The Stability Prediction and Epitaxial Growth of Boron Nitride Nanodots on Different Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. DFT Approach
2.1.1. Optimization of the Structures
2.1.2. Total Energy
2.1.3. Cohesive Energy
2.2. Validation of DFT Calculations
2.2.1. FE-SEM Analysis of BN on Ni
2.2.2. Raman Spectra Analysis of Ni and BN on Ni
2.2.3. AFM Analysis of BN on MoS2
2.2.4. Raman Analysis of BN on MoS2
2.2.5. TEM Analysis of BN on MoS2
3. Materials and Methods
3.1. DFT Calculation Method
3.2. Experimental Method
3.3. Characterization of BN Nanodots
4. Conclusions
- The DFT calculations demonstrate a robust agreement with the experimental data, affirming the superior stability of h-BN as the most favorable crystal structure.
- DFT proves its capability in predicting the stability of boron nitride growth across various substrates, providing valuable insights into potential applications.
- The epitaxial growth of h-BN is established as a viable process on the Ni and 2D MoS2 surfaces, showing PA-MBE to be a promising technique.
- Detailed characterization through FE-SEM, Raman spectroscopy, AFM, and TEM confirms the successful formation of h-BN nanodots on Ni and MoS2 surfaces.
- Our findings underscore the significant potential of MBE growth for h-BN NDs, offering an adaptable approach with promising prospects for the optoelectronic applications of h-BN.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, S.; Jana, M.; Samanta, P.; Murmu, N.C.; Kim, N.H.; Kuila, T.; Lee, J.H. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 2017, 190, 153–165. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Liang, W.; Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2017, 2, 6–34. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Yadav, R.M.; Verma, R.K.; Singh, D.P.; Tan, W.K.; del Pino, A.P.; Moshkalev, S.A.; et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694. [Google Scholar] [CrossRef]
- Wong, M.H.; Bierwagen, O.; Kaplar, R.J.; Umezawa, H. Ultrawide-bandgap semiconductors: An overview. J. Mater. Res. 2021, 36, 4601–4615. [Google Scholar] [CrossRef]
- Lin, P.; Deshpandey, C.; Doerr, H.; Bunshah, R.; Chopra, K.; Vankar, V. Preparation and properties of cubic boron nitride coatings. Thin Solid Film. 1987, 153, 487–496. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Matveev, A.T.; Permyakova, E.S.; Leybo, D.V.; Konopatsky, A.S.; Sorokin, P.B. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials 2022, 12, 2810. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wong, S.; Lau, W.; Ong, C. Study of the surface layer in cBN growth by PVD techniques. Diam. Relat. Mater. 2007, 16, 421–424. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Y.; Chen, H.; Wang, Z.; Mao, X.; Zhou, G.; Zhang, J.; Wang, S. Synthesis of Multiwall Boron Nitride (BN) Nanotubes by a PVD Method Based on Vapor–Liquid–Solid Growth. Materials 2020, 13, 915. [Google Scholar] [CrossRef] [PubMed]
- Djouadi, M.; Banakh, O.; Soltani, A.; Sanjines, R.; Levy, F. Physical properties of cubic boron nitride films synthesized by PVD using a bi-step process. Thin Solid Film. 2001, 398–399, 205–209. [Google Scholar] [CrossRef]
- Djouadi, M.; Vasin, A.; Nouveau, C.; Angleraud, B.; Tessier, P. Deposition of boron nitride films by PVD methods: Transition from h-BN to c-BN. Surf. Coat. Technol. 2004, 180–181, 174–177. [Google Scholar] [CrossRef]
- Lourie, O.R.; Jones, C.R.; Bartlett, B.M.; Gibbons, P.C.; Ruoff, R.S.; Buhro, W.E. CVD Growth of boron nitride nanotubes. Chem. Mater. 2000, 12, 1808–1810. [Google Scholar] [CrossRef]
