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Abstract: Ginseng holds high medicinal and cosmetic value, with stem and leaf extracts garnering
attention for their abundant bioactive ingredients. Meanwhile, fermentation can enhance the effective-
ness of cosmetics. The aim of this study was to optimize ginseng fermentation to produce functional
cosmetics. Ginseng stem and leaf extracts were fermented with five different strains of lactic acid
bacteria. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (·OH), and superoxide anion
(O2
·−) scavenging activities as indicators, the fermentation process was optimized via response

surface methodology. Finally, validation of the antioxidant activity of the optimized fermentation
broth was performed using human skin cells (HaCaT and BJ cells). Based on the antioxidant potency
composite comprehensive index, Lactiplantibacillus plantarum 1.140 was selected, and the optimized
parameters were a fermentation time of 35.50 h, an inoculum size of 2.45%, and a temperature of
28.20 ◦C. Optimized fermentation boosted antioxidant activity: DPPH scavenging activity increased
by 25.00%, ·OH by 94.00%, and O2

·− by 73.00%. Only the rare ginsenoside Rg5 showed a substantial
rise in content among the 11 ginsenosides examined after fermentation. Furthermore, the flavonoid
content and ·OH scavenging activity were significantly negatively correlated (r = −1.00, p < 0.05),
while the Rh1 content and O2

·− scavenging activity were significantly positively correlated (r = 0.998,
p < 0.05). Both the 0.06% (v/v) and 0.25% (v/v) concentrations of the optimized broth significantly
promoted cell proliferation, and notable protective effects against oxidative damage were observed in
HaCaT cells when the broth was at 0.06%. Collectively, we demonstrated that ginseng fermentation
extract effectively eliminates free radicals, preventing and repairing cellular oxidative damage. This
study has identified new options for the use of fermented ginseng in functional cosmetics.

Keywords: ginseng stem and leaf; Lactobacillus; antioxidant activity; fermentation; cell viability

1. Introduction

Ginseng is a perennial plant that belongs to the Araliaceae family; it contains a variety
of bioactive compounds that have antioxidant, anti-aging, anti-inflammatory, and other
effects [1]. Hence, ginseng is traditionally used as a raw material in the production of
cosmetics in China and South Korea [2]. The bioactive compounds of ginseng include
ginsenosides, polysaccharides, phenols, and flavonoids; ginsenosides are the primary
active constituents, comprising approximately 4% of the total content of ginseng. They
are found in abundant quantities in various parts of the ginseng plant, including the roots,
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stems, leaves, and fruit. Ginsenosides Rc, Re, Rb2, Rf, and Rb1 are the major ginsenosides,
accounting for more than 90% of the total ginsenosides (TGs) [3]. Rare ginsenosides,
such as Rg3, CK, Rh2, and F2, constitute a minimal proportion of the TGs, typically less
than 0.1% in natural plant specimens; for example, the quality content of Rg3 is usually
0.0003% to 0.03%. Interestingly, these rare ginsenosides play a more significant role in the
efficacy of ginseng than their more common counterparts [4], and due to their notable
pharmacological activities (e.g., antioxidant, anti-aging, and anti-inflammatory effects)
and market demand, there is growing interest in these ginsenosides across academia and
industrial sectors. For example, ginsenoside CK can not only improve the antioxidant
enzyme activity of the skin but also protect keratinocytes and dermal fibroblasts from
ultraviolet damage, exhibiting a photoprotective effect [5].

Despite exhibiting stronger biological activity than the major ginsenosides, the minor
ginsenosides are naturally present in relatively low quantities in ginseng, which makes it
difficult to meet the needs of industrial production and market products [6]. Due to its low
production cost, short cycle, few byproducts, and product safety, microbial fermentation
has been widely used in traditional Chinese medicine (TCM) [7]. Numerous studies have
also been conducted on the fermentation practices used in TCM. For instance, Pham [8]
tested the effects of a fermented black ginseng (FBG) product on human skin fibroblasts
(HS68) and found that it had potential antioxidant activity and could be used as an active in-
gredient in cosmetics due to its anti-wrinkle activity. Also, there is increasing interest in the
fermentation of ginseng using probiotics [9,10]. Probiotics have been shown to contribute
to the fermentation and transformation of the saponins in ginseng in a highly specific
and safe manner, and high yields have been obtained; hence, their use has become one of
the important ways to improve the biological activity of ginseng products [11,12]. Lactic
acid bacteria (LAB) are well-known probiotics, and LAB fermentation is recognized by the
China Food and Drug Administration (CFDA) as a safe method for use in food production.
Given that the transformation of ginsenosides using LAB does not require the addition of
chemical reagents that may cause harm, does not generate pollution, and exhibits good
sustainability [13], it is considered a green and environmentally friendly process.

The skin forms the human body’s main barrier, and its function is primarily mediated
by the structure of the epidermis and dermis [14]. The epidermis, which is the outermost
layer of the skin, is mainly composed of keratinocytes and is vulnerable to various types of
oxidative stress damage. The dermis is chiefly composed of human skin fibroblasts and a
matrix of collagen-rich fibers that the fibroblasts produce (by taking in essential amino acids)
to reduce damage caused by external factors [15]. Oxidative stress can easily trigger the
oxidation of proteins and cell membrane lipids, DNA damage, and other processes in the
skin [16] that lead to accelerated skin aging, wrinkle formation, and reduced elasticity [17].

With more than 2000 years use history, Ginseng is believed to maintain vigor and vital-
ity in the ancient Chinese Meteria Medica ShenNongBenCaoJing (Patron of Agriculture’s
Herbal Classic) [18]. It exhibits strong antioxidant activity, has been shown to eliminate
oxygen free radicals, has anti-aging effects [19], and plays a significant protective and repar-
ative role in skin damaged by oxidation [20]. Research has revealed that ginseng stems and
leaves, like the roots, contain active components and that the content is three times higher
in these plant parts, with the saponin concentration ranging from 7.6% to 12.6% [21]. The
antioxidant activity of the stems and leaves also surpasses that of the roots [22]. However,
despite the superior attributes of the stem and leaf material, ginseng stem and leaf resources
are associated with substantial waste [23]. This underlines the need for better utilization of
ginseng stem and leaf material.

Recently, we conducted several studies on TCM fermentation. Notably, the two-way
fermentation of Schizophyllum commune Fr. and Radix Puerariae significantly increased the
yield and antioxidant activity of produced exopolysaccharides [24], and these metabolites
were found to prolong the life and improve the health of Caenorhabditis elegans [25]. In
another study, we analyzed the active substances in the fermentation broth of Tremella
albophyllum and found that they had antioxidant activity [26]. Additionally, Lactobacillus
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acidophilus was employed to ferment dandelion, and the capacity of the fermented extract to
reduce uric acid and the underlying mechanism were validated [27]. Our previous studies
have included various attempts to realize the bidirectional fermentation of probiotics and
medicinal plants [24–27]. Typically, a cosmetic ingredient named SPG (Schizophyllan), has
been put into commercial production by MARUBI, a listed company based in Guangzhou,
China. Currently, we have explored the utilization of ginseng stems and leaves to produce
more active potential cosmetic ingredients. Meanwhile, the optimized fermentation process
results in a significantly shortened duration of 35.5 h, which is highly advantageous for
industrial applications.

