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Abstract: Accurately predicting plant cuticle–air partition coefficients (Kca) is essential for assessing
the ecological risk of organic pollutants and elucidating their partitioning mechanisms. The current
work collected 255 measured Kca values from 25 plant species and 106 compounds (dataset (I))
and averaged them to establish a dataset (dataset (II)) containing Kca values for 106 compounds.
Machine-learning algorithms (multiple linear regression (MLR), multi-layer perceptron (MLP), k-
nearest neighbors (KNN), and gradient-boosting decision tree (GBDT)) were applied to develop eight
QSPR models for predicting Kca. The results showed that the developed models had a high goodness
of fit, as well as good robustness and predictive performance. The GBDT-2 model (R2

adj = 0.925,

Q2
LOO = 0.756, Q2

BOOT = 0.864, R2
ext = 0.837, Q2

ext = 0.811, and CCC = 0.891) is recommended as the
best model for predicting Kca due to its superior performance. Moreover, interpreting the GBDT-1
and GBDT-2 models based on the Shapley additive explanations (SHAP) method elucidated how
molecular properties, such as molecular size, polarizability, and molecular complexity, affected the
capacity of plant cuticles to adsorb organic pollutants in the air. The satisfactory performance of the
developed models suggests that they have the potential for extensive applications in guiding the
environmental fate of organic pollutants and promoting the progress of eco-friendly and sustainable
chemical engineering.

Keywords: organic pollutants; plant cuticle–air partition coefficient; QSPR; machine learning

1. Introduction

Natural and human activities release massive quantities of organic pollutants into the
atmosphere [1]. These pollutants are intercepted by terrestrial vegetation and transferred
to terrestrial ecosystems, where they accumulate through the food chain to higher nutrient
levels [2,3]. The plant cuticle acts as the main interface for the exchange of organic pollutants
between the air phase and the plant. It also serves as the main barrier to the interception of
atmospheric pollutants [4]. Apart from the uptake and release of organic pollutants, the
plant cuticle is also recognized as an accumulation chamber for organic pollutants [5,6]. The
partitioning of organic compounds between the cuticle and air is of great interest due to
airborne organic pollutants’ strong affinity to plant cuticles and their potential toxicity [7].

The exchange of organic contaminants between plant cuticles and air is typically eval-
uated through the plant cuticle–air partition coefficient (Kca) [8,9]. The partition coefficient,
Kca, is generally determined by the ratio of the equilibrium concentration of organic contam-
inants between the isolated cuticle membranes (CMs) or polymer matrix membranes (MX)
and the air, indicating the plant’s capacity to uptake airborne organic pollutants [10,11].
It is important to note that, at present, there is a paucity of experimentally measured Kca
values, and the interaction mechanisms of organic pollutants between plant cuticles and
air are still obscure [12]. To the best of our knowledge, only a few hundred Kca values for
organic pollutants between a few plants and air have been measured experimentally [6].
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The scarcity of these experimental Kca values is mainly attributed to the laborious and time-
consuming nature of conducting experiments to measure them, as well as the challenges
posed by the diversity of plant species and types of organic contaminants [13,14]. This
has also become an insurmountable bottleneck in assessing the ecological risk of organic
pollutants by understanding their accumulation in plants and the exchange between the
atmosphere and plants. Therefore, it could be valuable to focus on a straightforward and
efficient method for predicting the Kca values of organic pollutants to assess air quality and
associated ecological risks.

Developing models with the ability to capture the molecular interactions between
different compounds and plant cuticles is a complex task. When few independent variables
are included, it is difficult, or sometimes even impossible, for a model to adequately reflect
the mechanisms of interest precisely due to the limited number of independent variables
available, which are representative of the influencing factors [2,15]. Some studies have
solved this problem by developing poly-parameter linear free-energy relationship (pp-
LFER) models [6,10]. However, the application of these models has been limited by the
scarcity of Abrahamic descriptors and the fact that Abrahamic descriptors are not applicable
to certain non-polar compounds [16]. This hinders the development and application of
mechanism-based predictive models.

