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Abstract: Owing to their special structure and excellent physical and chemical properties, conducting
polymers have attracted increasing attention in materials science. In recent years, tremendous efforts
have been devoted to improving the comprehensive performance of conducting polymers by using
the technique of “doping.” Spherical polyelectrolyte brushes (SPBs) bearing polyelectrolyte chains
grafted densely to the surface of core particles have the potential to be novel dopant of conducting
polymers not only because of their spherical structure, high grafting density and high charge density,
but also due to the possibility of their being applied in printed electronics. This review first presents
a summary of the general dopants of conducting polymers. Meanwhile, conducting polymers doped
with spherical polyelectrolyte brushes (SPBs) is highlighted, including the preparation, characteriza-
tion, performance and doping mechanism. It is demonstrated that comprehensive performance of
conducting polymers has improved with the addition of SPBs, which act as template and dopant in
the synthesis of composites. Furthermore, the applications and future developments of conductive
composites are also briefly reviewed and proposed, which would draw more attention to this field.

Keywords: spherical polyelectrolyte brushes; conducting polymers; dopants; doping mechanism

1. Introduction

Since p-doped polyacetylene with an electrical conductivity comparable to that of
metal was first discovered in 1977 by Heeger, MacDiarmid and Shirakawa [1], organic
polymers have not been considered as insulators. Accordingly, a series of conducting
polymers such as polyaniline (PANI) [2,3], polypyrrole (PPy) [4,5], polythiophene (PT) [6–8]
and their derivatives have emerged. Typical conducting polymers are illustrated in Figure 1.
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Figure 1. Typical conducting polymers.

As a π-conjugated polymer, the electrical conductivity of conducting polymers can be
extended from insulator to conductor by chemical [9,10] or electrochemical doping [11,12].
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In addition to polymer structure, the structure of conducting polymers also contains mono-
valent anion (p-type doping) or cation (n-type doping) introduced by doping. Therefore,
conducting polymers not only have the characteristics of polymer itself but also the char-
acteristics of metal (high conductivity) and semiconductor (p- and n-type) brought by
doping. Stable aromatic ring structure has almost no conductivity. Although the quinone
structure has high energy, it is less likely to exist. After doping, polaron and bipolaron
appear gradually. With increased bipolarized substructures, a close to quinone structure
forms, indicating the character of conductivity. The main characteristics of conducting
polymer are as follows:

1⃝ The room temperature electrical conductivity of conducting polymers can change
in the states of metal-insulator-semiconductor, which is unmatched by any other mate-
rials to date. 2⃝ The process of the doping and de-doping of conducting polymers is
completely controllable. Using this unique property, conducting polymers can be used
as gas or biosensor with high selectivity, high sensitivity and good repeatability. 3⃝ The
doping of conducting polymers is essentially controllable redox reaction. Therefore, the
electrochromic or photochromic properties of conducting polymers may be engineered
widely. It can be used not only in information storage and display, but also in camouflage
and stealth of military targets. 4⃝ Due to their π-conjugate structure, conducting polymers
have a fast response time.

In summary, as a new type of functional material with excellent physical and chem-
ical properties, conducting polymers have far-reaching application potential in indus-
trial production, such as metal corrosion-resistant materials [13,14], microwave absorbing
materials [15,16], electrical materials [17–19], sensitive materials [20,21], fuel cells and
water electrolyzers [22–24]. Researchers are committed to the practical application of
conducting polymers, which means improving comprehensive properties and reducing
costs by doping. Accordingly, the selection of novel and effective dopants is essential for
conducting polymers.

Spherical polyelectrolyte brushes (SPBs) that have cores particles and brush polymers
with certain functional groups are promising novel and efficient dopants for conducting
polymers. The growth direction for conducting polymers is provided by its spherical
structure, and the properties of conducting composites are well controlled through the
choice of grafted polymer chains and cores particles. The number of publications in the
ScienceDirect database with conducting polymers and spherical polyelectrolyte brushes is
shown in Figure 2.
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To date, a series of reviews about conducting polymers have focused on synthesis [25],
and their applications in electrochemical capacitive energy storage [26], Li-ion batteries [27],
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electrochemistry [28], biomedical [29] and electrochemical sensors and biosensors [30].
As for SPB, since the first review reported by Ballauff, M. in 2007 [31], many published
reviews have mainly concentrated on theory and modeling [32], ionic effects [33] and their
emerging application [34] in wet-end papermaking [35] and nanoreactors [36]. However,
there is no review related to SPBs as the dopant of conducting polymers, which is still
needed. In this review, a recent advancement on various dopants of conducting polymer
is firstly introduced. Then, a survey of recent research on SPBs is presented, including
the synthesis and characterization methods and conformation. In the following section,
taking polypyrrole and polyaniline as examples, various literatures have reported that
polyaniline, polypyrrole and poly(pyrrole-co-aniline) doped with SPBs have been prepared
and characterized, which reveals that the performance of conductive composites is closely
related to the structure of SPBs. In addition, the doping and conducting mechanisms of
SPBs are discussed in detail, which provides theoretical support for SPBs as novel dopant
for conducting polymers. Furthermore, the applications of conducting polymers doped by
SPBs are summarized, and an outlook towards future development is provided.

2. Dopants of Conducting Polymers
2.1. Acids

Currently, acid doping is the most common method used in the synthesis of con-
ducting polymers. Inorganic acid doping often only has a significant effect in improving
the electrical conductivity of conducting polymers. To obtain conducting polymers with
controllable microstructures, a template or a soft-template is added while doping with
inorganic acid. Common dopants are hydrochloric acid, aromatic sulfonic acid deriva-
tives (such as dodecyl benzene sulfonic acid (DBSA) [37,38]) and p-toluenesulfonic acid
(TsOH) [39,40].