This study was aimed (i) to investigate the efficacy of a ginseng fermentation broth
produced from stems and leaves as a functional ingredient in antioxidant cosmetics and
(ii) to optimize the utilization of ginseng stem and leaf material. To achieve these aims,
we utilized a ginseng stem and leaf extract as the raw material and used Lactiplantibacillus
plantarum to optimize fermentation. We explored the antioxidant activity of products
generated under different conditions and further optimized the antioxidant activity of the
fermentation broth through response surface methodology. An oxidative damage cellular
model was employed to determine the antioxidant potential of the fermentation broth in an
environment that reflected the body’s actual metabolism. The findings of this study may aid
the development of protective and reparative cosmetics that include ginseng fermentation
products with anti-aging effects.

2. Results and Discussion
2.1. Antioxidant and β-Glucosidase Activities of the Lactobacillaceae Strains

The antioxidant activity of the GS and five Lactobacillus fermentation broths (Figure 1A–C)
was analyzed using three different assays that each evaluated the DPPH, ·OH, and O2

·−

scavenging capacity. Compared with the GS, the five Lactobacillus fermentation broths had
significantly (p < 0.05) superior antioxidant properties in terms of their capacity to scavenge
DPPH and ·OH. Moreover, the samples had greater activity against DPPH compared to ·OH
and O2

·−, as shown by the respective scavenging rates of 81.65–88.71%, 45.48–54.96%, and
17.63–33.68%. Lee et al. [28] found that fermentation can improve the antioxidant activity of
ginseng when studying the antioxidant effect of fermentation on ginseng, which is consistent
with the results of this experiment. Xu et al. [29] found that LAB can produce certain active
substances during metabolism, which efficiently scavenge free radicals extracellularly. This
may explain the increase in antioxidant activity observed as a result of ginseng fermentation.

When the DPPH scavenging activity of the five fermentation broths (diluted 20 times)
was analyzed, it was found that the GA fermentation broth showed higher activity than the
GC, GD, and GE fermentation broths; however, the difference between the capacities of the
GB and GA fermentation broths was not statistically significant (p > 0.05). The 0.1 mg/mL
VC solution exhibited the highest DPPH scavenging capacity (95.48 ± 0.99%), with the GB
fermentation broth demonstrating a scavenging rate merely 9.43% lower than that of the
0.1 mg/mL VC solution. Among the five fermentation broths, the GB fermentation broth
had the most significantly improved (p < 0.05) ·OH scavenging activity; it was 109.37%
and 19.71% higher than the GS and 0.1 mg/mL VC solutions, respectively. In terms of the
capacity to scavenge O2

·−, the GA, GC, GD, and GE fermentation broths were found to
have low scavenging activity (22.33–37.97%) but still higher than that of the 0.1 mg/mL
VC solution (19.82 ± 4.88%). It is interesting that the GB fermentation broth, which had
significant DPPH and ·OH radical inhibitory activity, showed the lowest scavenging O2

·−

capacity. Different free radical scavenging assays showed different antioxidant activity,
which might be due to variations in the content and types of antioxidants present in
fermentation broths from different strains.
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Figure 1. Antioxidant and β-glucosidase activities of the GA, GB, GC, GD, and GE fermentations.
(A) DPPH scavenging activity; (B) ·OH radical scavenging activity; (C) O2

·− radical scavenging
activity; (D) β-glucosidase activity; Data are expressed as mean ± SD, n = 3; values with no letters in
common are significantly different (p < 0.05).

Li et al. [30] found that LAB can produce β-glucosidase during the metabolic process,
and the magnitude of its activity is the main factor determining the conversion of saponins
into rare saponins. β-Glucosidase can also utilize substrates to generate other active
substances, thereby enhancing the antioxidant activity of the fermentation broth [31].
Figure 1D shows that the order of β-glucosidase enzyme activity from highest to lowest was
GF > GB > GD > GA, GE > GC. The GB fermentation broth had the highest β-glucosidase
activity (87.30 U/mL) among the five types of broths. This indicates that the β-glucosidase
produced by GB metabolism can better cleave the glycosidic bonds of substrates, releasing
more active substances.

Therefore, considering the capacities of the fermentation broths to scavenge the three
types of free radicals and their β-glucosidase activities, GB was selected for the subsequent
fermentation of the ginseng extract and the associated experiments.

2.2. Preliminary Screening for Culture Conditions
2.2.1. Effect of Fermentation Time on Capacity to Scavenge Radicals

The fermentation time not only affects the growth state of the microorganism but
also influences the antioxidant activity of the fermentation product [32], and determining
the fermentation endpoint is critical to improving the industrial production capacity and
economic benefits of fermentation. As shown in Figure 2A, changing the fermentation
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time had no significant effect on the radical scavenging rates, which peaked at 30 h. The
fermentation broth samples showed a mean ·OH clearance of 74.77 ± 1.19%, which was
35.32% higher than that of the non-fermented samples. The mean O2

·− clearance in the
fermentation broth samples was 45.23 ± 0.43%, an increase of 16.97% compared to that
in the non-fermented samples. After comprehensively analyzing the effect of fermenting
ginseng in the presence of L. plantarum for different fermentation times on the antioxidant
activity, 15–45 h was selected for further response surface analysis.
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2.2.2. Effect of Fermentation Temperature on Capacity to Scavenge Radicals

Temperature mainly affects microbial metabolism—and hence fermentation—via its
influence on enzyme production and activity; therefore, the temperature must be care-
fully controlled during fermentation to achieve the optimal outcome [33]. As shown in
Figure 2B, in the temperature range of 26–34 ◦C, as the temperature increased, the DPPH
and O2

·− scavenging rates of the fermentation broth showed an increasing and then a
decreasing trend. The overall ·OH scavenging rate showed a similar trend, with the low-
est value (54.04 ± 2.49%) recorded at 30 ◦C. The DPPH scavenging rate peaked at 28 ◦C
(87.61 ± 1.57%), as did the ·OH scavenging rate (67.27± 2.14%), while the O2

·− scavenging
rate peaked at 30 ◦C (47.00 ± 2.73%).
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2.2.3. Effect of Inoculum Size on Capacity to Scavenge Radicals

In the fermentation process, the inoculum size is an important factor that affects the
growth and reproduction of fermentation strains [34]; hence, determining the microbial
inoculum size is vital for optimizing industrial production. As shown in Figure 2C, when
the inoculum size ranged from 1.5% to 3.5%, the ·OH and O2

·− scavenging capacity first
increased and then decreased. The ·OH scavenging capacity peaked at 74.12 ± 0.99%
when the inoculum size was 2.5%. The O2

·− scavenging capacity peaked at 49.17 ± 2.99%
when the inoculum size was 2.0%. In terms of DPPH scavenging, a significant reduction in
DPPH was observed when the inoculum size was 3.5%; however, the inoculum size did
not have any other significant effects on DPPH scavenging. The antioxidant activity of the
fermentation broth samples was highest in the range of 2.0–3.0%; thus, an inoculum size of
2.0–3.0% was selected for further analysis.