The relationship between the physical and chemical properties of the compound and
the descriptors that quantify the molecular structural properties of compounds, namely the
quantitative structural property relationship, provides a potential shortcut for clarifying
the interaction between molecules and plant cuticles [17,18]. Currently, only one study has
demonstrated the potential of QSPR models by developing a QSPR model for predicting
Kca [2]. However, the dataset used in this study contained only 49 log Kca values, and
these 49 organic compounds were measured with the same plant cuticle. The limited
amount of available data poses a challenge to the development of a machine-learning
model with a wide range of applications for assessing the ecotoxicity of compounds in
various plant species.

Moreover, the challenge lies in capturing the complex relationship between Kca and
molecular structural properties from the increased amount of data and independent vari-
ables. Although the multiple linear regression (MLR) algorithm is convenient, efficient, and
transparent in modeling, it is not applicable to complex nonlinear relationships, resulting in
poor model performance [19]. We believe that the nonlinear machine-learning algorithm is
the best candidate for Kca prediction because of its powerful nonlinear processing capabil-
ity [20,21]. For example, a study developed a QSPR model using the multi-layer perceptron
(MLP) algorithm to predict the acute oral toxicity of pesticides in rats, achieving a high
accuracy of 0.963 [22]. However, these types of models often have a “black box” nature [23].
Uncovering the dominant factors affecting the partitioning behavior of organic pollutants
between plant cuticles and air from data and revealing their implicit effects while ensuring
the predictability of the models is still a great challenge.

This study aimed to develop QSPR models by establishing relationships between
measured Kca values and molecular descriptors corresponding to organic pollutants in
existing studies in order to ascertain the main mechanisms underlying the partitioning
behavior of pollutants between the plant cuticle and the air. To achieve this, a compre-
hensive dataset of 255 Kca values for 106 compounds and 25 plant species was collected
to broaden the application domain of the models. In addition to the traditional linear
algorithm (MLR), three popular nonlinear algorithms, namely MLP, k-nearest neighbors
(KNN), and gradient-boosting decision tree (GBDT), were employed to develop QSPR
models. Following the OECD guidelines [24], the models built using different machine-
learning algorithms were rigorously and comprehensively evaluated to determine which
of the QSPR models predicted Kca most accurately. The application domains of the models
were limited using the leverage method. Finally, the mechanism underlying plant cuticles’
adsorption of airborne organic pollutants was elucidated through the help of Shapley
additive explanations (SHAP), thereby extracting some tacit or novel knowledge about
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the interaction between plant cuticles and organic pollutants. It is worth mentioning that
the models developed in this study can estimate the accumulation of organics at the plant
cuticle–air interface accurately even in the absence of experimental data, and they can
provide valuable environmental information to guide the risk assessment and regulation of
organic pollutants.

2. Results and Discussion
2.1. Development of the QSPR Model

The MLR algorithm selected the most appropriate descriptors from the pool of de-
scriptors obtained from our initial screening and developed the QSPR models. Although
the overall performance of the models improved as the number of descriptors increased
(Figure S1), after the number of descriptors reached 5, descriptors with a VIF value greater
than 10 were present in both datasets. Thus, the number of optimal descriptor combi-
nations for both datasets was determined to be four after removing as much redundant
information as possible for the QSPR models [25]. From Figure 1, it can be observed that
the descriptors are not excessively correlated with each other. The selected best descriptors
and their associated statistical indicators are presented in Table 1. The p-values of these
eight descriptors are <0.5, indicating that they are statistically significant. The linear QSPR
models developed with the selected descriptors were as follows:

MLR-1 (dataset (I)):

log Kca = 2.006 VE1_L + 14.945 LLS_02 + 0.094 H_Dz(p) − 1.044 SpMax2_Bh(v) − 13.433 (1)

ntra = 204, R2
adj = 0.873, Q2

LOO = 0.869, Q2
BOOT = 0.872, RMSEtra = 1.101;

next = 51, R2
ext = 0.839, Q2

ext = 0.835, RMSEext = 1.296.