Lee J et al. [41] developed a surface-active DBSA as an anionic additive in 1995.
Solubilization of polypyrrole was achieved in the aqueous solution of ammonium persulfate
(APS) by oxidative polymerization of pyrrole monomers. Subsequent studies have further
suggested that the addition of other sulfonic acid compounds which possess surface-active
characteristics can also cause the solvation of polypyrrole [42]. Omastovà M et al. [43]
synthesized conductive polypropylene/clay/polypyrrole (PP/clay/PPy) nanocomposites
by chemical oxidative polymerization using dodecylbenzenesulfonic acid (DBSA) as dopant
and ferric chloride (FeCl3) as oxidant. Yin W S and Ruckenstein E [44] explored HCl and
DBSA co-doped soluble polyaniline, whose electrical conductivity was up to 13.9 S/cm.
Shen Y Q and Wan M X [45] synthesized soluble polypyrrole using DBSA-CSA mixed acid
as dopant, and its room temperature electrical conductivity ranged from 2 S/cm to 18 S/cm.
The electrical conductivity of PPy increased with the increase of CSA contents, and DBSA
and CSA contributed to the dissolution of PPy during mixed acid doping. They believed
that the reason might be that DBSA reduced the interaction between PPy molecular chains,
while long alkyl chain of DBSA played a positive role in the dissolution of PPy.

2.2. Surfactants

When surfactants are added, the rich morphology of conducting polymers can be
attributed to their special molecular structure. Surfactants such as organic sulfonates
(e.g., SDS, SDBS) [46,47], polyvinylpyrrolidone (PVP) [48,49] and sodium p-toluenesulfonate
(TsONa) [50,51] are commonly used.

Yusuke H et al. [52] illustrated the preparation of PPy nanopowders using anionic
surfactants (SDS, SDBS, CTAB) by emulsion polymerization. The surfactants affected the
electrical conductivity of the nanopowders. The electrical conductivity was at 10 S/cm
when SDS and SDBS were added. The electrical conductivity was increased with increasing
SDBS content. Monodisperse PPy nanoparticles with the particle sizes of 35~102 nm
were produced at a stirring rate of 13,500~24,000 rpm. The electrical conductivity of PPy
using CTAC as surfactant was lower than that of SDS and SDBS. In addition, Zhou D H
et al. [53] demonstrated the fabrication of PANI nanofibers with high electrical conductivity
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in the presence of mixed surfactants CTAB-SDBS. These mixed surfactants acted as soft-
template and a dispersant. The effect of CTAB-SDBS ratio on the morphology and electrical
conductivity of PANI was investigated. When the molar ratio of CTAB to SDBS was 2:1,
the electrical conductivity reached 0.102 S/cm, which was two orders of magnitude higher
in the case of surfactant alone. Feng X M et al. [54] synthesized AgCl/PANI core-shell
nanocomposites using the one-step method in the presence of PVP. The composites with a
core diameter of approximately 20–50 nm and shell thickness of 20 nm were obtained in
the percentage concentration of 4% PVP. The nanocomposites had a uniform particle size
and good dispersibility.

2.3. Inorganic Nanoparticles

Based on the theory of mechanical reinforcement of polymer composites, their me-
chanical properties can be enhanced by adding inorganic additives. In order to improve
the thermal stability and processability of conducting polymers, inorganic nanoparti-
cles (e.g., Fe3O4, Fe2O3, SiO2 and NiO) are utilized. Inorganic nanocomposites such as
PPy/Fe3O4 [55], PPy/SiO2 [56], PANI/NiO [57] and PANI/ Fe2O3 [58] are reported.

Chen W et al. [59] developed the Fe3O4-PPy nanocomposites with magnetic and
electrical conductivity by applying a PPy conductive layer on the surface of magnetic
nanoparticles (Fe3O4). The average particle size of Fe3O4-PPy nanocomposites was about
50 nm. With the increase of Fe3O4 content, the magnetic resistance increased from 98.4 Oe to
116.3 Oe, the saturation magnetization increased from 0.268 to 9.23 emu/g and the electrical
conductivity increased from 10−5 to 10−2 S/cm. Liu X H et al. [60] synthesized SiO2/PPy
core-shell particles with controllable shell thickness. The shell thickness increased as the
amount of pyrrole monomer increased. The composites with different properties and func-
tions were synthesized using monodisperse SiO2 microspheres as templates. Shambharkar
B H and Umare S S [61] successfully prepared PANI/NiO nanocomposites. The electrical
conductivity, magnetic properties and thermal stability of PANI were influenced by the
addition of NiO. The electrical and magnetic properties of the composites were determined
by the size and concentration of NiO added. The thermal stability of the composites was
improved by the addition of NiO. These occurrences were possibly due to the fact that
the grain boundary effect between the NiO particles and the PANI backbone restricted
thermal motion of the PANI in the composite. Along with that, due to this interaction,
lattice distortion occurs around the doped NiO particles. Accordingly, the charge trappings
become stronger, thus facilitating efficient electron transport.

Furthermore, taking carbon materials involving carbon nanotubes [52–64], carbon
nanofibers [65] and graphene [66,67] as dopant may improve the performance of conductive
polymers because of the excellent electrical, mechanical and chemical properties. Jeon
I Y et al. [68] studied PPy-g-MWCNT nanocomposites by grafting multi-walled carbon
nanotubes (MWCNT) onto polypyrrole. The electrical conductivity of PPy-g-MWCNT
nanocomposites was 20 times higher than that of PPy after alkali treatment, and its current
density and cycle stability increased, which indicated that the electrons were effectively
transmitted through covalent bonds.

2.4. Polymers

Recently, polyelectrolytes have been successfully used as the dopants of conducting
polymers to fabricate conducting composites [69–71]. Goel S [72] developed a simple
template-free interface polymerization method to synthesize PPy nanofibers using HCl,
FeCl3, p-toluenesulfonic acid (p-TSA), camphor sulfonic acid (CSA) and polystyrene sul-
fonic acid (PSSA) as dopants, respectively. Results showed that the contributions of each
dopant on thermal stability and electrical conductivity of PPy nanofibers followed the order
PPy-p-TSA > CSA > HCl > FeCl3 > PSSA, PPy-p-TSA > CSA > HCl > FeCl3 > PSSA, respec-
tively. When doped with PPy-p-TSA, the electrical conductivity of PPy nanofibers reached
6 × 10−2 S/cm. Wei J et al. [73] prepared PANI/POSS-PSS nanoparticles with core–shell
structure via in-situ polymerization using star-like POSS-PSS as a dopant. The elec-
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trochromic device with PANI/POSS-PSS as the active layer exhibited better electrochromic
performance than the device with linear PSS-doped PANI as the active layer. Mpouk-
ouvalas K et al. [74] conducted in-depth research on polypyrrole-polystyrene sulfonate
PPy/PSSx (x = H+, Li+, Na+, Cs+) core-shell nanoparticles. Results showed that different
cations were found to have different effects on the chemical behavior of PPy/PSSx system
under the condition of the same volume fraction of PPy. Significantly different chemical
behavior of H+, Na+ and Li+, Cs+ occurred at temperatures above 400 K, which might
be due to the influence of ionic conductivity. For PPy/PSSx particles, the DC electrical
conductivity at constant temperature decreased with the increase of the counter-ion radius
(except for Li).