2.3. Response Surface Optimization
2.3.1. Box–Behnken Experimental Design and Model Fitting

Response surface analysis based on the Box–Behnken design is a statistical and math-
ematical method used to reflect the optimal corresponding conditions obtained when
the interactions between various factors in a multi-factor system reach the maximum re-
sponse [35,36]. The Box–Behnken experimental design and results are shown in Table 1.
Design-Expert 11 software was used to fit the data shown in Table 1 and the DPPH, ·OH,
and O2

·− scavenging values as response values to multiple regression equations, and the
following quadratic multinomial regression equations were obtained:

DPPH scavenging activity % =− 69.20346 + 0.299786A − 14.04878B − 30.97059C
+0.039120AB − 0.095927AC + 0.188227BC − 0.024671A2− 0.288259B2− 5.65562C2 (1)

·OH scavenging activity % =− 270.88194 + 3.62171A + 17.26828B + 48.43020C −
0.088658AB − 0.178723AC + 0.275307BC − 0.013660A2− 0.280090B2− 10.22727C2 (2)

O2
·−scavenging activity % =− 589.96181 + 2.67379A + 34.39914B + 85.38185C −

0.044285AB − 0.167331AC − 0.279052BC − 0.014265A2− 0.569831B2− 14.55579C2 (3)

where A represents fermentation time, B represents fermentation temperature, and C
represents inoculum size.

For the model with the DPPH scavenging rate as the response value, only one term
(A) was significant (p < 0.05), while the effects of B and C were not significant (p > 0.05).
The quadratic term A2 had significance (p < 0.05); however, the quadratic terms B2 and C2

did not reach significance, indicating that the interaction had little effect on the DPPH
scavenging activity of the fermentation broth. Hence, the DPPH scavenging rate as the
corresponding model was not established.

Next, for the model with the ·OH scavenging rate as the response value, the F value is
3.20 with p > 0.05, indicating no significance of the model equation. Usually, an R2 value
close to 1 shows a better explanation of the variability of the experimental data by the pro-
posed model. However, the correlation of determination R2 value of 0.8045 and the adjusted
R2 value of 0.5532, indicating that the actual value was not close to the predicted value of
the model. Thus, the response surface model with the ·OH scavenging rate as the response
value was also deemed unsuitable for the analysis of the optimal fermentation conditions.

Finally, for the model with the O2
·− scavenging rate as the response value, it can be

seen from Table 2 that there is a significant regression with a p-value of 0.001 < 0.05. The
p-value (0.7682) of lack-of-fit indicated insignificant lack-of-fit relative to pure error, hence
the model equations were satisfactory for the prediction of O2

·−scavenging activity in the
whole experimental run. The goodness of fit of the regression model was evaluated with
the correlation of determination R2 value of 0.9483. Adjusted R2 value of 0.8818, indicating
that the actual value was also close to the predicted value of the model. Therefore, these
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results implied that the model had high credibility and could be used to predict changes in
the antioxidant activity of the GB fermentation broth.

Table 1. Test design of fermentation parameters and corresponding antioxidant activity results.

Run A (h) B (◦C) C (%) DPPH (%) O2·− (%) ·OH (%)

1 30 28 2.50 82.79 ± 0.16 47.53 ± 1.63 75.62 ± 4.78
2 30 28 2.50 84.72 ± 2.23 49.39 ± 3.01 76.61 ± 3.56
3 45 28 2.00 73.07 ± 0.71 43.49 ± 2.57 70.10 ± 2.37
4 30 28 2.50 80.26 ± 1.52 46.09 ± 2.50 78.57 ± 3.33
5 30 30 2.00 80.56 ± 2.77 42.16 ± 4.33 75.01 ± 0.63
6 45 30 2.50 71.41 ± 1.42 44.28 ± 2.40 68.63 ± 2.01
7 30 28 2.50 81.48 ± 2.49 46.16 ± 2.16 81.39 ± 0.43
8 15 30 2.50 77.80 ± 4.98 41.15 ± 3.11 76.75 ± 1.61
9 15 28 3.00 83.54 ± 0.69 39.40 ± 3.79 77.22 ± 0.92

10 15 26 2.50 80.97 ± 2.71 36.16 ± 1.92 73.56 ± 0.23
11 30 26 3.00 83.03 ± 1.93 40.64 ± 2.57 72.98 ± 1.50
12 30 28 2.50 79.35 ± 0.33 46.02 ± 1.34 77.54 ± 0.59
13 45 26 2.50 69.89 ± 4.61 44.61 ± 1.04 76.08 ± 0.14
14 45 28 3.00 71.34 ± 2.69 40.68 ± 3.07 69.71 ± 1.68
15 15 28 2.00 82.39 ± 2.71 37.20 ± 2.59 72.25 ± 1.30
16 30 26 2.00 83.71 ± 2.76 40.23 ± 2.83 76.54 ± 1.50
17 30 30 3.00 80.63 ± 1.88 41.45 ± 1.77 72.55 ± 0.72

Note: A represents fermentation time, B represents fermentation temperature, and C represents inoculum size.

Table 2. ANOVA with O2
·− radical clearance as the response value.

Sources Sum of
Squares df Mean

Square F-Value p-Value

Model 201.02 9 22.34 14.27 0.0010
A 45.84 1 45.84 29.28 0.0010
B 6.84 1 6.84 4.37 0.0749
C 0.1063 1 0.1063 0.0679 0.8020

AB 7.06 1 7.06 4.51 0.0713
AC 6.30 1 6.30 4.02 0.0849
BC 0.3115 1 0.3115 0.1990 0.6690
A2 43.37 1 43.37 27.70 0.0012
B2 21.88 1 21.88 13.97 0.0073
C2 55.76 1 55.76 35.61 0.0006

Residual 10.96 7 1.57
Lack of Fit 2.47 3 0.8245 0.3887 0.7682
Pure Error 8.49 4 2.12
Cor Total 211.98 16

R2 0.9483
R2

Adj 0.8818

Note: A represents fermentation time, B represents fermentation temperature, and C represents inoculum size.

The terms A, A2, B2, and C2 were found to be significant (p < 0.05), while the effects
of AB, AC, and BC on the response values were not significant (p > 0.05). The larger the
F-value, the greater the influence of this factor on the O2

·− scavenging rate. Based on the
F-value results, the influencing factors that affected the O2

·− scavenging activity of the
fermentation broth were ranked as follows: A > B > C. Hence, we deduced that the O2

·−

scavenging rate is a better choice for to determine the optimal fermentation conditions.