MLR-2 (dataset (II)):

log Kca = 1.325 SpPos_A + 12.317 LLS_02 + 7.385 LLS_01 − 1.517 SpMax2_Bh(v) − 15.724 (2)

ntra = 84, R2
adj = 0.891, Q2

LOO = 0.874, Q2
BOOT = 0.886, RMSEtra = 0.987;

next = 22, R2
ext = 0.833, Q2

ext = 0.807, RMSEext = 1.466.
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Table 1. Descriptions involved in the final MLR models and corresponding statistical significance (p)
and variance inflation factors (VIF) values.

Datasets Descriptors Parameters p VIF

(I)

VE1_L coefficient sum of the last eigenvector
(absolute values) from Laplace matrix <0.001 7.527

LLS_02 modified lead-like score from Monge et al.
(8 rules) <0.001 2.816

H_Dz(p) Harary-like index from Barysz matrix
weighted by polarizability <0.001 9.343

SpMax2_Bh(v) largest eigenvalue n. 2 of Burden matrix
weighted by van der Waals volume <0.001 2.937

(II)

SpPos_A spectral positive sum from
adjacency matrix <0.001 6.594

LLS_02 modified lead-like score from Monge et al.
(8 rules) <0.001 2.011

LLS_01 modified lead-like score from
Congreve et al. (6 rules) <0.001 2.125

SpMax2_Bh(v) largest eigenvalue n. 2 of Burden matrix
weighted by van der Waals volume <0.001 3.128

Notes: Datasets (I): 255 experimental log Kca values for 106 compounds; Datasets (II): average experimental log
Kca values for 106 compounds.

Three nonlinear algorithms, namely MLP, KNN, and GBDT, were employed to ex-
plore the nonlinear relationship between the Kca of organic pollutants and their molecular
structures, with a view to developing more accurate models. For the same dataset, the
nonlinear models were trained using the same molecular descriptors as the linear models.
Eventually, six nonlinear QSPR models were developed based on two datasets and three
machine-learning algorithms. The results of the hyperparameter search for the models are
presented in Table S1. The measured and predicted log Kca values for the MLR-1 model,
MLP-1 model, KNN-1 model, and GBDT-1 model are provided in Table S2, while the values
associated with the models developed based on dataset (II) are presented in Table S3. The
most stringent model validation criteria in the field of QSPR research were employed in this
study to assess the performance of models, including R2

adj > 0.7, Q2
LOO > 0.6, Q2

BOOT > 0.6,

R2
ext > 0.7, Q2

ext > 0.6, CCC > 0.85, and minimize error values [26,27]. The values of the
validation parameters for the eight QSPR models are shown in Table 2.

Table 2. Statistical parameters in the training and test sets for models of Kca.

Models
Training Set Test Set

ntra R2
adj Q2

LOO Q2
BOOT MAEtra RMSEtra stra next R2

ext Q2
ext MAEext RMSEext sext CCC

Threshold - >0.7 >0.6 >0.6 - - - - >0.7 >0.6 - - - >0.85

MLR-1

204

0.873 0.869 0.872 0.874 1.101 1.114

51

0.839 0.835 1.024 1.296 1.364 0.914
MLP-1 0.850 0.678 0.676 0.917 1.194 1.209 0.790 0.784 1.009 1.485 1.564 0.889
KNN-1 0.920 0.742 0.778 0.638 0.871 0.882 0.859 0.855 0.706 1.214 1.279 0.925
GBDT-1 0.995 0.936 0.964 0.114 0.224 0.227 0.911 0.902 0.411 1.001 1.054 0.952

MLR-2

84

0.891 0.874 0.886 0.725 0.987 1.018

22

0.833 0.807 1.006 1.466 1.668 0.902
MLP-2 0.921 0.798 0.809 0.629 0.843 0.869 0.887 0.884 0.798 1.139 1.296 0.940
KNN-2 0.919 0.661 0.802 0.536 0.855 0.881 0.821 0.815 1.176 1.435 1.632 0.891
GBDT-2 0.925 0.756 0.864 0.504 0.821 0.847 0.837 0.811 1.097 1.451 1.651 0.891