In addition, dye [75,76], cyclodextrin and its derivatives [77,78] have also been used
as dopants in the polymerization of conducting polymers.

In summary, significant progress has been made in improving certain properties
of conducting polymers, such as electrical conductivity, thermal stability, mechanical
properties, solubility or processability. However, the aforementioned dopants display
obvious disadvantages. Small-molecule dopants such as acids or surfactants are prone to
de-doping, which leads to possible instability for the electrical conductivity of conductive
composite. As for conducting polymers doped by inorganic nanoparticles and polymers,
the improvement of thermal stability and processability may be at the cost of losing
electrical conductivity. In addition, preventing agglomeration during the polymerization
process is also a difficult task.

3. Spherical Polyelectrolyte Brushes

Polymer brush refers to a special homopolymer or copolymer system formed by
high-density coupling of one end of polymer chains to various interfaces [79]. Basic
understanding of polymer brush can be traced back to the early theoretical studies by
Pincus [80] and Borisov [81]. Subsequently, numerous theoretical models [82–84] have
been explored.

For the prospect of theory, the configuration of polymer chains depends on the interac-
tion between polymer brushes. The balance between the interaction among polymer chains
and their elastic free energy is reflected by the conformational change of brush polymers
with high grafting density. The overlapping non-stretched linear chains occur due to the
high density of polymer chains on surface, which increases the interaction among segments.
Therefore, the grafting chain extends in a direction perpendicular to grafting surface, thus
increasing the height of brush.

Evaluation of conformation according to the curvature of grafted surface, polymer
brush can be divided into three types: planar brush, spherical polymer brush and star-
polymer brush (as shown in Figure 3). When the curvature radius of the grafted surface is
far larger than the thickness of grafted brush layer, a planar brush is formed. A star-polymer
brush is formed if the curvature radius of grafted surface is much less than the thickness of
grafted brush layer. Spherical polymer brushes result with its thickness of grafted brush
layer comparable to the curvature radius of grafted surface, which is a bridge to study the
properties of polymer brush.

In order to extend polymer chains to form a thick polymer brush layer, the charged
polyelectrolyte brush must attract more attention. In addition to the steric hindrance effect,
charge repulsion and high osmotic pressure generated by counterions contribute to the
stretching of polyelectrolyte chains. Therefore, the chain extension, brush layer thickness
and conformation of polyelectrolyte brush are subject to pH, salt concentration, anti-ion
valence and other external factors. According to the ionic types of grafted polyelectrolyte
chains, spherical polyelectrolyte brushes (SPBs) could be divided into two classes: anionic
spherical polyelectrolyte brushes (ASPB) and cationic spherical polyelectrolyte brushes
(CSPB), as shown in Figure 4.
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Figure 4. Structure diagrams of ASPB and CSPB. L denotes the thickness of brush layer, Rh the
hydrodynamic radius, Rh the core radius, and ζ the zeta potential.

Before the 1990s, research on core-shell polyelectrolyte brushes was generally focused
on polystyrene (PS) core with polymethyl methacrylate (PMMA) [85,86], polyacrylic acid
(PAA) [87,88] shell. The application of PS, however, is limited due to its environmentally
harmful chemicals. In view of this, novel green core materials such as silicon-based
materials [89,90], carbon-based materials [91], graphene [92,93] and shell materials with
various properties are emphasized for the research.

3.1. Synthesis Methods
3.1.1. Physisorption

As shown in Figure 5A, physisorption refers to the self-assembly process of macro-
molecules with surface activity or polymers with end group functional groups [94]. There-
fore, it is a reversible process. Both graft copolymers and block copolymers can be prepared
by physisorption, whose essence is based on the selective solvation. It means that the
behavior of insoluble and soluble segments of polymers varieties. The former settled down
and affixed on the matrix, while the latter stretched, forming a polymer brush. In addition,
when selective adsorption of graft copolymers happens on the substrate surface, polymer
brushes can also be formed. Because of the weak hydrogen bond or van der Waals force
in the process of physical adsorption, the desorption of adsorbed macromolecules takes
places easily.
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3.1.2. Chemical Bonding

Unlike physisorption, chemical bonding is an irreversible process, which means the
polymer chains are attached by chemical bonds to substrate surface. As shown in Figure 5B,
two technologies (“grafting to” and “grafting from”) can be used to describe this process.

“Grafting to” refers to the reaction between synthesized polymers with functional
end-groups and substrate surface under appropriate reaction conditions. The polymer
chains are then chemically grafted to the substrate surface though covalent bonds, thus
forming a polymer brush [95]. The grafting density of brushes formed in this fashion is
limited due to the steric hindrance among the preformed polymers.

“Grafting from” is performed on in situ polymerization initiated by the initiator under
the light or heat [96,97]. Because of bearing initiator functionalities on substrate surfaces,
the polymer brush prepared by this method has high grafting density. Depending on the
initiators, the technique can be divided into several types: conventional free radical poly-
merization [98,99], active free radical polymerization [100,101], self-assembly microsphere
system [102,103] or glow discharge treatment [104].

3.2. Characteristic Methods and Conformation
3.2.1. Characteristic Methods

As shown in Figure 6, the surface morphology of SPB can be characterized by low tem-
perature transmission electron microscopy (cryo-TEM) [105,106], small angle neutron and
X-ray scattering [107,108]. The particle size can be measured by atomic force microscopy
(AFM) [109,110] and dynamic light scattering (DLS) [111]. The molecular weight and distri-
bution of polymer brushes can be clipped from the grafted surface and then characterized
by gel permeation chromatography (GPC) [112] (Figure 7), calculating the grafting density.
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Figure 7. Synthesis of PAA brushes: (A) schematic representation of the conformation of annealed
polyacid-grafted nanoparticles; (B) (a) low dispersity (Ð) and (B) (b) high dispersity (Ð) with variation
of Nw and pH. “↑”denotes rising, “↓”denotes falling. Reproduced from ref. [112] with permission.
Copyright 2021, The Royal Society of Chemistry.