- Shen, P.-C.; Lin, Y.; Wang, H.; Park, J.-H.; Leong, W.S.; Lu, A.-Y.; Palacios, T.; Kong, J. CVD Technology for 2-D Materials. IEEE Trans. Electron Devices 2018, 65, 4040–4052. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhang, R.; Han, Z.; Dong, H.; Yu, G.; Geng, D.; Yang, H.Y. A minireview on chemical vapor deposition growth of wafer-scale monolayer h-BN single crystals. Nanoscale 2021, 13, 17310–17317. [Google Scholar] [CrossRef]
- Larsson, K. CVD growth of cubic boron nitride: A theoretical/experimental approach. Thin Solid Film. 2006, 515, 401–406. [Google Scholar] [CrossRef]
- Hirama, K.; Taniyasu, Y.; Karimoto, S.-I.; Yamamoto, H.; Kumakura, K. Heteroepitaxial growth of single-domain cubic boron nitride films by ion-beam-assisted MBE. Appl. Phys. Express 2017, 10, 035501. [Google Scholar] [CrossRef]
- Storm, D.F.; Maximenko, S.I.; Lang, A.C.; Nepal, N.; Feygelson, T.I.; Pate, B.B.; Affouda, C.A.; Meyer, D.J. Mg-Facilitated Growth of Cubic Boron Nitride by Ion Beam-Assisted Molecular Beam Epitaxy. Phys. Status Solidi Rapid Res. Lett. 2022, 16, 202200036. [Google Scholar] [CrossRef]
- Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Y.S. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications. Sci. Rep. 2016, 6, 23547. [Google Scholar] [CrossRef] [PubMed]
- Nurzal, N.; Huang, W.-C.; Liu, C.-Y.; Chen, S.-H.; Yu, I.-S. The Growth of Hexagonal Boron Nitride Quantum Dots on Polycrystalline Nickel Films by Plasma-Assisted Molecular Beam Epitaxy. Crystals 2022, 12, 347. [Google Scholar] [CrossRef]
- Tsai, C.; Kobayashi, Y.; Akasaka, T.; Kasu, M. Molecular beam epitaxial growth of hexagonal boron nitride on Ni(111) substrate. J. Cryst. Growth 2009, 311, 3054–3057. [Google Scholar] [CrossRef]
- Wei, W.; Pan, J.; Euaruksakul, C.; Yang, Y.; Cui, Y.; Fu, Q.; Bao, X. Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111). Nano Res. 2020, 13, 1789–1794. [Google Scholar] [CrossRef]
- Driver, M.S.; Beatty, J.D.; Olanipekun, O.; Reid, K.; Rath, A.; Voyles, P.M.; Kelber, J.A. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001). Langmuir 2016, 32, 2601–2607. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Akasaka, T. Hexagonal BN epitaxial growth on (0001) sapphire substrate by MOVPE. J. Cryst. Growth 2008, 310, 5044–5047. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Meng, J.; Yin, Z.; Jiang, J.; Tian, Y.; Li, J.; Wu, J.; Jin, P.; Zhang, X. Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications. Fundam. Res. 2021, 1, 677–683. [Google Scholar] [CrossRef]
- Hafner, J.; Wolverton, C.; Ceder, G. Toward computational materials design: The impact of density functional theory on materials research. MRS Bull. 2006, 31, 659–668. [Google Scholar] [CrossRef]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Milman, V.; Winkler, B.; White, J.A.; Pickard, C.J.; Payne, M.C.; Akhmatskaya, E.V.; Nobes, R.H. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 1999, 77, 895–910. [Google Scholar] [CrossRef]
- Grad, G.B.; Blaha, P.; Schwarz, K.; Auwärter, W.; Greber, T. Density functional theory investigation of the geometric and spintronic structure of h-BN/Ni(111) in view of photoemission and STM experiments. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 085404. [Google Scholar] [CrossRef]
- Restuccia, P.; Losi, G.; Chehaimi, O.; Marsili, M.; Righi, M.C. High-Throughput First-Principles Prediction of Interfacial Adhesion Energies in Metal-on-Metal Contacts. ACS Appl. Mater. Interfaces 2023, 15, 19624–19633. [Google Scholar] [CrossRef]