Notes: ntra and next: the number of chemicals in the training set and test set, respectively; R2
adj and R2

ext: the corre-

lation coefficient square between observed and fitted values in training set and test set, respectively; Q2
LOO: leave

one out cross-validated Q2; Q2
BOOT: bootstrap method, 1/5, 5000 iterations; Q2

ext: external explained variance;
stra: standard error of estimate for training set; sext: standard error of estimate for test set; CCC: concordance
correlation coefficient.
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As shown in Table 2, the R2
adj (0.850–0.995) of the four models (MLR-1, MLP-1, KNN-1,

and GBDT-1 model) developed based on dataset (I) exceeded the standard thresholds,
demonstrating excellent goodness of fit. The stability parameters Q2

LOO and Q2
BOOT had

values of 0.678–0.936 and 0.676–0.964, respectively, above the acceptable thresholds, indicat-
ing that the models are statistically robust and have fair internal accuracy [28]. In terms of
external predictive power, the R2

ext (0.790–0.911), Q2
ext (0.784–0.902), and CCC (0.889–0.952)

of these models were much greater than the strict standard thresholds, implying that all
four models achieved fairly reasonable predictions [29]. The measured and predicted log
Kca values for the training and test sets are plotted in Figures 2a and 2b, respectively. For
the training and test sets of each model, the data points followed a similar discrete pattern,
with all of them being close to the 1:1 line, proving that these four models had high-level
accuracy and prediction abilities [30,31]. The consistency of the training and test set errors
indicated that these models had similar internal and external prediction accuracies, con-
firming the excellent external prediction abilities of these models [30]. Overall, both the
linear and nonlinear QSPR models developed based on dataset (I) were acceptable.
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Multiple verification parameters were also calculated to evaluate the performance
of the models (MLR-2, MLP-2, KNN-2, and GBDT-2 model) developed based on dataset
(II) (Table 2). The internal validation results derived from the use of the data points in
the training set were R2

adj = 0.891–0.925, Q2
LOO = 0.661–0.874, and Q2

BOOT = 0.802–0.886,
indicating that the models exhibited excellent internal predictability and stability. The
external validation results derived from the use of the data points in the test set were
R2

ext = 0.821–0.887, Q2
ext = 0.807–0.884, and CCC = 0.891–0.940, demonstrating the superior

performance of the models in predicting external data. In addition, the error-based statisti-
cal metrics further demonstrated the “good” quality of these models in predicting log Kca
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values for the training set and test set. Scatter plots of the log Kca values measured and
predicted by the four models developed using dataset (II) are shown in Figure 2c,d. The
data points were more concentrated on the 1:1 line than those in dataset (I), indicating that
the four models also have the appropriate ability to predict log Kca values. The results of
our rigorous validation testing indicated that these four models performed satisfactorily in
various aspects.

2.2. Applicability Domain

The Williams plots shown in Figure 3 and Figure S2 established the structure range
of the compounds for which the model could reliably predict log Kca values. Although
structural outliers were found in all eight models, most of them fell into the category of
“good high leverage” points with low δ (|δ| ≤ 3). These points were predicted with high
accuracy, ensuring the stability and generalization performance of the models and extend-
ing their applicability domains to some extent [32,33]. The MLP-1, KNN-2, and GBDT-2
models contained one, two, and two structural outliers with |δ| > 3 as well (Figure S2a,f
and Figure 3b), respectively. This may be caused by the unique structure of these three
compounds and the limited structural representation of the selected descriptors [34]. Infor-
mation related to the response outliers in datasets (I) and (II) is listed in Tables S4 and S5.
Decachlorobiphenyl (ID: 124) and Tetrachlorobiphenyl (ID: 129) in dataset (I) were detected
as response outliers in all of the four models developed by the four algorithms. This
inaccurate prediction might have been caused by the fact that the molecular descriptors
did not capture information about the key effects of plant cuticle adsorption on these two
compounds [33]. In addition, the variability of the experimental values may also have
an impact on the model predictions [35]. For example, the Kca value for Hexachloroben-
zene (ID: 74) was probably underestimated excessively by Gobas, McNeil, Lovett-Doust
and Haffner [36], and, therefore, was not in the AD range of the KNN-1 model and the
GBDT-1 model when compared to the value measured by Sabljic, Guesten, Schoenherr and
Riederer [5] (log Kca = 4.30 versus 6.78~7.28). By taking the mean value instead, the models
developed based on dataset (II) predicted the Kca value for Hexachlorobenzene (ID: 24)
with good accuracy. Overall, the presence of most data points in the applicability domain
demonstrated the validity and good performance of the models [37].
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2.3. Mechanism Interpretation

