Ameliorative Effect of Areca Nut Polyphenols on Adverse Effects Induced by Lipopolysaccharides in RAW264.7 Cells
Abstract
:1. Introduction
2. Results
2.1. Summary of Data Quality
2.2. Gene Expression Distribution and Inter-Sample Correlation
2.3. Principal Component Analysis
2.4. Differential Gene Statistics
2.5. Gene Ontology Functional Enrichment Analysis
2.6. Kyoto Encyclopedia of Genes and Genomes Pathways Enrichment Analysis
2.7. Protein–Protein Interaction Analysis
3. Discussion
4. Materials and Methods
4.1. Preparation of Areca Nut Polyphenols
4.2. Cell Culture
4.3. RNA Extraction and Quality Control
4.4. Library Preparation for Transcriptome Sequencing
4.5. Clustering and Sequencing (Novogene Experimental Department)
4.6. GO and KEGG Enrichment Analysis of Differentially Expressed Genes
4.7. PPI Analysis of Differentially Expressed Genes
4.8. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heatubun, C.D.; Dransfield, J.; Flynn, T.; Tjitrosoedirdjo, S.S.; Mogea, J.P.; Baker, W.J. A monograph of the betel nut palms (Areca: Arecaceae) of East Malesia. Bot. J. Linn. Soc. 2012, 168, 147–173. [Google Scholar] [CrossRef]
- Gupta, A.K.; Tulsyan, S.; Thakur, N.; Sharma, V.; Sinha, D.N.; Mehrotra, R. Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul. Toxicol. Pharmacol. 2020, 110, 104548. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, Y.-J.; Wu, N.; Sun, T.; He, X.-Y.; Gao, Y.-X.; Wu, C.-J. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015, 164, 340–356. [Google Scholar] [CrossRef]
- Sharma, D.C. Betel quid and areca nut are carcinogenic without tobacco. Lancet Oncol. 2003, 4, 587. [Google Scholar] [CrossRef] [PubMed]
- Volgin, A.D.; Bashirzade, A.; Amstislavskaya, T.G.; Yakovlev, O.A.; Demin, K.A.; Ho, Y.J.; Wang, D.; Shevyrin, V.A.; Yan, D.; Tang, Z.; et al. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem. Neurosci. 2019, 10, 2176–2185. [Google Scholar] [CrossRef]
- Oliveira, N.G.; Ramos, D.L.; Dinis-Oliveira, R.J. Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: An updated review. Arch. Toxicol. 2021, 95, 375–393. [Google Scholar] [CrossRef]
- Chavan, Y.V.; Singhal, R.S. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols. J. Sci. Food Agric. 2013, 93, 2580–2589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, Y.; Xing, X.; Wang, S. Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism. Curr. Opin. Food Sci. 2022, 48, 100941. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, R.; Mine, Y. The impact of oolong and black tea polyphenols on human health. Food Biosci. 2019, 29, 55–61. [Google Scholar] [CrossRef]
- Zhang, W.M.; Huang, W.Y.; Chen, W.X.; Han, L.; Zhang, H.D. Optimization of extraction conditions of areca seed polyphenols and evaluation of their antioxidant activities. Molecules 2014, 19, 16416–16427. [Google Scholar] [CrossRef]
- Paranagama, M.P.; Piyarathne, N.S.; Nandasena, T.L.; Jayatilake, S.; Navaratne, A.; Galhena, B.P.; Williams, S.; Rajapakse, J.; Kita, K. The Porphyromonas gingivalis inhibitory effects, antioxidant effects and the safety of a Sri Lankan traditional betel quid—An in vitro study. BMC Complement. Med. Ther. 2020, 20, 259. [Google Scholar] [CrossRef] [PubMed]
- Yasen, A.; Aini, A.; Wang, H.; Li, W.; Zhang, C.; Ran, B.; Tuxun, T.; Maimaitinijiati, Y.; Shao, Y.; Aji, T.; et al. Progress and applications of single-cell sequencing techniques. Infect. Genet. Evol. 2020, 80, 104198. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ito, A.; Chen, X.; Long, C.; Okamoto, M.; Raoul, F.; Giraudoux, P.; Yanagida, T.; Nakao, M.; Sako, Y.; et al. Usefulness of pumpkin seeds combined with areca nut extract in community-based treatment of human taeniasis in northwest Sichuan Province, China. Acta Trop. 2012, 124, 152–157. [Google Scholar] [CrossRef]
