High-Pressure Processing of Fruit Smoothies Enriched with Dietary Fiber from Carrot Discards: Effects on the Contents and Bioaccessibilities of Carotenoids and Vitamin E †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identified Carotenoids
2.2. Effects of Processing and Storage on Carotenoids
2.3. Effects of Processing and Storage on Vitamin E
2.4. Bioaccessibility
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Smoothies
3.3. High-Pressure Processing (HPP) and Refrigerated Storage
3.4. Determination of Carotenoids and Vitamin E Content
3.4.1. Extraction Method
3.4.2. Saponification
3.4.3. HPLC-DAD
3.4.4. HPLC-MS
3.4.5. Identification and Quantification of Vitamin E
3.5. In Vitro Digestion Model
3.5.1. Experimental Procedure
3.5.2. Isolation of the Micellar Fraction
3.5.3. Extraction of Carotenoids and Vitamin E
3.5.4. Calculations
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurek, M.; Debbache-Benaida, N.; Garofulić, I.E.; Galić, K.; Avallone, S.; Voilley, A.; Waché, Y. Antioxidants and Bioactive Compounds in Food: Critical Review of Issues and Prospects. Antioxidants 2022, 11, 742. [Google Scholar] [CrossRef] [PubMed]
- Guaâdaoui, A.; Ben-Aicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What Is a Bioactive Compound? A Combined Definition for a Preliminary Consensus. Int. J. Nutr. Food Sci. 2014, 3, 174. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.; Bao, S.; Zhao, Q.; Sun, X.; Fang, Y.; Ma, T.; Liu, S. Effects and Impacts of Technical Processing Units on the Nutrients and Functional Components of Fruit and Vegetable Juice. Food Res. Int. 2023, 168, 112784. [Google Scholar] [CrossRef] [PubMed]
- Böhm, V. Health Promoting Effects of Secondary Plant Products. Acta Hortic. 2021, 1329, 123–132. [Google Scholar] [CrossRef]
- Goñi, I.; Serrano, J.; Saura-Calixto, F. Bioaccessibility of Β-Carotene, Lutein, and Lycopene from Fruits and Vegetables. J. Agric. Food Chem. 2006, 54, 5382–5387. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and Human Health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mandić, A.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status Quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2021, 62, 1999–2049. [Google Scholar] [CrossRef] [PubMed]
- Mandrich, L.; Espósito, A.; Da Costa, S.C.; Caputo, E. Chemical Composition, Functional and Anticancer Properties of Carrot. Molecules 2023, 28, 7161. [Google Scholar] [CrossRef]
- Del Pozo-Insfran, D.; Percival, S.S.; Talcott, S.T. Açai (Euterpe Oleracea Mart.) Polyphenolics in Their Glycoside and Aglycone Forms Induce Apoptosis of HL-60 Leukemia Cells. J. Agric. Food Chem. 2006, 54, 1222–1229. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; Carmo, M.A.V.D.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry Polyphenols and Human Health: Evidence of Antioxidant, Anti-Inflammatory, Microbiota Modulation, and Cell-Protecting Effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Borgonovi, T.F.; Virgolin, L.B.; Janzantti, N.S.; Casarotti, S.N.; Penna, A.L.B. Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res. Int. 2022, 161, 111809. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Maqsummiya, Z.U.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-Derived Bioactive Compounds in Colon Cancer Treatment: An Updated Review. Biomed. Pharmacother. 2022, 153, 113384. [Google Scholar] [CrossRef]