In addition to assessing the performance of each model, SHAP values were analyzed
to interpret both the GBDT-1 model and the GBDT-2 model and determine whether the
models were consistent with known mechanisms [38]. The SHAP summary plot shown
in Figure 4 succinctly and clearly shows the relationship between the SHAP values and
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each descriptor, making it easy to discern whether there is a positive or negative correlation
between the descriptor and log Kca. For example, compounds with a large VE1_L (red
color) typically have higher SHAP values, indicating higher log Kca values. Thus, the
correlation between VE1_L and log Kca can be considered positive. The descriptors are
sorted on the y-axis in descending order by the mean of the absolute value of SHAP, i.e.,
the descriptor contribution.
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Figure 4 shows that the contributions of LLS_02 and SpMax2_Bh(v) to log Kca are
consistently in the top four positions in both the GBDT-1 model and GBDT-2 model,
suggesting that these two descriptors have a dominant effect on the plant cuticle’s capacity
to adsorb organic pollutants. The descriptor LLS_02 is a lead-like score modified by Monge,
Arrault, Marot and Morin-Allory [39], and it was used to screen compounds that qualify
as leads in drug discovery [40]. The score was determined based on eight rules [39]:
compounds that met all the rules had an LLS_02 value equal to 1, and the more rules
that were violated, the lower the LLS_02 value [41]. From these eight rules, it was found
that compounds with lower LLS_02 values had high molecular weights, as well as a
high number of hydrogen bond donors and hydrogen bond acceptors. High-molecular-
weight compounds are usually difficult to pass through phospholipid membranes, and
increasing the number of hydrogen bond donors and hydrogen bond acceptors makes
these compounds more hydrophilic [42]. Therefore, a decrease in log Kca could be expected
for compounds with lower LLS_02 values. The descriptor SpMax2_Bh(v) was largest
eigenvalue n. 2 of Burden matrix weighted by van der Waals volume, and belonged to
Burden eigenvalues [43]. Burden eigenvalues were calculated from the Burden matrix
Bh(w), and the diagonal elements of the adjacency matrix are van der Waals volume.
These values were related to molecular branching, the presence of heteroatoms, and bond
multiplicity [44,45]. The van der Waals volume contributed to the lipophilicity of the
molecule, and the increase in the SpMax2_Bh(v) value logically should have led to an
increase in the Kca value [46]. However, as presented in Figure 4a,b, how the SpMax2_Bh(v)
values regulated the partitioning of organic pollutants between plant cuticles and the air
was complicated. This might be due to the limited number of data points making it difficult
for the models to adequately respond to the mechanisms involved. Similar to LLS_02,
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LLS_01 is a lead-like score. The score was determined by six rules (molecular weight,
hydrogen bond donors, hydrogen bond acceptors, number of rotatable bonds, etc.) [47].
Therefore, there was also a positive correlation between LLS_01 and log Kca.