- Rangani, S.C.; Marapana, R.A.U.J.; Senanayake, G.S.A.; Perera, P.R.D.; Pathmalal, M.M.; Amarasinghe, H.K. Correlation analysis of phenolic compounds, antioxidant potential, oxygen radical scavenging capacity, and alkaloid content in ripe and unripe Areca catechu from major cultivation areas in Sri Lanka. Appl. Food Res. 2023, 3, 100361. [Google Scholar] [CrossRef]
- Grylls, A.; Seidler, K.; Neil, J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed. Pharmacother. 2021, 137, 111334. [Google Scholar] [CrossRef]
- Yi, S.; Zou, L.; Li, Z.; Sakao, K.; Wang, Y.; Hou, D.-X. In Vitro Antioxidant Activity of Areca Nut Polyphenol Extracts on RAW264.7 Cells. Foods 2022, 11, 3607. [Google Scholar] [CrossRef]
- Strober, W.; Murray, P.J.; Kitani, A.; Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 2006, 6, 9–20. [Google Scholar] [CrossRef]
- Jakopin, Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: A rational approach toward inhibition of NOD signaling pathway. J. Med. Chem. 2014, 57, 6897–6918. [Google Scholar] [CrossRef]
- Li, N.; Zhou, H.; Wu, H.; Wu, Q.; Duan, M.; Deng, W.; Tang, Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 2019, 24, 101215. [Google Scholar] [CrossRef]
- Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N. Protein-protein interaction detection: Methods and analysis. Int. J. Proteom. 2014, 2014, 147648. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, J.; Huan, L.; Lian, J.; Bao, C.; Li, Y.; Ge, C.; Li, J.; Yao, M.; Liang, L.; et al. GNAI3 inhibits tumor cell migration and invasion and is post-transcriptionally regulated by miR-222 in hepatocellular carcinoma. Cancer Lett. 2015, 356, 978–984. [Google Scholar] [CrossRef]
- Li, Z.W.; Sun, B.; Gong, T.; Guo, S.; Zhang, J.; Wang, J.; Sugawara, A.; Jiang, M.; Yan, J.; Gurary, A.; et al. GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2. Gastroenterology 2019, 156, 2297–2312. [Google Scholar] [CrossRef] [PubMed]
- Khumalo, G.P.; Nguyen, T.; Van Wyk, B.-E.; Feng, Y.; Cock, I.E. Inhibition of pro-inflammatory cytokines by selected southern African medicinal plants in LPS-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 2024, 319, 117268. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Liu, X.; Wang, C.; Wu, Z.; Tian, X.; Xiao, Y.; Li, K.; Li, Z.; Wang, Y. Optimization of purification conditions for areca seeds using microporous resins. J. Food Meas. Charact. 2021, 15, 2440–2447. [Google Scholar] [CrossRef]
- Li, K.; Wang, C.; Zhao, Z.; Wu, Z.; Wu, Z.; Tian, X.; Xiao, Y.; Li, Z.; Wang, Y. A comparison for the effects of raw, smoked, and smoked and brined areca nut extracts on the immune and inflammatory responses in the Kunming mice. J. Food Biochem. 2020, 44, e13319. [Google Scholar] [CrossRef]
- Granato, D.; de Araújo Calado, V.M.; Jarvis, B. Observations on the use of statistical methods in Food Science and Technology. Food Res. Int. 2014, 55, 137–149. [Google Scholar] [CrossRef]
Sample | Q20 % | Q30 % | GC % |
---|---|---|---|
Con-1 | 97.81 | 93.85 | 50.37 |
Con-2 | 97.65 | 93.48 | 50.58 |
Con-3 | 97.62 | 93.43 | 50.45 |
LPS-1 | 97.88 | 94.02 | 50.45 |
LPS-2 | 97.9 | 94.04 | 50.65 |
LPS-3 | 97.78 | 93.77 | 50.51 |
160-1 | 97.88 | 94.17 | 52.08 |
160-2 | 97.85 | 94.09 | 51.77 |
160-3 | 97.73 | 93.83 | 52.81 |
320-1 | 97.73 | 93.8 | 52.35 |
320-2 | 97.63 | 93.55 | 52.57 |
320-3 | 97.53 | 93.4 | 52.68 |
Log2 Fold Change | LPS/Con | P160/Con | P320/Con |
---|---|---|---|
≥10 | 14 | 26 | 26 |
≤5 to <10 | 282 | 540 | 629 |
≤2 to <5 | 847 | 1552 | 1804 |
<−2 to <2 | 7699 | 7104 | 6654 |
<−5 to ≤−2 | 419 | 1821 | 1350 |
<−10 to ≤−5 | 16 | 175 | 75 |
≤−10 | 0 | 0 | 0 |
Pathway | LPS/Con | P160/Con | P320/Con |
---|---|---|---|
NOD-like receptor signaling pathway | 0.001569 | 0.00867 | 0.015443 |
Tuberculosis | 0.004478 | 0.022062 | 0.021961 |
TNF signaling pathway | 0.00479 | 0.000416 | 0.004654 |