- Ragaert, P.; Verbeke, W.; Devlieghere, F.; Debevere, J. Consumer Perception and Choice of Minimally Processed Vegetables and Packaged Fruits. Food Qual. Prefer. 2004, 15, 259–270. [Google Scholar] [CrossRef]
- Martins, I.B.A.; Rosenthal, A.; Ares, G.; Deliza, R. How Do Processing Technology and Formulation Influence Consumers’ Choice of Fruit Juice? Int. J. Food Sci. Technol. 2020, 55, 2660–2668. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Santana-Gálvez, J.; Cisneros-Zevallos, L. Designing Next-Generation Functional Food and Beverages: Combining Nonthermal Processing Technologies and Postharvest Abiotic Stresses. Food Eng. Rev. 2020, 13, 592–600. [Google Scholar] [CrossRef]
- Xiao, S.; Bredahl, L.; Navarro, M.D.; Pendenza, P.; Stojacic, I.; Mincione, S.; Pellegrini, G.; Schlüter, O.; Torrieri, E.; Di Monaco, R.; et al. Factors Affecting Consumer Choice of Novel Non-Thermally Processed Fruit and Vegetables Products: Evidence from a 4-Country Study in Europe. Food Res. Int. 2022, 153, 110975. [Google Scholar] [CrossRef]
- Medina, M.B. Determination of the Total Phenolics in Juices and Superfruits by a Novel Chemical Method. J. Funct. Foods 2011, 3, 79–87. [Google Scholar] [CrossRef]
- Wootton-Beard, P.; Ryan, L. Improving Public Health?: The Role of Antioxidant-Rich Fruit and Vegetable Beverages. Food Res. Int. 2011, 44, 3135–3148. [Google Scholar] [CrossRef]
- Stinco, C.M.; Baroni, M.V.; Di Paola Naranjo, R.D.; Wunderlin, D.A.; Heredia, F.J.; Meléndez-Martínez, A.J.; Vicario, I.M. Hydrophilic Antioxidant Compounds in Orange Juice from Different Fruit Cultivars: Composition and Antioxidant Activity Evaluated by Chemical and Cellular Based (Saccharomyces cerevisiae) Assays. J. Food Compos. Anal. 2015, 37, 1–10. [Google Scholar] [CrossRef]
- Van De Velde, F.; Grace, M.H.; Esposito, D.; Pirovani, M.É.; Lila, M.A. Quantitative Comparison of Phytochemical Profile, Antioxidant, and Anti-Inflammatory Properties of Blackberry Fruits Adapted to Argentina. J. Food Compos. Anal. 2016, 47, 82–91. [Google Scholar] [CrossRef]
- Clementz, A.L.; Torresi, P.A.; Molli, J.S.; Cardell, D.; Mammarella, E.; Yori, J.C. Novel Method for Valorization of By-Products from Carrot Discards. LWT 2019, 100, 374–380. [Google Scholar] [CrossRef]
- Vénica, C.I.; Spotti, M.J.; Pavón, Y.L.; Molli, J.S.; Perotti, M.F. Influence of Carrot Fibre Powder Addition on Rheological, Microstructure and Sensory Characteristics of Stirred-type Yogurt. Int. J. Food Sci. Technol. 2019, 55, 1916–1923. [Google Scholar] [CrossRef]