The VE1_L, H_Dz(p), and SpPos_A belonged to the category of 2D matrix-based
descriptors. The VE1_L was based on the Laplace matrix, which provides the number of
spanning trees for molecular graphing. This quantity reflected the structural complexity of
polycyclic molecules, with higher spanning-tree quantities indicating greater molecular
structural complexity [48]. Generally, compounds with polycyclic structures were more
stable and conducive to the adsorption of compounds by the plant cuticle, meaning that
they should have shown increased Kca values [29,49]. The descriptor H_Dz(p) was based on
the Barysz matrix, weighted by the polarizability [50]. The Barysz matrix was considered
to be related to the presence of heteroatoms and multiple bonds in molecules [48]. The
magnitude of the polarizability was influenced by molecular size, structure, and electron
distribution [51]. The greater the polarization rate, the stronger the polarity of the molecules,
and the stronger the intermolecular interactions [52]. Molecules tended to distribute in
the plant cuticle through intermolecular forces, leading to an increase in Kca values [53].
The SpPos_A was calculated by summing the positive eigenvalues from the adjacency
matrix, encoding information about molecular size, molecular branching, and molecular
complexity [54–56]. Figure 4 indicates that log Kca is proportional to SpPos_A.

According to the results of this study, molecular weight, molecular size, molecular
branching, molecular complexity, the number of hydrogen bond donors, the number of
hydrogen bond acceptors, the presence of heteroatoms, bond multiplicity, polycyclic struc-
ture, and polarizability are the main molecular structure features that affect the capacity of
plant cuticles to adsorb airborne organic pollutants.

2.4. Model Comparison

To determine which model was most effective at predicting Kca values, cumulative
distribution plots of the residuals (Figure S3) were plotted to depict the predictive effec-
tiveness of the eight models. As shown in Figure S3, if the residuals fall in the −1 to 1
interval with a higher percentage, the model predicts the log Kca values more accurately.
Our comparison among the four models developed based on dataset (I) indicated that the
GBDT-1 model was significantly better than the other three models, while the GBDT-2
model was found to show the best performance among the four models developed based
on dataset (II). The superiority of the GBDT-1 and GBDT-2 models in predicting the log
Kca values can also clearly be observed in the scatter plots of the real predicted values
(Figure 2). Although the GBDT-1 model performed better than the GBDT-2 model in terms
of the validation parameters (Table 2), the repetitive data points in dataset (I) exacerbated
the risk of data leakage. Therefore, the GBDT-2 model is recommended as a useful tool for
predicting the Kca values of organic pollutants.

To further evaluate the eight QSPR models, several existing models for predicting log
Kca values were collected and compared. The differences in datasets, descriptors, and vali-
dation metrics between the different studies reporting these models increased the difficulty
of the comparison. The details of the comparison are presented in Table S6. The number
of compounds simulated in the early studies was not more than a hundred; the types of
compounds were concentrated, and the distribution behavior was more regular, resulting
in a high fitting accuracy for their models [2,10]. Eddula, Xu, Jiang, Huang, Tirumala, Liu,
Acree and Abraham [6] collected 215 measured Kca values and established pp-LFER models
with excellent accuracy. However, the application of these models was limited by the num-
ber of descriptors. The existing studies applied only the MLR algorithm to develop models
for predicting Kca values and did not fully exploit any powerful nonlinear algorithms. In
contrast, the QSPR models developed in this study showed excellent prediction accuracy
while fitting more measured Kca values. Further statistical analyses adequately demon-
strated the reliability of these models. In addition, the nonlinear relationship between the
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plant cuticle–air partition coefficients and molecular descriptors of the compounds was
established for the first time in this study.

3. Materials and Methods
3.1. Dataset Preparation

The data points for the experimental log Kca dataset (dataset (I)), consisting of 255 data
points measured for 106 compounds and 25 plant species, were collected from existing
studies. Specifically, for compounds whose Kca measured values had not been directly
reported but their plant cuticle/water partition coefficient (Kcw) and gas/water parti-
tion coefficients (Kaw) had been reported, their log Kca value was calculated as follows:
log Kca = log Kcw − log Kaw [10]. The plant species and tissue types used for the experi-
mental measurements and the sources corresponding to each data point are listed in Table
S7. The difference in the log Kca values measured for each compound in different tissues
of different plant species was very small, and the presence of these similar data points
significantly increased the risk of data leakage. Therefore, the log Kca values from different
plant species and different tissue types were averaged in this study, resulting in dataset (II)
containing the measured log Kca values of 106 compounds (Table S8). The mean log Kca
values with standard deviation were 6.30 ± 3.14 for dataset (I) and 5.79 ± 3.15 for dataset
(II). Following data quality testing (Figure 5), it was concluded that both dataset (I) and
dataset (II) meet the Pauta criterion [57].
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3.2. Descriptor Generation and Filtering