- Gaudoin, R.; Foulkes, W.M.C.; Rajagopal, G. Ab initio calculations of the cohesive energy and the bulk modulus of aluminium. J. Phys. Condens. Matter 2002, 14, 8787–8793. [Google Scholar] [CrossRef]
- Yi, W.; Tang, G.; Chen, X.; Yang, B.; Liu, X. qvasp: A flexible toolkit for VASP users in materials simulations. Comput. Phys. Commun. 2020, 257, 107535. [Google Scholar] [CrossRef]
- Pandey, S.; Qu, J.; Stevanović, V.; John, P.S.; Gorai, P. Graph Neural Network for Predicting Energy and Stability of Known and Hypothetical Crystal using graph neural network. Patterns 2021, 2, 100361. [Google Scholar] [CrossRef] [PubMed]
- Voigt, D.; Sarpong, L.; Bredol, M. Tuning the optical band gap of semiconductor nanocomposite—A case study with ZnS/carbon. Materials 2020, 13, 4162. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Thapa, A.; Sarkar, A. Ab-initio study of LD-HfO2, Al2O3, La2O3 and h-BN for application as dielectrics in MTJ memory device. Superlattices Microstruct. 2020, 150, 106753. [Google Scholar] [CrossRef]
- Gonze, X. A brief introduction to the ABINIT software package. Z. Krist.-Cryst. Mater. 2005, 220, 558–562. [Google Scholar] [CrossRef]
- Sun, M.; Ge, S.; Zhao, J.; McDonald, R.; Ma, G. Ruthenium(II) Phosphine/Picolylamine Dichloride Complexes Hydrogenation and DFT Calculations. Catalysts 2022, 12, 377. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Imai, Y.; Mukaida, M.; Tsunoda, T. Calculation of electronic energy and density of state of iron-disilicides using a total-energy pseudopotential method, CASTEP. Thin Solid Film. 2001, 381, 176–182. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.H.; Marks, L.D. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020, 152, 074101. [Google Scholar] [CrossRef]
- Allouche, A. Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Barone, V.; Hod, O.; Scuseria, G.E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754. [Google Scholar] [CrossRef]
- Chen, L.; Liu, B.; Ge, M.; Ma, Y.; Abbas, A.N.; Zhou, C. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 2015, 9, 8368–8375. [Google Scholar] [CrossRef]
- Kim, K.J.; Han, H.; Defferriere, T.; Yoon, D.; Na, S.; Kim, S.J.; Dayaghi, A.M.; Son, J.; Oh, T.-S.; Jang, H.M.; et al. Facet-dependent in situ growth of nanoparticles in epitaxial thin films: The role of interfacial energy. J. Am. Chem. Soc. 2019, 141, 7509–7517. [Google Scholar] [CrossRef]
- Barron, L.D.; Buckingham, A.D. Vibrational optical activity. Chem. Phys. Lett. 2010, 492, 199–213. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, J. Chapter 4: Recent progress of boron nitrides. In Ultra-Wide Bandgap Semiconductor Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 347–419. [Google Scholar] [CrossRef]
- Dam, S.; Thakur, A.; Amarendra, G.; Hussain, S. Synthesis and characterization of MoS2 thin films by electron beam evaporation. Thin Solid Film. 2019, 681, 78–85. [Google Scholar] [CrossRef]
- Zhang, J.; Brehm, M.; Grydlik, M.; Schmidt, O.G. Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers. Chem. Soc. Rev. 2015, 44, 26–39. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Korotaev, A.G.; Kokhanenko, A.P.; Dirko, V.V.; Voitsekhovskii, A.V. Ki-netics of epitaxial formation of nanostructures by Frank-van der Merwe, Volmer-Weber and Stranski-Krastanow growth modes. Surf. Coat. Technol. 2020, 384, 125289. [Google Scholar] [CrossRef]
- Puschnig, P. Simulating Materials Properties from First Principles. Universitat Graz Universit atsplatz 5. 2020. Available online: http://physik.uni-graz.at/~pep (accessed on 16 September 2023).