- Dong, R.; Liao, W.; Xie, J.; Chen, Y.; Peng, G.; Sun, N.X.; Liu, S.; Yu, C.; Yu, Q. Enrichment of Yogurt with Carrot Soluble Dietary Fiber Prepared by Three Physical Modified Treatments: Microstructure, Rheology and Storage Stability. Innov. Food Sci. Emerg. Technol. 2022, 75, 102901. [Google Scholar] [CrossRef]
- Ramirez, M.R.; Manuale, D.L.; Yori, J.C. Assessment of effectiveness of oral supplementation of isolated fiber of carrot on metabolic parameters in mature rats. Food Sci. Hum. Wellness 2023, 12, 2022–2028. [Google Scholar] [CrossRef]
- Petruzzi, L.; Campaniello, D.; Speranza, B.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Compr. Rev. Food Sci. Food Saf. 2017, 16, 668–691. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; De Ancos, B.; Sánchez-Moreno, C.; Cano, M.P.; Elez-Martínez, P.; Martín-Belloso, O. Impact of Food Matrix and Processing on the in Vitro Bioaccessibility of Vitamin C, Phenolic Compounds, and Hydrophilic Antioxidant Activity from Fruit Juice-Based Beverages. J. Funct. Foods 2015, 14, 33–43. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P. Emerging Technologies Available for the Enhancement of Bioactives Concentration in Functional Beverages. In Biotechnological Progress and Beverage Consumption; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–69. [Google Scholar] [CrossRef]
- Pardo, G.O.; Zufía, J. Life Cycle Assessment of Food-Preservation Technologies. J. Clean. Prod. 2012, 28, 198–207. [Google Scholar] [CrossRef]
- Barba, F.J.; Pavlić, B.; Šojić, B.; Zavadlav, S.; Žuntar, I.; Kao, L.; Kitonić, D.; Kovačević, D.B. Innovative Hurdle Technologies for the Preservation of Functional Fruit Juices. Foods 2020, 9, 699. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Ranjha, M.M.A.N.; Jambrak, A.R.; Qureshi, M.I.; Khan, N.; Lorenzo, J.M.; Aadil, R.M. Nonthermal Food Processing: A Step towards a Circular Economy to Meet the Sustainable Development Goals. Food Chem. X 2022, 16, 100516. [Google Scholar] [CrossRef]
- Schmidt, M.; Hopfhauer, S.; Schneider, F.T.; Ivanović, J.; Schwarzenbolz, U.; Böhm, V. Effect of Hydrostatic Pressure and Temperature on Extractability and Bioaccessibility of Lipophilic Micronutrients in Kale. ACS Food Sci. Technol. 2023, 3, 1122–1135. [Google Scholar] [CrossRef]
- Keenan, D.F.; Brunton, N.P.; Gormley, T.R.; Butler, F.; Tiwari, B.K.; Patras, A. Effect of Thermal and High Hydrostatic Pressure Processing on Antioxidant Activity and Colour of Fruit Smoothies. Innov. Food Sci. Emerg. Technol. 2010, 11, 551–556. [Google Scholar] [CrossRef]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The Effect of High-Pressure Processing on Colour, Bioactive Compounds, and Antioxidant Activity in Smoothies during Refrigerated Storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, P.R.; Boulet, C.; Yıldız, S.; Sablani, S.S.; Tang, J.; Barbosa-Cánovas, G.V. Effect of High Hydrostatic Pressure on Microbial Inactivation and Quality Changes in Carrot-Orange Juice Blends at Varying pH. LWT 2022, 159, 113219. [Google Scholar] [CrossRef]