3.2.2. Conformation

In order to study the conformation of SPB, many theoretical models have been ex-
plored [113]. According to the complexity, it can be divided into three kinds: scale the-
ory [114], numerical self-consistent field theory (NSCFT) [115], analytical self-consistent
field theory (ASCFT) [116], molecular dynamics (MD) [117] and Brownian dynamics
(BD) [118].

In addition, the influence of external factors (ionic strength, pH) on the conformational
parameters of polyelectrolyte brush can also be monitored by modern physical testing
methods [119] as shown in Figure 8.
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2016, Elsevier B. V.

4. Synthesis of Conducting Polymers Doped with SPB
4.1. Synthesis Methods of Conducting Polymers
4.1.1. Chemical Oxidation Polymerization

Conducting polymer powders are synthesized by chemical oxidation polymerization.
Schematic of the synthesis process of PPy by chemical oxidation polymerization is shown
in Figure 9. Firstly, an electrically neutral pyrrole loses an electron due to the action of an ox-
idant, thus becoming a cationic radical. Then, two cationic free radicals combine to dimeric
pyrrole, which generates neutral dimeric pyrrole by disproportionation. By repeating the
process, dipyrrole is oxidized to form trimer. Continue this cycle until a chain-like polymer
with a degree of polymerization of n is generated. The monomers of conducting polymers
are polymerized by incorporation of oxidants such as ferric chloride (FeCl3) [120,121], am-
monium persulfate ((NH4) 2S2O8, APS) [122–124] and hydrogen peroxide (H2O2) [125,126].
At present, conducting polymers are synthesized with different protonic acid dopants,
namely hydrochloric acid (HCl) [127,128], sulfuric acid (H2SO4) [129–131] and perchloric
acid (HClO4) [132,133]. However, these nonvolatile acids may remain on the surface of
conducting polymers, thus affecting their performance.
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Gao JW et al. [134] synthesized montmorillonite/polypyrrole (MMT/PPy) nanocom-
posites by in situ chemical oxidation polymerization (FeCl3 as oxidant). The content of PPy
varied from 10 to 80 wt%, and the reaction temperature was about 0 ◦C. When the critical
content (50 wt%) of polypyrrole was exceeded, the electrical conductivity of MMT/PPy
nanocomposites was higher than that of PPy. For example, the electrical conductivity of
PPy was 2.71 s/cm. When the content of PPy was 50 wt%, 60 wt% and 80 wt%, the electri-
cal conductivity of MMT/PPy nanocomposites was 2.72 s/cm, 3.68 s/cm and 4.81 s/cm,
respectively. Furthermore, the thermal stability of the nanocomposites was improved by
the addition of MMT. Gu Z [135] prepared graphite/polypyrrole (GO/PPy) composites
using hydrochloric acid as dopant. In comparison with GO, the electrical conductivity
of GO/PPy composites increased by four orders of magnitude, and the thermal stabil-
ity of GO/PPy composites improved. Wu TM et al. [136] synthesized composites with
high electrical conductivity and good solubility by using APS as oxidant. Different con-
centrations of anionic polyelectrolyte sodium polystyrene sulfonate (PSS) were taken as
dopants. Mass ratio of PSS/pyrole was 0.1, 0.15, 0.2, 0.25 and 0.3, respectively. The highest
electrical conductivity was exhibited when the mass ratio of PSS/pyrrole was 0.25, which
reached 151.3 ± 5.3 s/cm. Porramezan M and Eisazadeh H [137] synthesized PANI/Ag2O
nanocomposites by using APS as oxidant and hydroxypropylcellulose as a space stabilizer.
Results showed that Ag2O had a significant influence on the particle size and appearance of
the nanocomposites, and the thermal stability of PANI was improved due to the existence
of Ag2O. In 2009, Can M et al. [138] successfully synthesized polyaniline using periodic
acid (H5IO6) as oxidant. After H5IO6 was reduced to IO3

−, I2 was then formed. IO3
− and

I2 could be separately used as an oxidant and dopant of aniline monomer. Therefore, the
oxidation and doping processes were completed simultaneously. Its electrical conductivity
was 100 S/cm.
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In order to improve the water solubility of polyaniline, scholars have synthesized
polyaniline by the aqueous–aqueous emulsion method. Rubinger C P L et al. [139] syn-
thesized PPy/SiO2 nanocomposites by emulsion polymerization technique, using methyl
cellulose as stabilizer and APS as oxidant. The conduction process can be described by
three-dimensional variable-rang hopping (3D-VRH) model. Asim N et al. [140] used Hex-
adecy ltrimethyl ammonium bromide (CTAB) as the template to prepare PANI/V2O5
nanocomposite with core-shell structure by micro-emulsion polymerization. It was found
that the thermal stability of the nanocomposites was better than that of polyaniline. Wang Y
et al. [141] reported PANI/PS-PSS core-shell nanocomposites by in situ chemical oxidation
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polymerization of polystyrene polystyrene sulfonate (PS-PSS) copolymer on the surface
of PANI. Results showed that the conductive composites can be formed when the mass
fraction of PANI in the nanocomposite was approximately 2.78–12.5%, and the electrical
conductivity was 1.7 S/cm.

4.1.2. Electrochemical Oxidation Polymerization

Conducting polymer films can be directly deposited on the electrode by electrochemi-
cal oxidation polymerization [142–144]. Masa J et al. [145] synthesized metal-polypyrrole
(M-PPy) nanocomposites by electrochemical oxidation polymerization. The synthesis pro-
cess was carried out as follows: firstly, PPy was prepared on the glassy carbon electrode by
electrochemical polymerization. Metal particles (M = Mn, Fe and Co) were then introduced
alternately by electro-oxidation and reduction. It had been observed by electrochemical
techniques of cyclic voltammetry (CV) and hydrodynamics rotating disk electrode (RDE)
that M-PPy composites represented the ability of catalytic reduction of oxygen in acid
medium. When the heat treatment temperature of the composite was 450 ◦C~850 ◦C, the
activity of the composite increased significantly in the nitrogen atmosphere. Javier HF
et al. [146] synthesized single-wall carbon nanotubes (SWCNTs)/polypyrrole composite
films by electrochemical oxidation polymerization. The effects of SDBS and SWCNTs on
the polymerization process were investigated, and results showed that the impedance
coefficient of the electrode was decreased because of the existence of SDBS and SWCNTs,
while the capacitance of the film was increased. The thickness, roughness and stiffness of
the film also increased.

