061258
Chicago/Turabian StyleHonkisz-Orzechowska, Ewelina, Dorota Łażewska, Grzegorz Baran, and Katarzyna Kieć-Kononowicz. 2024. "Uncovering the Power of GPR18 Signalling: How RvD2 and Other Ligands Could Have the Potential to Modulate and Resolve Inflammation in Various Health Disorders" Molecules 29, no. 6: 1258. https://doi.org/10.3390/molecules29061258
APA StyleHonkisz-Orzechowska, E., Łażewska, D., Baran, G., & Kieć-Kononowicz, K. (2024). Uncovering the Power of GPR18 Signalling: How RvD2 and Other Ligands Could Have the Potential to Modulate and Resolve Inflammation in Various Health Disorders. Molecules, 29(6), 1258. https://doi.org/10.3390/molecules29061258