- Song, Q.; Li, R.; Xiao, S.; Clausen, M.P.; Orlien, V.; Giacalone, D. The Effect of High-Pressure Processing on Sensory Quality and Consumer Acceptability of Fruit Juices and Smoothies: A Review. Food Res. Int. 2022, 157, 111250. [Google Scholar] [CrossRef]
- Hurtado, A.; Guárdia, M.D.; Picouet, P.; Jofré, A.; Ros, J.M.; Bañón, S. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability. J. Sci. Food Agric. 2016, 97, 770–776. [Google Scholar] [CrossRef]
- Reboul, E.; Richelle, M.; Perrot, E.; Desmoulins-Malezet, C.; Pirisi, V.; Borel, P. Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. J. Agric. Food Chem. 2006, 54, 8749–8755. [Google Scholar] [CrossRef] [PubMed]
- Kopec, R.E.; Failla, M.L. Recent Advances in the Bioaccessibility and Bioavailability of Carotenoids and Effects of Other Dietary Lipophiles. J. Food Compos. Anal. 2018, 68, 16–30. [Google Scholar] [CrossRef]
- Schweiggert, R.M.; Mezger, D.; Schimpf, F.; Steingass, C.B.; Carle, R. Influence of Chromoplast Morphology on Carotenoid Bioaccessibility of Carrot, Mango, Papaya, and Tomato. Food Chem. 2012, 135, 2736–2742. [Google Scholar] [CrossRef]
- Van de Velde, F.; Vignatti, C.I.; Méndez-Galarraga, M.P.; Gomila, M.; Fenoglio, C.; Zbinden, M.D.; Pirovani, M.É. Intestinal and colonic bioaccessibility of phenolic compounds from fruit smoothies as affected by the thermal processing and the storage conditions. Food Res. Int. 2022, 155, 111086. [Google Scholar] [CrossRef]
- Böhm, V. Analysis of Carotenoids. In Fortified Foods with Vitamins: Analytical Concepts to Assure Better and Safer Products; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2011; pp. 201–210. [Google Scholar] [CrossRef]
- Werner, S.; Böhm, V. Bioaccessibility of Carotenoids and Vitamin E from Pasta: Evaluation of an in Vitro Digestion Model. J. Agric. Food Chem. 2011, 59, 1163–1170. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Staticin Vitro digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Gama, J.; De Sylos, C.M. Major Carotenoid Composition of Brazilian Valencia Orange Juice: Identification and Quantification by HPLC. Food Res. Int. 2005, 38, 899–903. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F. HPLC Determination of Carotenoids in Bulgarian Berries. J. Food Compos. Anal. 2007, 20, 370–374. [Google Scholar] [CrossRef]
- Englberger, L.; Lyons, G.; Foley, W.; Daniells, J.; Aalbersberg, B.; Dolodolotawake, U.; Watoto, C.; Iramu, E.; Taki, B.; Wehi, F.; et al. Carotenoid and Riboflavin Content of Banana Cultivars from Makira, Solomon Islands. J. Food Compos. Anal. 2010, 23, 624–632. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and Carotenoid Pigments in the Peel and Flesh of Commercial Apple Fruit Varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef]