Since polyaniline film with electrical activity was first successful synthesized by Diaz
AF [147] using electrochemical oxidation polymerization in 1980, many studies have been
carried out on the electrochemical behavior of conducting polymers [148]. Electrochemical
polymerization of aniline can be described in three steps. The first step is that aniline
monomer loses electrons and turns into a positively charged free radical, which forms
dimer with its resonance isomer. Then dimer loses electrons and turns into a free radical
again under the electrochemical condition, forming a trimer with aniline free radical. In
this way, the polymer chains grow continuously until PANI is formed and deposited on
the anode.

Liu x et al. [149] synthesized PANI/SiO2 composite by electrochemical oxidation
polymerization without electrolyte additive under the condition of pH = 1.0–2.1. Chowd-
hury A N et al. [150] synthesized conducting copolymer polyaniline/poly(toluidine)/silica
(PANI/POT/SiO2) composite film on platinum electrode by electrochemical oxidation
polymerization. Excellent electrical activity of synthesized film was showed by the addi-
tion of silica to the copolymers. Borole D et al. [151] investigated the effects of different
organic acids (benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid and
adipic acid) and inorganic acids (sulfuric acid, hydrochloric acid, nitric acid, phosphoric
acid and perchloric acid) on the electrochemical synthesis of polyaniline, poly(toluidine)
and their copolymerized membranes. It was found that above three conducting polymers
can be formed in all inorganic electrolyte solutions and organic electrolyte solutions (oxalic
acid). The current density of the three conducting polymers in the anode was affected
by the anions in the solution, and the electrical conductivity was influenced by the type
of electrolyte.

4.2. PANI Doped by SPB

Due to the complex structure of polyaniline, the benzene-quinone structural model
of polyaniline proposed by MacDiarmid was not accepted until in 1987 [152]. Wang F.
et al. [153] confirmed the existence of a quinone ring, and also proved that the ratio of
benzene to quinone ring was 3:1 by analyzing IR and Raman spectra of polyaniline.

The intrinsic polyaniline is an insulator. The electrical conductivity of polyaniline can
be increased by more than 10 orders of magnitude by proton acid or electrochemical doping.
However, the doping mechanism of acid-doped polyaniline is different from that of other
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conducting polymers, whose doping process is always accompanied by the gain and loss of
electrons. That is, no valence change for dopant occurs in the acid-doped polyaniline. In the
process of doping, the nitrogen atom at the imine group is firstly protonated by H+, which
led to the appearance of holes in the valence band of doped polyaniline (p-type doping).
So a stable and delocalized poly(alexandrine imine) atomic group is formed. The positive
charge of imine nitrogen atoms is dispersed along the molecular chain to the neighboring
atoms through conjugation, thus increasing the stability of the system. Under the action of
external electric field, the holes move on the polyaniline chains through the resonance of
conjugated π-electron, showing the electrical conductivity. Figure 10 shows the structure of
polyaniline changes with different redox status.
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The benzene structure (Leucoemeraldine) (y = 1) and the quinone structure (Perni-
graniline) (y = 0) are both insulators, which could not be changed into conductors through
protonic acid doping. The benzene-quinone structure (0 < y < 1), which is called the
intermediate oxidation state (Emeraldine), can be changed from insulators to conductors
through protonic acid doping. Generally, when the ratio of quinone ring to benzene ring on
polyaniline chain is 1:3 (y = 0.5), the best electrical conductivity of polyaniline is obtained.

The properties of polyaniline are closely related to the preparation conditions. Studies
have found that acidic system is more conducive to the occurrence of chemical behavior
of polyaniline compared to alkaline and neutral systems. The suspensions of polyaniline-
coated polystyrene microsphere were synthesized by Ke et al. [154]. Results from cyclic
voltammetry test indicated that two oxidation peaks were observed, one of which (at 0.5 V)
was attributed to the oxidation of polyaniline. Moreover, inconsistent chain length and
cross-linking degree of polyaniline on the microspheres during synthesis resulted in low
consequential recurrence by cyclic voltammetry test. It was essential to synthesize micro-
spheres with active functional groups for exploring the doping mechanism of conducting
polymers [155], as displayed in Figure 11.

Taking ASPB (PS core, PSS brush) as a template, Korovin et al. [156] prepared PANI-
coated ASPB (ASPB-PANI) composites in 0.01 M hydrochloric acid using APS as oxidant.
It was shown that with the concentration of NaCl ranging from approximately 10−5 M to
10−1 M, the zeta potential of synthesized composites lied between –40 mV and –80 mV,
thus proving the excellent colloidal stability of SPB-PANI composites. Furthermore, the
electrical conductivity of SPB-PANI composites improved because of the addition of ASPB.
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4.3. PPy Doped by SPB

Polypyrrole plays an important role in conducting polymers because of its high
electrical conductivity, easy synthesis and environmental friendliness. PPy is a semi-
crystalline polymer by coupling with C 2 and C 5 of the pyrrole ring. Its structure is shown
in Figure 12.
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A conjugated structure consists of alternating C-C and C=C in PPy chains. Unlike
σ electron in C=C which is fixed on carton atom by covalent bond, two π electrons in
the conjugated double bonds can move on the entire molecular chains. That is to say,
the energy band for the whole molecule is produced by the overlap of π electron cloud.
The π electron moves in the molecular chains under external electric field, forming the
electron conductivity of PPy. However, since a high degree of polymerization is required
for activated carrier at room temperatures, poor electrical conductivity (10−8 S/cm) of
pristine PPy is showed. Defects in its conjugated structure may be caused by doping, which
enhances its electrical conductivity. The doping of PPy can be achieved by either protonic
doping or redox doping (Figure 12).
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In the process of protonic acid doping of polypyrrole, the protonation is firstly placed
at β carton of pyrrole and then the positively charged protons are transferred to the polypyr-
role chains. Meanwhile, the doping process is proceeding between negatively charged
anion and polymer chains. A high degree of π-electron delocalization in the conjugated
structure of PPy displays not only electrophilicity but also low electron dissociation energy.
Under different reaction conditions, the polymer chain may be oxidized (lose electrons)
or reduced (gain electrons), accompanied with dopant ions formed. Subsequently, the
electrical neutrality of polymer is maintained by the electrostatic interaction of dopant ions
and polymer chains.