- Feit, M.; Fleck, J.; Steiger, A. Solution of the Schrödinger Equation by a Spectral Method. J. Comput. Phys. 1982, 47, 412–433. [Google Scholar] [CrossRef]
- Ivanovskii, A.L.; Medvedeva, N.I. Electronic structure of hexagonal Ti3AlC2 and Ti3AlN2. Mendeleev Commun. 1999, 9, 36–38. [Google Scholar] [CrossRef]
- Marks, L.D. Fixed-point optimization of atoms and density in DFT. J. Chem. Theory Comput. 2013, 9, 2786–2800. [Google Scholar] [CrossRef] [PubMed]
Configuration/Atom | B | N | Ni | Mo | S | Al | O |
---|---|---|---|---|---|---|---|
c-BN/Ni(111) | 8 | 8 | 78 | ||||
h-BN/Ni(111) | 8 | 8 | 78 | ||||
c-BN/MoS2(111) | 8 | 8 | 27 | 52 | |||
h-BN/MoS2(111) | 8 | 8 | 27 | 52 | |||
c-BN/Al2O3(111) | 8 | 8 | 40 | 57 | |||
h-BN/Al2O3(111) | 8 | 8 | 40 | 57 |
Total Energy (eV) | Cohesive Energy (eV) | ||||
---|---|---|---|---|---|
Structure | Pure | c-BN Growth | h-BN Growth | c-BN Growth | h-BN Growth |
c-BN | −44.54 | - | - | - | - |
h-BN | −49.10 | - | - | - | - |
Ni | −404.09 | −494.29 | −510.35 | −45.66 | −57.16 |
MoS2 | −575.12 | −669.47 | −680.30 | −49.81 | −56.08 |
Al₂O₃ | −622.00 | −726.36 | −742.79 | −59.82 | −71.69 |
Sample | Substrate | Thermal Cleaning | Growth Temperature | Pre-Boron Treatment | Temperature of Boron Cell | Growth Duration |
---|---|---|---|---|---|---|
S1 | Ni | 600 °C (30 min) | 700 °C | 20 min | 1300 °C | 120 min |
S2 | MoS2 | 300 °C (10 min) | 700 °C | 20 min | 1460 °C | 60 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purnomo, M.J.; Febrita, Y.; Dinaryanto, O.; Gierlotka, W.; Yu, I.-S. The Stability Prediction and Epitaxial Growth of Boron Nitride Nanodots on Different Substrates. Molecules 2024, 29, 1313. https://doi.org/10.3390/molecules29061313
Purnomo MJ, Febrita Y, Dinaryanto O, Gierlotka W, Yu I-S. The Stability Prediction and Epitaxial Growth of Boron Nitride Nanodots on Different Substrates. Molecules. 2024; 29(6):1313. https://doi.org/10.3390/molecules29061313
Chicago/Turabian StylePurnomo, Muhamad Jalu, Yosi Febrita, Okto Dinaryanto, Wojciech Gierlotka, and Ing-Song Yu. 2024. "The Stability Prediction and Epitaxial Growth of Boron Nitride Nanodots on Different Substrates" Molecules 29, no. 6: 1313. https://doi.org/10.3390/molecules29061313
APA StylePurnomo, M. J., Febrita, Y., Dinaryanto, O., Gierlotka, W., & Yu, I. -S. (2024). The Stability Prediction and Epitaxial Growth of Boron Nitride Nanodots on Different Substrates. Molecules, 29(6), 1313. https://doi.org/10.3390/molecules29061313