- Lux, P.E.; Carle, R.; Zacarías, L.; Rodrigo, M.J.; Schweiggert, R.M.; Steingass, C.B. Genuine Carotenoid Profiles in Sweet Orange [Citrus Sinensis (L.) Osbeck Cv. Navel] Peel and Pulp at Different Maturity Stages. J. Agric. Food Chem. 2019, 67, 13164–13175. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Esquivel, P.; Rodriguez–Amaya, D.B. Comprehensive Review on Carotenoid Composition: Transformations during Processing and Storage of Foods. Food Res. Int. 2023, 169, 112773. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Bi, X.; Zhang, X.; Liao, X.; Hu, X.; Wu, J. Comparative Study of Enzymes, Phenolics, Carotenoids and Color of Apricot Nectars Treated by High Hydrostatic Pressure and High Temperature Short Time. Innov. Food Sci. Emerg. Technol. 2013, 18, 74–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Zhao, F.; Sun, Z.; Liao, X. Quality Comparison of Carrot Juices Processed by High-Pressure Processing and High-Temperature Short-Time Processing. Innov. Food Sci. Emerg. Technol. 2016, 33, 135–144. [Google Scholar] [CrossRef]
- McInerney, J.K.; Seccafien, C.A.; Stewart, C.; Bird, A.R. Effects of High Pressure Processing on Antioxidant Activity, and Total Carotenoid Content and Availability, in Vegetables. Innov. Food Sci. Emerg. Technol. 2007, 8, 543–548. [Google Scholar] [CrossRef]
- Westphal, A.; Schwarzenbolz, U.; Böhm, V. Effects of High Pressure Processing on Bioactive Compounds in Spinach and Rosehip Puree. Eur. Food Res. Technol. 2017, 244, 395–407. [Google Scholar] [CrossRef]
- De Ancos, B.; Sgroppo, S.C.; Plaza, L.; Cano, M.P. Possible Nutritional and Health-related Value Promotion in Orange Juice Preserved by High-pressure Treatment. J. Sci. Food Agric. 2002, 82, 790–796. [Google Scholar] [CrossRef]
- De Ancos, B.; Rodrigo, M.J.; Sánchez-Moreno, C.; Cano, M.P.; Zacarías, L. Effect of High-Pressure Processing Applied as Pretreatment on Carotenoids, Flavonoids and Vitamin C in Juice of the Sweet Oranges «Navel» and the Red-Fleshed «Cara Cara». Food Res. Int. 2020, 132, 109105. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Velázquez, D.A.; Hernández-Brenes, C. Stability of Avocado Paste Carotenoids as Affected by High Hydrostatic Pressure Processing and Storage. Innov. Food Sci. Emerg. Technol. 2012, 16, 121–128. [Google Scholar] [CrossRef]
- Dhenge, R.; Rinaldi, M.; Ganino, T.; Santi, S.; Ferrarese, I.; Dall’Acqua, S. Variations of Polyphenols, Sugars, Carotenoids, and Volatile Constituents in Pumpkin (Cucurbita moschata) during High Pressure Processing: A Kinetic Study. Innov. Food Sci. Emerg. Technol. 2022, 78, 103005. [Google Scholar] [CrossRef]
- Wolbang, C.M.; Fitos, J.L.; Treeby, M.T. The Effect of High Pressure Processing on Nutritional Value and Quality Attributes of Cucumis Melo, L. Innov. Food Sci. Emerg. Technol. 2008, 9, 196–200. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Enhancing Carotenoid and Phenolic Contents in Plant Food Matrices by Applying Non-Thermal Technologies: Bioproduction vs Improved Extractability. Trends Food Sci. Technol. 2021, 112, 622–630. [Google Scholar] [CrossRef]