Synthesis of PPy/ASPB composites was reported by Huang et al. [157] (Figure 13).
A two-step process for the synthesis of ASPB was developed. Firstly, the carbon sphere’s
core was synthetized by hydrothermal method. Polymerization was then initiated by azo
initiator by the addition of sodium styrene sulfonate (SSS). It was found that ASPB played
the role of the carrier of PPy.
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Figure 13. Scheme illustration of synthesis of PPy/ASPB composites (A); FTIR spectra (B) of (a)
carbon spheres, (b) azo initiator-immobilized carbon spheres and (c) SPB; Raman spectra (C) of (a)
PPy, (b) PPy/SPB composites and (c) SPB; TEM images (D) of (b) SPB and (d) PPy/SPB composites;
UV-vis absorption spectra (E) of (a) SPB, (b) PPy/SPB composites and (c) PPy. Reproduced from
ref. [157] with permission. Copyright: 2015 American Scientific Publishers.

4.4. PANI-PPy Doped by SPB

The physical and chemical properties of copolymers are obviously different from
those of homopolymers and their blends [158]. Most conducting polymers or polymer
composites lose electrical conductivity gradually due to their phase separation. Copolymers
are relatively stable because different polymers are connected by covalent bond. It can be
said that copolymer is a kind of multifunctional material which integrate the properties of
different comonomers. Therefore, the study of aniline/pyrrole copolymer is not only of
great theoretical significance but also practical application.

For the copolymerization of aniline and pyrrole, it can be described by two com-
peting processes [159]. One is a primary interaction between comonomers, while the
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other is the secondary interaction between active aniline, active pyrrole and active aniline-
pyrrole. In comparison with extensive reports of polypyrrole and polyaniline, research
on poly(aniline-co-pyrrole) are far from being adequate. Up to now, most of the previous
research has focused on the topic of synthesized copolymers with nanostructures using
various templates [160] including poly(aniline-co-pyrrole) nanospheres synthesized by
chemical copolymerization [161] and poly(aniline-co-pyrrole) nanocomposites coated on
carbon fibers surfaces though one-step electrochemical method [162]. As reported by
Huang [163] et al., the room temperature conductivity of poly(aniline-co-pyrrole)/ASPB
composites (8.3 S/cm), which were prepared by chemical oxidation polymerization method,
was higher than that of un-doped poly(aniline-co-pyrrole) (2.1 S/cm).

5. Research Methods

According to the theory of Su, Schridffer and Heeger (SSH) [164] in 1979, the carriers
of conducting polymers are mainly composed of polaron, bipolaron and soliton. In order
to study the structure and properties of conducting polymers, as well as their conducting
and doping mechanism, various research methods involving spectroscopy, morphology,
cyclic voltammetry, conductivity and transient current are widely used.

5.1. Spectra Analysis
5.1.1. FTIR

Carrasco P M and Grande H J et al. [165] studied the relationship between the conjugate
length and the electrical conductivity of conductive polymers using FTIR. A graphic
illustration of the ratio of the integrated absorption areas of the 1445 cm−1 and 1535 cm−1

(A1445/A1535) as the abscissa axis and log (Conductivity) as the ordinate axis suggested
that the larger the slope, the smaller the conjugate length based on the theory proposed
by Baughman R and Shacklette L [166]. Nicho M E and Hu H [167] investigated the
coating of PPy composites using infrared spectroscopy. It was proved that, on one hand,
the interaction between the functional groups of polyvinyl alcohol and the iron atom
of FeCl3. On the other hand, it was suggested that the conductivity of PPy was related
to chloride ion. Thus, the chloride ions were associated with the conductive part and
insulation part in conductive coating. The dispersion of PPy in the polymers is owing to
the interaction among molecules. David W and Hatchett et al. [168] studied the acid-doped
PANI by infrared spectroscopy. It was found that the strong acid and weak acid had a
fundamental difference in doping principle. The oxidation state of polymers was stabilized
by the sustained-release system caused by weak acid. On the contrary, the sustained-
release system was not provided by strong acid, resulting in the redox state changing with
washing process.

5.1.2. UV-Vis

Reported by Shen YQ and Wan MX [169], the soluble PPy doped with
β-naphthalenesulfonic acid was analyzed by UV-Vis spectroscopy. The difference of dop-
ing degree was proven by the shift of the peaks of polaron and bipolaron in the UV-Vis
spectroscopy. Similarly, in the PPy film prepared by electrochemical oxidation polymeriza-
tion, the movement of peak depended on potential, demonstrating the interaction among
polymer chains. Malinauskas A and Holze R [170] studied the degradation of polyani-
line using UV-Vis spectroscopy and discussed the variation of spectrum at high potential.
The degradation followed the first order kinetics at the electrode potential from +0.85 to
+1.20 V, and the rate constant ranged from 8.40 × 10−6 to 2.93 × 10−3 s−1. Pruneanu S
et al. [171] studied the structure and properties of PANI films formed by electrochemical
oxidation polymerization using UV-Vis spectroscopy. It was found that the absorbance of
films formed in N-methylpyrrolidone (NMP) solution increased with the increase of the
deposition times of NMP. UV-Vis spectroscopy results demonstrated that the degradation
of polymers was prevented by thick films.
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5.1.3. Raman

Claudio H and Silva B et al. [172] characterized the polymerization products of Ani-
APS in aqueous solution at 413.1 nm and 1064 nm in Raman spectra at different pH values.
It was found that the polymer product was PANI-ES at pH = 4.9, and the characteristic ab-
sorption peak appeared at 1064 nm in Raman spectroscopy. At pH = 13.2, the characteristic
peaks at 1064 nm and 413.1 nm indicated that the main product was adduct of 1, 4-Michael
aniline monomer and 1, 4-benzoquinone-monoimine. Lee S et al. [173] studied the electrical
and optical properties of the polyaniline nanowires between the metal and the insulator
(M–I transition). When the pH value of the solution was 2, the electrical conductivity of
the polyaniline nanowires was reduced to 0.95 S/cm. This de-doping behavior can be
characterized by Raman spectroscopy.