2.3.2. Response Surface and Contour Plot Analysis

Response surface models intuitively and accurately depict the interaction between
two factors [37,38]. As can be seen in Figure 3A,C,E, in our case, the response surface
curves changed sharply, indicating that they had a greater influence on the response value.
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When the contours of the interaction of the influencing factors are oval or saddle-shaped,
the interaction of the two factors is significant; it is not significant when the contours are
round [26]. As shown in Figure 3B,D, the contour plot approached an oval shape, and
the slope of the surface was steep, indicating that the interaction of the two groups of
factors was significant; in other words, the interaction of the two factors had a significant
effect on the O2

·− scavenging rate. The medium–high line in Figure 3F was also close to
the ellipse, but the slope of the surface was relatively flat, and thus the interaction was
relatively insignificant; that is, the effect on the response value was small. The results are
consistent with the results of the regression analysis.
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2.3.3. Optimal Fermentation Process

To validate the proposed model, a series of fermentations were performed in which
the fermentation time, temperature, and inoculum size were varied in accordance with
the response surface analysis results (Table 3). Using Equation (3), the process parameters
that were found to result in optimal radical scavenging capacity were a fermentation time
of 35.52 h, an inoculum size of 2.45%, and a fermentation temperature of 28.20 ◦C. As
shown in Figure 4, the average O2

·− scavenging rate was 47.53 ± 0.55%, and this value did
not significantly differ from the predicted value (p > 0.05). The fact that the experimental
value was very close to the predicted value proved that the results were reasonable and
reliable. The broth produced under these fermentation conditions exhibited a 73.00%
increase in O2

·− scavenging capacity, a 94.00% increase in ·OH scavenging capacity, and a
25.00% increase in the DPPH scavenging rate compared to the pre-fermentation solution.
This approach not only significantly (p < 0.05) increased the antioxidant activity but also
improved the fermentation efficiency.

Table 3. Factor levels of fermentation parameters.

Factor
Level

−1 0 1

A: time/h 15 30 45
B: temperature/◦C 26 28 30
C: inoculum size/% 2.0 2.5 3.0
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2.4. Correlation Analysis of the Active Ingredients and Antioxidant Activity of the Optimized
Broth (GF)
2.4.1. Active Ingredients

It is well-known that fermentation broths are complex systems and that fermentation
with LAB can produce β-glucosidase. This enzyme breaks the glycosidic bonds in gin-
senosides, phenolic flavonoids, and other compounds, leading to structural changes in
many active ingredients and the potential formation of new substances [31]. As shown in
Figure 5, we compared the TS, TP, TF, and TG contents of the optimized fermented broth
(GF) with those of the unfermented solution (GS). We found that the TS content of the GF
(1.89 ± 0.01 mg/mL) was significantly (p < 0.05) higher than that of the GS, showing an in-
crease of 117.00%. The TP content of the GF was significantly (p < 0.05) lower than that of the
GS, showing a decrease of 29.00%. Additionally, both the TF content (0.27 ± 0.00 mg/mL)
and the TG content (749.72 ± 4.74 mg/mL) of the GF did not significantly differ from those
of the GS (p > 0.05).
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In contrast to some previous studies, such as that conducted by Wang et al. [39],
fermentation did not result in a significant increase in the TP content in the current study,
but instead a notable decrease. Concurrently, fermentation resulted in a significant increase
in the TS content in this study. We speculate that this difference may be attributed to
the fermentation process causing the breakdown of high-molecular-weight phenolic com-
pounds, leading to the cleavage of glycosidic bonds. This process releases sugar molecules
and low-molecular-weight active substances with hydroxyl groups. Thus, although the
phenolic content decreased, the increase in the TS content may have been due to sugar
molecules being released by phenolics and the degradation of insoluble high molecu-
lar weight polysaccharides into soluble polysaccharides with relatively low molecular
weights [40].

Flavonoids are also a type of phenolic substance, and the lack of a significant change
in their content during the fermentation process may have been due to the expression of
β-glucosidase by the Lactobacillus strains. This enzyme may have catalyzed the conversion
of bound flavonoids in the fermentation liquid into free-form flavonoids [39], which would
have resulted in a relatively constant level of flavonoids in the fermentation liquid. This
result is similar to that of Xu et al. [29].

Many studies have shown that the TG content can be significantly reduced by microbial
transformation and that the main ginsenosides can produce many rare ginsenosides [41,42].
In this study, there was no significant difference between the saponin content before and
after fermentation, and these results reflected those reported by Lee [43]. The reason for
this may be that the ligase produced by the bacterial strain reconnected the glycosides in
ginseng and those hydrolyzed by enzymes, such as β-glucosidase, into new monomeric
ginsenosides, resulting in no change in the TG content. Alternatively, the enzymatic activity
that occurred during fermentation caused changes in the sugars or other components
of ginseng, which resulted in the formation of ginsenosides or ginsenoside components
through a series of complex reactions. However, further experiments and analyses are
required to confirm that the developed fermentation process results in no change in the TG
content and the mechanism(s) responsible for the observed findings.

2.4.2. Ginsenoside Monomer Content

The 11 ginsenosides are the main active components of ginseng, and the rare ginseno-
sides have potential application value [44]. Thus, the concentrations of the 11 ginsenosides
in the ginseng solution before and after fermentation under the optimized conditions were
determined (Figure 6). The concentrations of the major ginsenosides (Re, Rg1, Rd, Rb1,
and Rb2) were higher than 30.00 mg/g. The concentrations of the rare ginsenosides (Rg3,
Rh1, Rg5, CK, and Rh2), except F2, were lower than 3.50 mg/g. After fermentation, the
Rg1, Rb2, and F2 contents were significantly lower, decreasing by 13.10%, 7.8%, and 5.30%,
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respectively (p > 0.05), and the Rg5 content was significantly higher, increasing by 9.20%
(p > 0.05). The F2 concentration in the ginseng raw material was high (up to 23.90 mg/g),
which may have been due to the conversion of the ginseng extract powder during the
ultrasonic extraction steps.
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The reason for the changes in the concentration and type of saponins was that glucose
groups at the C6 and C20 positions of the protopanaxatriol (PPT) saponin and the C3 and
C20 positions of the ginsenosides of the protopanaxadiol saponin were hydrolyzed during
the fermentation process, resulting in rare ginsenosides [45]. Palaniyandi et al. [9] showed
that Rb1/Rb2 glycol saponins are transformed by microorganisms to generate Rd, and Rd
can then be further converted to Rg3, Rh2, F2, and CK. Bai [46] and Tran [47] speculated
that the conversion pathways of the diol ginsenosides are Rb1/Rb2 → Rd→Rg3 → Rh2,
Rb1/Rc→ Rd→ Rg1, Rg3 → Rg5 + Rk1, and Rb1 → Rd→ F2 → Rg3 → CK, while the triol
ginsenoside conversion pathway is Re→ Rg1 → Rh1 → Rh4 → PPT.

In this study, the Rb2 content decreased, while the Rd, Rg3, Rh2, and CK contents did
not change significantly (p > 0.05). Only the Rg5 content increased significantly (p < 0.05).
Thus, it can be speculated that Rd, Rg3, Rh2, and CK may have been intermediate or end
products that were generated and consumed at the same time, resulting in the observed
decrease in Rb2 content and increase in Rg5 content. In the case where the content of Rg1
decreases while Rh1 remains unchanged, it is possible that Rh4 or PPT, along with other
unidentified and quantitatively undetermined saponins, have been produced (Figure S1).
The high concentration of saponin substrates can affect the hydrolytic ability of glycosidases
towards saponin glycosidic bonds [48]. Thus, apart from Rg5, there was no significant
changes in the content of detected rare ginsenosides before and after fermentation. To gain
a more comprehensive understanding of the types of ginsenosides and other components
present in the fermentation broth, further qualitative and quantitative studies are necessary,
including studies that incorporate untargeted and targeted metabolomics approaches.