- Anese, M.; Bot, F.; Panozzo, A.; Mirolo, G.; Lippe, G. Effect of Ultrasound Treatment, Oil Addition and Storage Time on Lycopene Stability and in Vitro Bioaccessibility of Tomato Pulp. Food Chem. 2015, 172, 685–691. [Google Scholar] [CrossRef]
- Song, J.; Li, D.; Pang, H.; Liu, C. Effect of Ultrasonic Waves on the Stability of All-Trans Lutein and Its Degradation Kinetics. Ultrason. Sonochem. 2015, 27, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, L.; Van Der Plancken, I.; Grauwet, T.; Verlinde, P.; Matser, A.M.; Hendrickx, M.; Van Loey, A. Thermal versus High Pressure Processing of Carrots: A Comparative Pilot-Scale Study on Equivalent Basis. Innov. Food Sci. Emerg. Technol. 2012, 15, 1–13. [Google Scholar] [CrossRef]
- National Academies Press (US). Vitamin E. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; NCBI Bookshelf; National Academy Press: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK225461/ (accessed on 5 March 2024).
- Da Silveira, T.F.F.; Cristianini, N.; Kuhnle, G.G.; Ribeiro, A.B.; Filho, J.T.; Godoy, H.T. Anthocyanins, Non-Anthocyanin Phenolics, Tocopherols and Antioxidant Capacity of Açaí Juice (Euterpe oleracea) as Affected by High Pressure Processing and Thermal Pasteurization. Innov. Food Sci. Emerg. Technol. 2019, 55, 88–96. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frígola, A. Impact of High-Pressure Processing on Vitamin E (A-, Γ-, and Δ-Tocopherol), Vitamin D (Cholecalciferol and Ergocalciferol), and Fatty Acid Profiles in Liquid Foods. J. Agric. Food Chem. 2012, 60, 3763–3768. [Google Scholar] [CrossRef]
- Schmidt, M.; Hopfhauer, S.; Schwarzenbolz, U.; Böhm, V. High Pressure Processing and Heat Sterilization of Kale: Impact on Extractability, Antioxidant Capacity and Storability of Carotenoids and Vitamin E. Appl. Res. 2022, 1, e202200025. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; De Ancos, B.; Sánchez-Vega, R.; Sánchez-Moreno, C.; Cano, M.P.; Elez-Martínez, P.; Martín-Belloso, O. Food Matrix and Processing Influence on Carotenoid Bioaccessibility and Lipophilic Antioxidant Activity of Fruit Juice-Based Beverages. Food Funct. 2016, 7, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Hacke, A.; Marques, M.C.; Rebellato, A.P.; Rodrigues, D.B.; Pallone, J.A.L.; Mariutti, L.R.B. How Does the Food Matrix Affect the Provitamin A Carotenoid in Vitro Bioaccessibility in Fruit-Based Baby Food? J. Food Compos. Anal. 2023, 123, 105538. [Google Scholar] [CrossRef]
- Zhong, S.; Vendrell-Pacheco, M.; Heskitt, B.F.; Chitchumroonchokchai, C.; Failla, M.L.; Sastry, S.K.; Francis, D.M.; Martín-Belloso, O.; Elez-Martínez, P.; Kopec, R.E. Novel Processing Technologies as Compared to Thermal Treatment on the Bioaccessibility and CACO-2 Cell Uptake of Carotenoids from Tomato and Kale-Based Juices. J. Agric. Food Chem. 2019, 67, 10185–10194. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of Processing on the Bioaccessibility of Bioactive Compounds—A Review Focusing on Carotenoids, Minerals, Ascorbic Acid, Tocopherols and Polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Cilla, A.; Alegría, A.; De Ancos, B.; Sánchez-Moreno, C.; Cano, M.P.; Plaza, L.; Clemente, G.; Lagarda, M.J.; Barberá, R. Bioaccessibility of Tocopherols, Carotenoids, and Ascorbic Acid from Milk- and Soy-Based Fruit Beverages: Influence of Food Matrix and Processing. J. Agric. Food Chem. 2012, 60, 7282–7290. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Aimaretti, N.; Clementz, A.; Mammarella, E.; Cardell, D.; Molli, J.S.; Yori, J.C. Proceso de Extracción de Subproductos a Partir de Zanahoria. Patent AR099281A1, 4 November 2014. [Google Scholar]
- DIN EN ISO 4833-2:2022-05; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique. Beuth-Verlag: Berlin, Germany, 2022.
N° | Compound Name | tR (min) | λmax 1 (nm) | λmax 2 (nm) | λmax 3 (nm) | m/z [M + H]+ |
---|---|---|---|---|---|---|
1 | (all-E)-Antheraxanthin | 17.46 | 422 | 445 | 473 | 585.2 |
2 | (all-E)-Lutein | 19.21 | 421 | 445 | 473 | 551.1 |
3 | (all-E)-Zeaxanthin | 20.41 | 428 | 451 | 478 | 569.2 |
4 | (all-E)-β-Cryptoxanthin | 29.24 | - | 452 | 478 | 553.2 |
5 | (all-E)-α-Carotene | 35.46 | 421 | 447 | 475 | 537.3 |
6 | (all-E)-β-Carotene | 36.74 | 428 | 452 | 479 | 537.3 |
Treatment | Storage (Days) | Lutein (μg/100 g) | Zeaxanthin (μg/100 g) | β-Cryptoxanthin (μg/100 g) | |||
BF | FF | BF | FF | BF | FF | ||
Untreated | 0 | 12.6 ± 1.1 A | 14.4 ± 1.6 A | 6.0 ± 0.5 A | 7.0 ± 1.2 A | 14.5 ± 0.9 A | 10.7 ± 0.6 A |
450 MPa | 0 | 16.8 ± 1.4 Ab | 11.9 ± 1.5 Ab | 8.0 ± 1.3 Ab | 5.9 ± 1.2 Ab | 19.3 ± 0.7 Bc | 12.0 ± 0.3 Bb |
14 | 12.0 ± 0.5 a | 13.2 ± 0.5 b | 6.1 ± 0.5 a | 5.6 ± 0.36 b | 16.4 ± 0.1 b | 12.7 ± 0.2 c | |
28 | 10.4 ± 0.8 a | 9.6 ± 0.7 a | 5.3 ± 0.2 a | 4.6 ± 0.5 a | 12.3 ± 0.7 a | 9.1 ± 0.1 a | |
600 MPa | 0 | 19.7 ± 4.5 Ab | 15.8 ± 1.7 Ab | 9.6 ± 2.8 Ab | 6.7 ± 1.4 Ab | 20.3 ± 2.6 Bb | 13.1 ± 0.8 Bb |
14 | 15.0 ± 0.9 ab | 14.6 ± 0.7 b | 6.8 ± 0.4 ab | 6.8 ± 0.3 b | 17.6 ± 0.7 b | 17.6 ± 0.5 c | |
28 | 8.8 ± 2.9 a | 8.7 ± 2.4 a | 4.2 ± 1.0 a | 4.1 ± 1.3 a | 10.2 ± 2.9 a | 8.3 ± 2.6 a | |
Treatment | Storage (Days) | α-Carotene (μg/100 g) | β-Carotene (μg/100 g) | α-Tocopherol (μg/100 g) | |||
BF | FF | BF | FF | BF | FF | ||
Untreated | 0 | 3.9 ± 0.6 A | 3.0 ± 0.3 A | 6.9 ± 0.7 A | 6.8 ± 0.5 A | 187.9 ± 19.2 A | 198.2 ± 8.8 A |
450 MPa | 0 | 5.5 ± 0.5 Bb | 4.0 ± 0.6 Ba | 9.2 ± 0.3 Bc | 7.4 ± 0.1 Ab | 183.8 ± 7.7 Ab | 181.6 ± 7.9 Ac |
14 | 4.3 ± 0.5 a | 3.8 ± 0.3 a | 6.8 ± 0.1 b | 7.4 ± 0.3 b | 103.9 ± 8.6 a | 146.7 ± 7.5 b | |
28 | 3.0 ± 0.3 a | 3.0 ± 0.3 a | 5.3 ± 0.5 a | 5.4 ± 0.2 a | 97.0 ± 19.0 a | 109.8 ± 2.12 a | |
600 MPa | 0 | 5.7 ± 1.0 Bb | 4.5 ± 0.7 Bb | 8.9 ± 1.3 Bb | 8.2 ± 0.5 Bb | 192.0 ± 3.7 Ac | 186.6 ± 6.5 Ab |
14 | 4.7 ± 0.5 b | 4.6 ± 0.5 b | 7.4 ± 0.6 b | 7.3 ± 0.5 b | 136.3 ± 4.8 b | 175.0 ± 6.2 b | |
28 | 2.9 ± 0.4 a | 2.6 ± 0.4 a | 4.9 ± 1.0 a | 5.0 ± 0.8 a | 77.0 ± 3.9 a | 78.7 ± 12.3 a |
Bioaccessibility (%) | |||||||
---|---|---|---|---|---|---|---|