5.1.4. XPS

X-ray photoelectron spectroscopy, which can give approximately 5–10 nm surface
atomic composition and chemical bond characteristics, can be used to analyze the doping
process including doping degree N+/N, crosslinking degree, energy distribution and
atomic valence. Therefore, XPS is the most commonly used method for studying the
structure and doping degree of conducting polymers. Lin et al. [174] studied the effects
of PANI-HCl, PANI-SDBS-HCl and PANI-DBSA on different PANI doping systems by
XPS. Results showed that the PANI in PANI-HCl system was prone to de-doping in the
process of post-treatment. In PANI-SDBS-HCl system, DBS− was combined with positively
charged provided by PANI chains due to electrostatic adsorption, which acted as a dopant
and simultaneously induced the dissolution of PANI. Moreover, the spectra of N1s and S2p
of PANI-SDBS-HCl was similar to that of PANI-DBSA, but the N+/N and S−/N of SDBS-
HCl were 0.46 and 1.14, respectively, indicating optimum doping level. As we reported
earlier [175], PPy/ASPB nanocomposite was synthesized by in situ chemical oxidative
polymerization. Information about its structure was characterized by FTIR, Raman spectra
and XPS measurements (Figure 14).
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5.2. Morphological Analysis

In general, the characterization methods of the morphology of conducting polymers
are mainly TEM, SEM and FE-SEM (Figure 15). For example, the microstructure of un-
doped PPy usually appears as a cauliflower-like or tumor-like structure [176]. It is mainly
due to the similar polymerization capacity of α-carbon and β-carbon of pyrrole monomers,
leading to the performance of three-dimensional polymer growth. The addition of dopants
can provide the spatial factors for the orderly growth of pyrrole, resulting in polypyrrole
with a special microstructure, such as dendritic [177], fibrous [178] and tube [179]. Wang Y
et al. [180] prepared PPy with helical and cyclic microstructures using APS as the oxidant
and cetyltrimethylammonium bromide as the cationic surfactant. The appearance of PANI
is generally presented rod-like or fibrous, mainly due to inherent characteristics of fibrous
chain growth in aniline polymerization reaction [181]. Using this characteristic, Yang S
M et al. [182] prepared PANI fibers with different particle sizes in the presence of anodic
aluminum oxide template in different voids using chemical oxidation polymerization
and electrochemical oxidation polymerization. Figure 15 displays the morphologies of
PPy/ASPB, PANI/ASPB and (PPy-PANI)/ASPB composites [183] by SEM.
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Figure 15. SEM images of (A) PPy (a), PPy/ASPB nanocomposite (b), reproduced from ref. [176] with
permission. Copyright: 2012 BME-PT; (B) PANI (a), PANI/ASPB nanocomposite (b), reproduced from
ref. [155] with permission. Copyright: The Institution of Engineering and Technology; (C) PPy–PANI
(a), (PPy–PANI)/ASPB composites (b), reproduced from ref. [183] with permission. Copyright: 2012
BME–PT.

In addition, the crystallinity of conducting polymers is significant, which is directed
by X-ray diffraction (XRD) [184–186]. Pruneanu S et al. [187] studied the PPy films doped
by perchlorate (ClO4

−) and p-benzenesulfonic acid (TsO−) using electrochemical method
by XRD. It was found that anion type had an important effect on the oxidation behavior
and structure of polymers. The dynamic parameters (AC charge density, cathodic transfer
coefficient and anode transfer coefficient) were obtained using the Fiat formula. It was
also found that the PPy film doped with ClO4

− had high anisotropy. In contrast, the PPy
film doped with TsO− exhibited isotropic. Pouget J P et al. [188] studied the two structures
of polyaniline using XRD techniques, which laid a good foundation for research on the
doping of aniline and the structure of polymers in the future.
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5.3. Performance Tests

In general, thermal stability and solubility are commonly used to investigate the
overall performance of conducting polymers. The electrical conductivity of conducting
polymers depends on synthetic method, synthesis conditions, chain structure and the type
and doping degree of dopants. The electrical conductivity at room temperature varies
generally from 10−9 to 105 S/cm. The four-probe method is the most direct and effective
method for testing the electrical conductivity of conducting polymers.

One of the limited factors of conducting polymers in practical application is its
poor thermal stability, especially in the presence of moisture and oxygen. Thiéblemont J
et al. [189] studied the oxidation of PPy powders in the air. It was found that when the
temperature was higher than 230 ◦C, the oxidation process was obvious, leading to the
decomposition of polymer. When the temperature was less than 230 ◦C, the oxidation pro-
cess was slow and the kinetic process of oxidation process was investigated. The activation
energy was about 110 kJ mol−1. The electrical conductivity of the conducting polymers de-
creased as oxidation degree increased. Therefore, in order to improve the thermal stability
of conducting polymers for application needs, surfactants [190,191], metal complexes [192]
and other substances were added [193,194]. We also studied the thermal stability and
the conductivity of the saturated solution of ethanol used as reference (Figure 16). It was
found that by doping ASPB, the thermal stability and solubility of PANI-PPy composite
were enhanced.
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Figure 16. (A) Effect of polymerization temperature and molecular weight of grafted polyelectrolyte
brushes on electrical conductivity; (B) qualitative (a) and quantitative (b) analysis of the conductivity
of saturated solution of PANI–PPy nanocomposite with different dopants (T = 25 ◦C, Ph = 6).
Reproduced from ref. [183] with permission. Copyright: 2012 BME–PT.

In addition, electrochemical research methods, including cyclic voltammetry (CV) [195,196],
electrochemical impedance spectroscopy (EIS) [197,198] and transient current (TC) [199,200] are
commonly used.
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6. Theory of Conducting Polymers Doped by SPB
6.1. Doping and Conducting Mechanism of Conducting Polymers

From the view of conducting mechanisms, conjugate double bond of organic polymers
offers favorable factors of freedom for the movement for electrons. The presence of defects
in the conjugated structure of conducting polymers helps to improve the conductivity. It
is the process of removing (or adding) electrons from the polymer chains which is called
doping. Taking redox doping and proton acid doping for example, the general mechanism
is explained as follows:

Due to high delocalization of π electrons in the conjugated structure of conducting
polymers, the conjugated polymer chains may be oxidized or reduced. Meanwhile, dopant
ions are formed by the reduction or oxidation of dopant. The interaction between dopant
ions and polymer chains is present to maintain the electrical neutrality of the polymer
system. This is redox doping.