2.4.3. Correlation Analysis

Ginseng has the capacity to scavenge free radicals because it contains polysaccha-
rides [49], polyphenols [50], flavonoids, ginsenosides [51], and other active ingredients [52].
To identify the components of the fermentation broth responsible for its capacity to scav-
enge the three types of free radicals, a correlation analysis was conducted using the data on
the various active ingredients and the DPPH, ·OH, and O2

·− scavenging activities of the GF
(Table 4). A significant negative correlation was observed only between flavonoids and ·OH
scavenging activity (r = −1.00, p < 0.05). This result is similar to that of Huang et al. [53],
where the flavonoid components were negatively correlated with the free radical scav-
enging capacity. This phenomenon may be attributed to the enzymatic breakdown of
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flavonoids by β-glucosidase, which may have generated trace amounts of components
with enhanced antioxidant activity.

Table 4. Correlation analysis of GF fermentation broth: active ingredients and antioxidants.

TS TP TF TG DPPH ·OH O2·−

TS 1 0.500 0.737 0.822 0.189 −0.731 −0.952
TP 1 −0.217 0.904 −0.756 −0.225 −0.212
TF 1 0.221 0.803 −1.00 ** −0.908
TG 1 −0.404 −0.213 −0.609

DPPH 1 −0.808 −0.48
·OH 1 0.905
O2
·− 1

** 0.001 < p < 0.01.

Even though no significant positive correlations were found between the four major
types of active components, especially the significantly increased polysaccharides, and
the three types of free-radical scavenging activities, the findings do not imply that these
components had no impact on the antioxidant activity of the fermentation broth. Other
low-molecular-weight active components within the major categories may still have played
a role in the antioxidant activity. For instance, the TG content showed no significant corre-
lation with the three free-radical scavenging rates. However, among the 11 ginsenosides,
Rh1 exhibited a significant correlation with the O2

·− scavenging activity (Table S1), with a
correlation coefficient of 0.998. This is similar to the findings of Liu et al. [54], who reported
that G-Rh1 acts as a pro-oxidant and synergistically exhibits antioxidant properties with
α-tocopherol.

In addition to the potential involvement of other low-molecular-weight substances, it
is also plausible that many of the active components were working in a synergistic manner.
Therefore, it is necessary to conduct further studies to identify both the components and
the ways in which they contribute to the antioxidant activity of the fermentation broth.

2.4.4. Effects of the GS and GF on the Activity of HaCaT and BJ Cells

To further evaluate the in vitro biological activity of the GS and GF, we used two
human cell lines, HaCaT (keratinocytes) and BJ (fibroblasts), which are commonly used to
evaluate the effects of antioxidant compounds on skin [55,56]. Specifically, we conducted
cell viability assays to determine the effect of the GS and GF on the growth of HaCaT and
BJ cells.

In the HaCaT cells, the cell viability decreased as the concentration of the GF increased
after 24 and 48 h of exposure (Figure 7A,C). At 0.06% GF, the cell viability was 110.00% at
both time points. However, at 1.00% GF, the cell viability decreased to 59.36% after 24 h and
dropped further to 16.39% after 48 h. When HaCaT cells were exposed to three different
GS concentrations, the cell viability was around 60.00%, and no significant differences
were observed. With prolonged exposure, the cell viability decreased to approximately
18.00%. According to the international standard ISO 10993-5 (2009) [57], a reduction in
cell viability of more than 30.00% indicates cytotoxic effects. Thus, it is evident that 1.00%
GF and various concentrations of GS had significant cytotoxic effects on the HaCaT cells,
and this cytotoxicity intensified with prolonged exposure. The underlying reason for this
phenomenon may be that increasing the fermentation broth concentration and the duration
of exposure led to increases in the levels of the cytotoxic substances and their effects and
that the cytotoxic effects eventually overwhelmed the protective and reparative effects of
the active ingredients [58].
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In the BJ cells (Figure 7B,D), the viability of cells exposed to the GF closely mirrored
that observed in the HaCaT cells. However, a notable difference emerged at 0.25% GF: the
cell viability after 48 h of exposure was significantly higher (p < 0.05) than that after 24 h,
exhibiting an increase of 55.84%. Notably, 1.00% GF had a greater impact on the cell viability
of BJ cells compared to HaCaT cells. In the HaCaT cells, a significant reduction was observed
only at 1.00% GF; there were no significant changes at the other two concentrations. When
BJ cells were exposed to the GS, the dosing trend and cytotoxicity pattern also resembled
those observed in the HaCaT cells. However, at 48 h, the cell viability was higher in the BJ
cells than in the HaCaT cells, at approximately 210.40% of the HaCaT cell viability.

From these findings on the impact of the GS and GF on cell growth in HaCaT and
BJ cells, it is evident that subjecting the GS to the optimized fermentation conditions
significantly reduced its cytotoxicity (p < 0.05). Below a concentration of 0.25%, the GS
exhibited no cytotoxicity and even enhanced cell viability. This phenomenon may be
attributed to harmful components in the GS being reduced in terms of their activity during
the Lactobacillus fermentation, which mitigated the toxicity. This finding aligns with the
results reported by Wei et al. [59]. Moreover, at low concentrations (0.06–0.25%), the GF
promoted cell proliferation, suggesting a potential positive effect on skin cells. This may
have been due to the presence of certain substances in the fermentation broth that facilitated
cell growth. At extremely low concentrations, these substances may promote cell growth.
However, they may inhibit cell growth or cause cell death at high concentrations [60].
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2.4.5. Effects of the GS and GF on HaCaT and BJ Cells in an Oxidative Stress Model

H2O2 has long been widely used to establish cellular models of acute oxidative stress
for investigating free radical-induced cell damage [61]. To confirm a suitable H2O2 concen-
tration for our in vitro H2O2-induced injury model, HaCaT cells were exposed to nominal
concentrations of H2O2, and their viability was measured using the CCK-8 assay. As shown
in Figure S2, 650 µM H2O2 caused about 50.00% cell mortality. Following Zhang et al. [62],
who considered the concentration of H2O2 that led to 50.00% cell death as the optimal
damage condition, 650 µM H2O2 was selected as the optimal concentration for inducing
oxidative stress for use in all subsequent experiments.