Treatment | Storage (Days) | Lutein | Zeaxanthin | β-Cryptoxanthin | |||
BF | FF | BF | FF | BF | FF | ||
Untreated | 0 | 30.4 ± 7.0 B | 31.7 ± 2.8 B | 19.3 ± 3.2 A | 22.5 ± 2.3 B | 15.7 ± 3.0 B | 22.0 ± 4.2 B |
450 MPa | 0 | 15.2 ± 3.1 Aa | 19.8 ± 2.8 Ab | 12.7 ± 2.1 Aa | 14.5 ± 1.6 Aa | 9.5 ± 0.9 Aa | 10.3 ± 3.7 Aa |
14 | 28.7 ± 2.2 b | 26.8 ± 1.5 ab | 18.5 ± 2.0 b | 21.6 ± 5.7 a | 14.9 ± 0.3 b | 15.0 ± 1.2 a | |
28 | 29.1 ± 1.8 b | 24.9 ± 2.0 a | 21.4 ± 1.0 b | 18.6 ± 3.9 a | 15.4 ± 0.8 b | 14.9 ± 1.6 a | |
600 MPa | 0 | 18.0 ± 5.9 Aa | 20.7 ± 4.6 Aa | 15.1 ± 4.1 Aa | 16.0 ± 3.1 Aa | 11.1 ± 2.5 ABa | 11.2 ± 5.1 Aa |
14 | 25.7 ± 1.7 ab | 23.1 ± 2.5 a | 17.0 ± 2.9 a | 16.0 ± 4.3 a | 13.7 ± 0.6 a | 9.4 ± 1.6 a | |
28 | 32.6 ± 3.0 b | 32.4 ± 1.3 b | 11.5 ± 2.5 a | 20.1 ± 1.1 a | 25.1 ± 3.5 b | 18.4 ± 0.8 b | |
Treatment | Storage (Days) | α-Carotene | β-Carotene | α-Tocopherol | |||
BF | FF | BF | FF | BF | FF | ||
Untreated | 0 | 50.2 ± 2.4 C | 77.6 ± 4.8 B | 26.9 ± 6.6 A | 38.5 ± 2.3 B | 21.3 ± 2.2 A | 23.3 ± 5.0 A |
450 MPa | 0 | 25.3 ± 1.5 Aa | 19.3 ± 7.5 Aa | 16.1 ± 1.6 Aa | 14.9 ± 2.6 Aa | 21.3 ± 3.1 Ab | 24.5 ± 5.5 Ab |
14 | 46.0 ± 5.5 b | 42.6 ± 4.1 b | 29.2 ± 0.4 b | 25.6 ± 2.2 b | 29.1 ± 4.4 c | 18.3 ± 2.7 ab | |
28 | 47.4 ± 3.1 b | 37.8 ± 5.0 b | 28.9 ± 2.4 b | 24.9 ± 1.2 b | 12.5 ± 2.3 a | 13.7 ± 1.7 a | |
600 MPa | 0 | 33.8 ± 4.2 Ba | 17.6 ± 8.2 Aa | 22.2 ± 4.1 Aa | 14.8 ± 4.0 Aa | 21.0 ± 2.7 Aa | 18.4 ± 2.6 Aa |
14 | 42.0 ± 4.5 a | 18.5 ± 1.8 a | 26.0 ± 2.0 a | 18.5 ± 3.7 a | 25.6 ± 2.9 a | 15.1 ± 1.4 a | |
28 | 61.1 ± 9.7 b | 44.0 ± 8.1 b | 36.1 ± 8.9 a | 28.5 ± 3.7 b | 37.2 ± 2.8 b | 37.1 ± 6.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donda Zbinden, M.; Schmidt, M.; Vignatti, C.I.; Pirovani, M.É.; Böhm, V. High-Pressure Processing of Fruit Smoothies Enriched with Dietary Fiber from Carrot Discards: Effects on the Contents and Bioaccessibilities of Carotenoids and Vitamin E. Molecules 2024, 29, 1259. https://doi.org/10.3390/molecules29061259
Donda Zbinden M, Schmidt M, Vignatti CI, Pirovani MÉ, Böhm V. High-Pressure Processing of Fruit Smoothies Enriched with Dietary Fiber from Carrot Discards: Effects on the Contents and Bioaccessibilities of Carotenoids and Vitamin E. Molecules. 2024; 29(6):1259. https://doi.org/10.3390/molecules29061259
Chicago/Turabian StyleDonda Zbinden, Melisa, Mario Schmidt, Charito Ivana Vignatti, María Élida Pirovani, and Volker Böhm. 2024. "High-Pressure Processing of Fruit Smoothies Enriched with Dietary Fiber from Carrot Discards: Effects on the Contents and Bioaccessibilities of Carotenoids and Vitamin E" Molecules 29, no. 6: 1259. https://doi.org/10.3390/molecules29061259
APA StyleDonda Zbinden, M., Schmidt, M., Vignatti, C. I., Pirovani, M. É., & Böhm, V. (2024). High-Pressure Processing of Fruit Smoothies Enriched with Dietary Fiber from Carrot Discards: Effects on the Contents and Bioaccessibilities of Carotenoids and Vitamin E. Molecules, 29(6), 1259. https://doi.org/10.3390/molecules29061259