During the doping process of proton acid, no electron migrations happen between the
polymer chains and dopants. Instead, the protons of dopants are attached to the carbon
atoms of polymer chains. As a conjugated polymer chain expands, the charge distribution
on polymer chain changes. However, not every kind of protonic acid follows this doping
mechanism, especially for strong oxidation protonic acids, whose doping mechanism needs
further study.

In addition, from the physics point of view, changes of the occupation of electrons
happen in the molecular orbital of conducting polymers, which changes the π-electron
energy levels and reduces the energy difference. This makes the resistance of carrier
migration decrease, thus achieving high electrical conductivity. In contrast, wide energy
gap lies on conducting polymers without doping. Basically, there is no electron on the
anti-bond orbital at room temperature, resulting in low electrical conductivity.

6.2. Three-Dimensional Variable Range Hopping (3D VRH) Theoretical Models

Based on studying the macroscopic properties of materials, Granular Metal Islands
Model is the most common theory that explains the conducting mechanisms of polyani-
line [201]. According to the theory of Granular Metal Islands Model, conductive phase and
an insulating phase polyaniline are formed with an increase in the degree of protonation.
The conduction behavior of the conductive phase is realized through the limitation of
tunnelling effect. The insulating phase is composed of materials defects, chain segments
and linked and transitional doping regions. This model fully considers the anisotropy and
internal heterogeneity of conducting polymers. It is considered that the entire conductive
system consists of metal regions and surrounding insulating regions. The macroscopic
conductivity is relevant to the interchain conductivity. Granular Metal Islands Model is
proposed based on the relationship between electrical conductivity and temperature of
doped PANI, as shown in Equation (1):

σ = σ0 exp[−(
T0

T
)

1
r+1

] (1)

The parameter σ0 and T0 are depended on the molecular vibration frequency, localiza-
tion length, average transition length and state density of materials. r (r = 1, 2, 3) stands
for the dimension of electronic variable transition. Logarithmic Equation (2) is another
transformation of Equation (1), which means a linear relationship between lnσ and T−1/2

and T−1/4.

ln σ = ln σ0 − (
T0

T
)

1
r+1

(2)

As reported by literature, the conducting mechanism of PANI/ASPB can be explained
by the three-dimensional variable range-hopping model (3D VRH) [202]. As displayed
in Figure 17, SEM images show that PANI is fibrous, while PANI/ASPB displays sim-
ilar circular particles whose diameter is between 100 nm and 500 nm. Assuming that
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each particle is crimped by a bundle of one-dimensional PANI chains, carrier mobility
is closely correlated to one-dimensional molecular chains, which is three-dimensional
variable range-hopping.
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Similarly, the morphologies characterized from the SEM images show that PPy/ASPB
typically appears as a “cauliflower-like” or “tumor-like” structure (see Figure 18). The
three-dimensional growth of PPy is achieved by the 2, 3-coupling polymerization, and the
space factors for Py orderly growth is provided by the addition of ASPB with uniform
spherical structure, which is demonstrated by the 3D VRH.
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6.3. Template Theory

As an effective method to prepare nanomaterials, template method is characterized by
the fact that chemical reactions are performed in an effectively controlled region, regardless
of whether they are in liquid or gas phase. Therefore, the conformation and properties of
nanomaterials can be precisely controlled using template as the carrier. Many investiga-
tors [156,175,203,204] explored the polymerization of aniline which is performed within the
interfacial volume of SPBs. Because aniline monomers were confined efficiently within the
finite volume of polyelectrolyte brushes, the optimal conditions for matrix polymerization
were provided by SPBs (Figure 19).
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ref. [203] with permission. Copyright: 2014 John Wiley and Sons.

7. Conclusions and Outlook

In this review, several conducting polymers doped by ASPB are presented. The doping
of ASPB has greatly improved the conductive properties, thermal stability and solubility
properties of conducting polymers. However, in view of unique chemical structure of
ASPB, it still has significant scope to the development of conducting polymers doped with
ASPB in future research.

On one hand, in the synthesis of ASPB, ASPB with controllable molecular structure
was prepared by controlling the reaction condition parameters. Along with the molecular
weight of grafted polymer chain, further in-depth research is needed to investigate the
structure–activity relationship between the molecular structure of ASPB, such as graft
density, charge density and the conductive properties of conducting polymers. Moreover,
no further research has been conducted on the effect of the interaction between ASPB
and conducting polymers on the performances of composites. On the other hand, except
for PANI and PPy, more conducting polymers require further study. As for poly(aniline-
co-pyrrole), present research only involves the equimolar ratio of two monomers. With
different ratios of the copolymers studied, conducting polymers doped with ASPB will be
further understood.

Wang et al. [205] developed the preparation of PPy/ASPB composites in organic
electronic devices (Figure 20). The ASPB were used as the carrier of PPy, resulting in
conductive ink good film-forming performance. Compared with PEDOT/PSS, PPy/ASPB



Molecules 2024, 29, 1315 22 of 30

composites have low leakage current, which opened up perspectives for the application in
electrochemistry.
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43. Omastovà, M.; Mravčáková, M.; Chodák, I. Conductive polypropylene/clay/polypyrrole nanocomposites. Polym. Eng. Sci. 2006,
46, 1069–1078. [CrossRef]

44. Yin, W.S.; Ruckenstein, E. Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth. Met.
2000, 108, 39–46. [CrossRef]

45. Shen, Y.Q.; Wan, M.X. Soluble conducting polypyrrole doped with DBSA–CSA mixed acid. J. Appl. Polym. Sci. 1998, 68, 1277–1284.
[CrossRef]

46. Wang, J.; Xu, S.; Du, H.; Zhang, Z.; Lv, J.; Sun, Y.; Wang, L. Mechanism research of SDBS-functionalized polypyrrole to improve
electrochemical performance of screen-printed graphene electrode. Electrochim. Acta 2023, 454, 142408. [CrossRef]

47. Zhou, W.; Wu, K.; Zhang, K.; Wang, Z.; Liu, Z.; Hu, S.; Fang, Y.; He, C. Studies on corrosion behaviors of Q235 steel coated by the
polypyrrole films doped with different dopants. Int. J. Electrochem. Sci. 2020, 15, 2594–2603. [CrossRef]
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