HaCaT and BJ cells with H2O2-induced oxidative stress were incubated with different
concentrations of the GS and GF (Figure 8A,B). In cells that were exposed to H2O2 but not
the GS or GF, the cell viability was 38.63% in HaCaT cells and 34.97% in BJ cells. After
exposure to H2O2, cells are irreversibly damaged [63]. This was observed when cells
were exposed to H2O2 before the medium containing H2O2 was replaced with normal
medium and the cells were incubated for 24 h; the cell viability was still reduced. As shown
in Figure 8A, when the GF concentration was 0.06%, the cell viability of H2O2-treated
HaCaT cells was 50.56%, which was 11.93% higher than that of the control group (p > 0.05).
This indicated that there may have been a damage-repair effect. As the GF concentration
increased, the cell viability of the H2O2-treated HaCaT cells decreased in a dose-dependent
manner. When the H2O2-treated HaCaT cells were incubated with different concentrations
of the GS, the cell viability was lower than that of the control group. Figure 7 shows that
1.00% GF and different concentrations of GS had a cytotoxic effect on normal cultured
HaCaT cells. When the effect of the GS and GF on H2O2-treated BJ cells was examined, an
unexpected result emerged: H2O2-treated BJ cells incubated with different concentrations
of the GS and GF did not show improved cell viability compared with the control group
(Figure 8B). This suggested that neither the GS nor the GF had a damage-repair effect on
the H2O2-treated BJ cells.
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Figure 8. Effects of GS and GF fermentation broths on the activity of H2O2-treated HaCaT/BJ cells.
(A,B) The reparative effect of H2O2 pretreatment on H2O2-treated HaCaT and BJ cells damage;
(C,D) The protective effect of GS and GF pretreatment on H2O2-treated HaCaT and BJ cells damage.
* p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001.
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A different methodology was then utilized to assess the effects of the GS and GF on
H2O2-treated HaCaT and BJ cells. Cells were first incubated with different concentrations of
the GS or the GF for 24 h, and then H2O2 was used to induce oxidative stress (Figure 8C,D).
The results were similar to those shown in Figure 8A,B. At 0.06% GF, the cell viability of the
H2O2-treated HaCaT cells was 60.88%, which was 9.56% higher than the 51.32% viability of
the control group (p < 0.05). At the other tested GF and GS concentrations, the cell viability
was somewhat reduced (Figure 8C). These results may indicate that 0.06% GF provided
protection against oxidative stress-related injury in HaCaT cells. Additionally, incubation
with the GF or GS at different concentrations did not affect the viability of H2O2-treated
BJ cells (Figure 8D), which may indicate that neither the GS nor GF provided protection
against oxidative stress-related injury in BJ cells.

The above findings indicate that 0.06% GF had the capacity to repair oxidative stress-
related injury or prevent oxidative stress in H2O2-treated HaCaT cells and that such a
solution may contain factors that could protect the skin against aging caused by oxidative
stress. However, the specific mechanism(s) utilized by the GF to repair damage or prevent
oxidative stress injury must be elucidated. The preventive and reparative effects of the
fermentation broth on cellular oxidative damage may involve enhancing the activity of
antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase
(GSH-Px), inhibiting the level of lipid peroxidation product malondialdehyde (MDA)
and modulating various signaling pathways, including Keap1/Nrf2/ARE, PI3K/Akt,
and Wnt [64,65]. To determine the specific mechanism by which ginseng fermentation
broth repairs cellular oxidative stress damage, further molecular experiments are needed
for confirmation.

3. Materials and Methods
3.1. Materials, Chemical Reagents, and Instruments

Ginseng extract was purchased from Shanxi Yueda Tianrun Co., Ltd. (Weinan,
China). L. acidophilus (GDMCC1.412), L. plantarum 1.140 (GDMCC1.140), Lactobacillus casei
(GDMCC1.159), Lactobacillus rhamnosus (ATCC7469), and L. plantarum 1.648 (GDMCC1.648)
were purchased from Guangdong Microbial Culture Collection Center (Guangzhou, China).
Ginsenosides Re, Rd, Rg3, Rb1, CK, F2, Rg5, Rh1, Rh2, Rb2, and Rg1 were purchased from
Chengdu Refins Biotechnology Co., Ltd. (Chengdu, China). Forinphenol and 1,1-diphenyl-
2-picrylhydrazyl (DPPH) were purchased from Shanghai Macklin Biochemical Technology
Co., Ltd. (Shanghai, China). Gallic acid and rutin were purchased from Yuanye Biotech-
nology Co., Ltd. (Shanghai, China). Sodium carbonate, salicylic acid, glucose, sodium
chloride, and ferrous sulfate were purchased from Zhiyuan Chemical Reagent Co., Ltd.
(Tianjin, China). Sodium hydroxide, aluminum nitrate, sodium nitrite, and phenol were
purchased from Tianjin Damao Chemical Reagent Factory (Tianjin, China). MRS broth was
purchased from Guangzhou Huankai Microbial Technology Co., Ltd. (Guangzhou, China).
Chromatographic-grade methanol and acetonitrile were purchased from Guangzhou Guan-
glianjin Chemical Co., Ltd. (Guangzhou, China).

HaCaT and BJ cell lines were obtained from Guangdong Marubi Biotechnology
Co., Ltd. (Guangzhou, China). High-glucose Dulbecco’s Modified Eagle Medium (DMEM)
and trypsin were obtained from Gibco (Grand Island, NY, USA). Fetal bovine serum was
obtained from Hangzhou Sijiqing Bioengineering Materials Co., Ltd. (Hangzhou, China).

The following equipment was used for the experiment: portable pressure steam steril-
izer, Shanghai Lichengbangxi Instrument Technology Co., Ltd. (Shanghai, China); electric
constant temperature incubator, Ningbo Jiangnan Instrument Factory (Ningbo, China); HC-
3026R high-speed refrigerated centrifuge, Anhui Zhongke Zhongjia Scientific Instrument
Co., Ltd. (Hefei, China); ELX800 microplate reader, Biotek, (Phoenix, AZ, USA); electronic
constant-temperature stainless steel water bath, Shanghai Yichang Instrument Sieve Factory
(Shanghai, China); KQ5200E ultrasonic cleaner, Kunshan Ultrasonic Instrument Co., Ltd.
(Suzhou, China); QUINTIX125D-1CN analytical balance with an accuracy of one hundred
thousandth, Beijing SciTrolley Instrument System Co., Ltd. (Beijing, China); Shimadzu
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LC-40D X3plus quadrupole pump, Shimadzu SIL-40C X3 automatic sampler, Shimadzu
CTO-40S column oven, and Shimadzu LCMS-8045 triple quadrupole mass spectrometer,
Shimadzu Corporation, (Tokyo, Japan); carbon dioxide incubator, Thermo Fisher Scientific,
(Waltham, MA, USA).

In this paper, the following letter codes are used to refer to the bacterial strains: GA
for L. acidophilus, GB for L. plantarum 1.140, GC for L. casei, GD for L. rhamnosus, and GE for
L. plantarum 1.648. The optimized fermentation broth produced using GB is referred to as
“GF”, and the unfermented ginseng stock as “GS”.

3.2. Ginseng Fermentation
3.2.1. Strain Activation

The five Lactobacillus species, which were stored in glycerol at −80 ◦C, were rapidly
thawed at 37 ◦C. Then, liquid MRS broth was inoculated with 50 mL aliquots of the bacteria
at a 2.0% inoculum size. The strains were incubated aerobically at 30 ◦C in MRS broth for
36 h and subcultured thrice before conducting all experiments.