Toll-like receptor signaling pathway | 0.00594 | 0.038412 | 0.000644 |
Ferroptosis | 0.009903 | - | - |
Fanconi anemia pathway | 0.016513 | 0.038412 | 0.010493 |
Hepatitis B | 0.01739 | 0.024212 | 0.000698 |
Influenza A | 0.01739 | - | 0.022635 |
Cytosolic DNA-sensing pathway | 0.021311 | - | - |
Acute myeloid leukemia | 0.02167 | - | 0.022635 |
Non-small cell lung cancer | 0.02167 | - | 0.021167 |
Chronic myeloid leukemia | 0.040914 | - | 0.02252 |
Alzheimer’s disease | 0.045233 | - | - |
Huntington’s disease | 0.045233 | 0.043236 | - |
Necroptosis | 0.045233 | 0.035543 | - |
NF-kappa B signaling pathway | 0.045233 | 0.024977 | 0.018269 |
Glioma | 0.045233 | - | - |
p53 signaling pathway | 0.045934 | - | - |
Herpes simplex infection | - | 0.015792 | 0.033036 |
Non-alcoholic fatty liver disease (NAFLD) | - | 0.024212 | - |
Measles | 0.029613 | - | |
Chagas disease (American trypanosomiasis) | 0.004859 | ||
Kaposi’s sarcoma-associated herpesvirus infection | 0.007525 | ||
Cellular senescence | 0.014608 | ||
Epstein–Barr virus infection | 0.031664 | ||
Leishmaniasis | 0.03858 | ||
Small cell lung cancer | 0.043946 |
Gene Name | Log2 Fold Change | ||
---|---|---|---|
LPS/Con | P160/Con | P320/Con | |
IL-1α | 8.025507 | 4.466649 | 4.1412 |
IL-1β | 10.79287 | 4.484613 | 4.872983 |
IL-18 | 2.84762 | 1.954871 | 1.04118 |
IL-6 | 10.34082 | 10.55272 | 8.590223 |
IL-11 | 4.788148 | 5.663995 | 5.67686 |
Gene Symbol | Gene Description | Degree |
---|---|---|
Gnai3 | G protein subunit alpha i3 | 42 |
Gnai2 | G protein subunit alpha i2 | 40 |
Ccl5 | C-C motif chemokine 5 | 39 |
Gnb1 | Guanine nucleotide-binding protein subunit beta-1 | 39 |
Ccr5 | C-C chemokine receptor type 5 | 39 |
Ccr2 | C-C chemokine receptor type 2 | 39 |
Cxcr3 | C-X-C chemokine receptor type 3 | 38 |
Adcy3 | Adenylate cyclase 3 | 38 |
Ccr1 | C-C chemokine receptor type 1 | 38 |
Gpr18 | N-arachidonyl glycine receptor | 37 |
Gene Symbol | Gene Description | Degree |
---|---|---|
Gnai3 | G protein subunit alpha i3 | 48 |
Adra2a | Adrenergic receptor alpha-2A | 47 |
Lpar1 | Lysophosphatidic acid receptor 1 | 47 |
Gnat3 | Guanine nucleotide-binding protein G(t) subunit alpha 3 | 47 |
Gpar18 | N-arachidonyl glycine receptor | 46 |
Lpar3 | Lysophosphatidic acid receptor 3 | 46 |
Ccr2 | C-C chemokine receptor type 2 | 46 |
Ccr10 | C-C chemokine receptor type 10 | 46 |
Cxcl2 | C-X-C motif chemokine ligand 2 | 46 |
Adora3 | Adenosine receptor A3 | 46 |
Gene Symbol | Gene Description | Degree |
---|---|---|
Ubb | Ubiquitin B | 89 |
BC006779 | — | 88 |
Cxcl10 | C-X-C motif chemokine 10 | 71 |
Akt1 | AKT serine/threonine kinase 1 | 63 |
Src | Tyrosine-protein kinase Src | 63 |
Ccl5 | C-C motif chemokine 5 | 61 |
Nfkb1 | Nuclear factor NF-kappa-B p105 subunit | 60 |
Cdk8 | Cyclin-dependent kinase 8/11 | 56 |
Ncor2 | Nuclear receptor co-repressor 2 | 56 |
Ccnc | Cyclin-C | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Yi, S.; Wang, Y. Ameliorative Effect of Areca Nut Polyphenols on Adverse Effects Induced by Lipopolysaccharides in RAW264.7 Cells. Molecules 2024, 29, 1329. https://doi.org/10.3390/molecules29061329
Zou L, Yi S, Wang Y. Ameliorative Effect of Areca Nut Polyphenols on Adverse Effects Induced by Lipopolysaccharides in RAW264.7 Cells. Molecules. 2024; 29(6):1329. https://doi.org/10.3390/molecules29061329
Chicago/Turabian StyleZou, Luyan, Shuhan Yi, and Yuanliang Wang. 2024. "Ameliorative Effect of Areca Nut Polyphenols on Adverse Effects Induced by Lipopolysaccharides in RAW264.7 Cells" Molecules 29, no. 6: 1329. https://doi.org/10.3390/molecules29061329
APA StyleZou, L., Yi, S., & Wang, Y. (2024). Ameliorative Effect of Areca Nut Polyphenols on Adverse Effects Induced by Lipopolysaccharides in RAW264.7 Cells. Molecules, 29(6), 1329. https://doi.org/10.3390/molecules29061329