3.2.2. Initial Fermentation of Ginseng

The ginseng extract was prepared by weighing out 8.33 g of ginseng extract powder
and thoroughly mixing it with 50 mL of distilled water. Then, 0.5 g/mL glucose and
0.5 g/mL tryptone solutions were prepared and sterilized at 121 ◦C in an autoclave for
20 min.

Next, 1 mL samples of the activated bacterial solutions were centrifuged at 10,000 rpm
for 10 min, the supernatants were discarded, and the samples were diluted in 1 mL of nor-
mal saline. Each bacterial solution was then centrifuged again at 10,000 rpm for 10 min, the
supernatants was discarded, and 1 mL of normal saline was added. The bacterial solution
concentration was adjusted to 1 × 109 CFU/mL. The ginseng medium was inoculated with
2.0% of this solution. The glucose and tryptone solutions were added to achieve a final
concentration of 10 mg/mL. Fermentation was performed in a bacterial incubator at 30 ◦C
for 72 h. The samples were centrifuged at 10,000 rpm for 10 min, and then the supernatants
were collected and stored in a freezer at −20 ◦C.

3.3. β-Glucosidase Activity Assay

The β-glucosidase activity of the supernatants was determined using the modified
method of Shin et al. [66]. Briefly, 1 mL of supernatant was added to 1 mL of 5 mM
p-nitrophenyl-β-glucopyranoside (pNPG) and incubated at 37 ◦C for 10 min. The reac-
tion was stopped by adding 1 mL of 1.0 M sodium carbonate (Na2CO3). The released
p-nitrophenol (p-NP) was measured at 405 nm using a microplate reader. A p-NP standard
curve was constructed for the quantification of β-glucosidase activity (Y = 10.12X + 0.0196,
R2 = 0.9983). One unit (U) of enzyme activity was defined as the amount of enzyme that
released 1 µmol of p-NP from the substrate per mL per min at 37 ◦C under assay conditions.

3.4. Antioxidant Activity Assays
3.4.1. 2,2-Diphenyl-1-picrylhydrazyl Scavenging Activity

The DPPH scavenging activity in both the GS and fermentation samples was deter-
mined as described by Chen et al. [67], with slight modifications. A 0.1 mM DPPH solution
(2 mL) solubilized in ethanol was added to 50 µL of the GS or fermented ginseng samples.
The mixtures were vortexed and incubated at 25 ◦C for 30 min in the dark. The absorbance
of the mixture was measured at 517 nm, and the DPPH scavenging activity was calculated
as follows:

DPPH scavenging activity (%) = (1 −A1/A0) × 100 (4)

where A1 and A0 are the absorbance values of the sample and control, respectively.
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3.4.2. Hydroxyl Radical Scavenging Activity

The hydroxyl radical (·OH) scavenging capability was measured using a previously
described method, with minor modifications [68]. An FeSO4 solution (0.5 mL, 2 mM), a
salicylic acid-ethanol solution (0.25 mL, 2 mM), the sample (0.08 mL), and H2O2 (0.25 mL,
0.1% v/v) were mixed and reacted as the Fenton system. After shaking, the mixture was
incubated at 37 ◦C for 60 min. The absorbance was measured at 510 nm, and the ·OH
scavenging activity was calculated using the following equation:

·OH scavenging activity (%) = [1 − (A1 − A2)/A0] × 100 (5)

where A1 is the absorbance of the sample solution, A2 is the absorbance when distilled
water is used in place of the salicylic acid-ethanol solution, and A0 is the absorbance when
distilled water is used in place of the sample solution.

3.4.3. Superoxide Anion Scavenging Activity

The superoxide anion (O2
·−) scavenging activity of the GS and fermentation samples

was assayed using the method described by Tang et al. [69], with slight modifications. For
this, 2.25 mL of Tris-HCl buffer (50 mM, pH 8.2), 0.1 mL of sample, and 0.2 mL of catechol
solution (3 mM, pre-warmed at 37 ◦C before use) were mixed. The mixtures were vortexed
and incubated at 25 ◦C for 5 min. Then, 7.5 µL HCl (8 mM) was added to the mixture to
stop the reaction. The absorbance of the GS and fermentation samples was measured at
325 nm, and the O2

·− scavenging activity was calculated as follows:

O2
·− scavenging activity (%) = [1 − (A1 − A2)/A0] × 100 (6)

where A1 is the absorbance of the sample solution, A0 is the absorbance when deionized
water is used in place of the sample solution, and A2 is the absorbance when deionized
water is used in place of the catechol solution.

3.5. Determination of the Main Active Ingredients
3.5.1. Total Sugar (TS) Quantification

The fermentation supernatant was precipitated overnight with a triple volume of
absolute ethanol. The dried crude polysaccharides were then dissolved with distilled
water in preparation for measurement of the total sugar (TS). A standard curve for glucose
(Y = 4.5198X + 0.0603, R2 = 0.9932) was obtained by referring to the phenol-sulfuric acid
method of Chen et al. [70], and the polysaccharide content of the fermentation broth
was determined.

3.5.2. Total Phenol (TP) Quantification

The total phenol (TP) content was determined using the Folin–Ciocalteu colorimetric
method, with slight modifications [71]. A standard curve for gallic acid (Y = 2666X + 0.0093,
R2 = 0.9965) was prepared to determine the TP content of the fermentation broth.

3.5.3. Total Flavonoid (TF) Quantification

The total flavonoid (TF) content was determined using the sodium nitrite–aluminum
nitrate–sodium hydroxide color development method [72], with slight modifications. A
standard curve for rutin (Y = 6.22X + 0.0054, R2 = 0.9955) was prepared to determine the TF
content of the fermentation broth.

3.5.4. Total Ginsenoside (TG) Quantification

The method described in Gavrila et al. [73] was used, with minor modification. After
drying a 10 mL aliquot of the fermentation supernatant in a freeze-dryer, 0.5 g of the
resultant lyophilized powder was weighed, and 5 mL of 80% methanol was added. The
mixture was sonicated for 1.5 h in the KQ5200E ultrasonic cleaner set at a temperature
of 50 ◦C (with sonication for 30 min at 10 min intervals, repeated three times). After the



Molecules 2024, 29, 1265 18 of 23

extractions, the extract solution was separated by centrifugation for 5 min at 10,000 rpm to
obtain a TG solution. The TG solution was diluted 20 times for the determination of total
ginsenoside content. A standard curve for ginsenoside Re was created (Y = 4.844X − 0.0013,
R2 = 0.9884). The TG content of the ginseng fermentation broth was determined using the
vanillin perchloric acid method [74]. The TG content is expressed in terms of the mass of
saponin Re per g of dry matter.

3.6. Ginsenoside Monomer Quantification

The monomeric components of the 11 ginsenosides were dissolved and diluted with
80% methanol to 55 µg/mL. They were then combined in equal proportions to produce
a mixed standard solution (5 µg/mL). The TG solution was diluted 100 times, passed
through a 0.22 µm membrane filter, and then sent to HPLC-MS analysis.

The chromatographic conditions were as follows: a Waters ACQUITY UPLC BEH
Column (100 mm × 2.1 mm, 1.7 µm) was used, the thermostat temperature was 40 ◦C, the
flow rate was 0.3 mL/min, and the injection volume was 1 µL. Water with 0.1% formic acid
(solvent A) and acetonitrile (solvent B) was used for the mobile phase components. The
gradient elution program was as follows: 0–1 min, 30% B; 1–4 min, 30–50% B; 4–11 min,
50–60% B; 11–14 min, 60–70% B; 14–18 min, 70–90% B; 18–20 min, 90% B; 20–20.2 min,
90–30% B; and 20.2–25 min, 30–30% B.

The liquid chromatography–mass spectrometry ion source operating parameters were
as follows: Electrospray ion source (ESI) was used, the scanning mode was positive and
negative ion switching, the multiple reaction monitoring mode was used for detection, the
atomized gas flow was 3.0 L/min, the drying gas flow was 10.0 L/min, the heating gas
flow was 10 L/min, the connection temperature was 300 ◦C, the desolvation line was at
250 ◦C, the heating block temperature was 400 ◦C, and the collision-induced dissociation
pressure was 270 kPa.

3.7. Optimization of GF Production
3.7.1. Single-Factor Screening of Culture Conditions

The following three factors were varied with the aim of increasing the antioxidant
activity of the fermentation products: fermentation time (15, 30, 45, 60, and 75 h), fermen-
tation temperature (26, 28, 30, 32, and 34 ◦C), and inoculum size (1.5, 2.0, 2.5, 3.0, and
3.5% v/v). The selection of time, temperature, and inoculum size as the main factors for
process optimization was based on the method proposed by Tao et al. [75]. When one of the
factors was being evaluated, the others were fixed at the following values: a fermentation
time of 72 h, a fermentation temperature of 30 ◦C, and an inoculum size of 2.0% (v/v).
The single-factor screening results were then used as a reference point in the response
surface methodology.

3.7.2. The Box–Behnken Design and Response Surface Methodology

The Box–Behnken design was used for the response surface methodology, which was
used to determine the best fermentation conditions to optimize the DPPH, ·OH, and O2

·−

scavenging rates. The fermentation time, fermentation temperature, and inoculum size
were used as the factors. The factors and levels are shown in Table 3. A second-degree
polynomial model was used to find the relationship of each factor to the response. The
equation used was as follows:

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β11XI
2 + β22X2

2 + β33X3
2 (7)

where Y is the predicted response of free radical scavenging activity, Xi represents the
independent coded factors, β0 is the intercept, βi, βii, and βij are the linear coefficient,
quadratic coefficient, and interaction coefficient of the polynomial model, respectively.
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3.8. Cell Test
3.8.1. Effects of the GS and GF on the Activity of HaCaT and BJ Cells

HaCaT and BJ cells were placed in 96-well plates at a density of 5× 104 cells/well with
fresh medium. After 24 h of pre-culture, the medium was aspirated, varying concentrations
(0.06, 0.25, and 1.00%) of the ginseng fermentation samples were added to each well, and
the cells were then cultured for another 24 h. Non-treated cells maintained in culture
medium were used as the control. Following incubation, the culture medium was decanted,
and 100 µL of serum-free DMEM plus 10 µL of the Cell Counting Kit-8 (CCK-8) test
solution was added to all wells. The cells were incubated for 1 h, and the absorbance at
450 nm was determined using a microplate reader. Cell viability was calculated using the
following formula:

Cell viability(%) = A1 / A2 × 100 (8)

where A1 is the absorbance of the sample well, and A2 is the absorbance of the control well.

3.8.2. Assessment of the Capacity of the GS and GF to Protect Cells Exposed to H2O2

To determine the baseline viability of HaCaT and BJ cells exposed to increasing
concentrations of H2O2, a CCK-8 assay was performed. Cells in the logarithmic phase
of growth were seeded in 96-well plates at 5000 cells/well. Once the cells adhered, the
medium was aspirated and replaced with a medium containing varying concentrations of
H2O2 (50, 100, 200, 400, and 800 µM). After a 24 h incubation period, the cells were washed
with phosphate buffer saline (PBS) and treated with the CCK-8 solution. Following a 1 h
incubation, the absorbance was measured at 450 nm using a microplate reader to determine
cell viability.

To explore the reparative and protective effects of the GS and GF samples, stimulus
repair and stimulus protection assays were used. In the stimulus repair experiments, cells
in the logarithmic phase of growth were seeded in 96-well plates at 5000 cells/well. After
cell adhesion, the medium was replaced with solutions containing various concentrations
of H2O2. Following a 24 h stimulation period and washing with PBS, different concen-
trations of the GS and GF were added, and the cells were incubated for an additional
24 h. Subsequently, cell viability was assessed using the CCK-8 method. In the stimulus
protection experiments, cells in the logarithmic phase of growth were seeded in 96-well
plates at 5000 cells/well. After cell adhesion, different concentrations of the GS and GF
were added, and the cells were incubated for 24 h. Then, a medium containing various
concentrations of H2O2 was introduced, and after 24 h, cell viability was determined.

3.9. Statistical Analysis

All experiments were performed in triplicate, and the data were analyzed using
GraphPad Prism 8.0 for Windows (San Diego, CA, USA); data are presented as the mean
value ± standard deviation. Data were evaluated by one-way analysis of variance to
detect statistical significance, followed by post hoc multiple comparisons (Dunn’s test). A
p value < 0.05 was considered to indicate a statistically significant difference. Graphical
abstracts were created using Figdraw 2.0 (https://www.figdraw.com/#/).

4. Conclusions

In this study, we utilized response surface methodology coupled with the Box–Behnken
design to optimize the fermentation of a ginseng stem and leaf extract. The optimal con-
ditions were determined and experimentally verified. The GF showed strong free-radical
scavenging activity against DPPH, ·OH, and O2

·−. At 0.06%, the GF was not cytotoxic
and showed the dual effects of protection and repair on H2O2-treated HaCaT cells. The
GF significantly increased the viability of H2O2-treated HaCaT cells, effectively protected
HaCaT cells against oxidative stress-related damage, and repaired damaged HaCaT cells.
Thus, the findings of this study indicate that solutions produced by fermenting ginseng stem
and leaf extracts with LAB may have significant antioxidant activity and could potentially

https://www.figdraw.com/#/
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be used to delay skin aging. The findings also warrant the further exploration of the GF as a
cosmetic ingredient with beneficial properties. However, this study still has certain limita-
tions, including a lack of clarification on specific active ingredients and a limited exploration
of the mechanistic aspects. Therefore, in subsequent research, major components of the
GF fermentation broth will be separated and subjected to activity assays. Advantageous
components will be selected for non-targeted and targeted metabolism studies to further
elucidate the mechanisms related to antioxidant activity and cellular oxidative damage
repair and prevention.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29061265/s1, Figure S1: Total ionization chromatogram
(TIC) of GF fermentation broth; Figure S2: Effects of different concentrations of H2O2 on HaCaT/BJ cell
activity; Table S1: Correlation analysis of GF fermentation broth of 11 ginsenosides and antioxidants.
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