The molecular structure characterization information of the compounds was described
through molecular descriptors [58]. After determining the molecular structures of the
compounds, the geometric structures of the compounds were fully optimized using MM2
molecular mechanics [59]. A descriptor pool consisting of 5290 molecular descriptors was
generated using alvaDesc software (Version 1.0.8) [60]. Preliminary descriptor screening
was carried out in two steps, the first of which involved removing descriptors with miss-
ing, constant, and near-constant values, and the second of which involved identifying
descriptors with pairwise correlations greater than 0.9 and removing one of the interrelated
descriptors in order to reduce redundant information and make it easier to use the model
in the future [61,62]. The remaining 165 and 163 descriptors of dataset (I) and dataset
(II), respectively, were further filtered using the MLR algorithm in the next step. Detailed
information about the steps of our further screening is presented below.

3.3. Model Development and Validation

The Y-ranking method was used to divide each dataset into a training set and a test
set [63]. The training and test sets consisted of 80% and 20% log Kca measured values
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and the corresponding molecular descriptors in the dataset, respectively [64,65]. The
training sets were used to develop and internally validate each model, whereas the test
set was solely dedicated to validating each model’s performance in predicting the Kca
for new compounds [66]. One linear algorithm (MLR) and three common nonlinear
algorithms—MLP, KNN, and GBDT—were used to develop models for both datasets,
resulting in 8 QSPR models. These 8 models were named in the format of “modeling
algorithm + dataset number”. For example, the QSPR model developed using the KNN
algorithm based on dataset (I) was named the KNN-1 model. Further details on these four
machine-learning algorithms are provided in Text S1.

Identifying and selecting descriptors that contribute significantly to the dependent
variable is essential for QSPR modeling. In this study, further screening of the descriptors
was carried out using stepwise MLR in SPSS (Version 20.0) software [67]. Generally, the
model developed using the best descriptor combination should have a high R2

adj and Q2
ext

and the lowest possible number of descriptors [68]. Additionally, multicollinearity between
descriptors was assessed using the variance inflation factor (VIF). The VIF of each descrip-
tor should be less than 10 to avoid excessive inter-correlation between descriptors [69].
The MLR-1 and MLR-2 models were developed by establishing the relationship between
measured log Kca values and the best descriptor combinations based on dataset (I) and
dataset (II), respectively.

The machine-learning library scikit-learn in Python (Version 3.9.6) was utilized to train
the nonlinear QSPR models developed by the other three machine-learning algorithms [70].
With the help of the GridSearchCV function in the sklearn library, a grid search and five-
fold cross-validation were performed to optimize various hyperparameters of models [71].
Table S1 lists these hyperparameters and their ranges for each model, as well as the modules
for the different machine-learning algorithm implementations. Each modeling process of
different ML algorithms took the best combination of descriptors screened by MLR as the
independent variable to ensure consistency in the comparison among the models.

In accordance with the fourth principle of the OECD guidelines, assessing the fit,
stability, and predictive performance of QSPR models with a wide range of internally and
externally validated statistical parameters was essential for understanding the predictive
quality of new compounds and ensuring the reliability of the developed models [72]. R2

adj,
MAEtra, RMSEtra, and stra were used to measure the goodness of fit of the models [73,74].
Internal robustness was characterized by performing leave-one-out cross-validation and
bootstrap cross-validation based on Q2

LOO and Q2
BOOT [75–77]. Each model’s external pre-

dictive ability was assessed based on R2
ext, Q2

ext, CCC, and three error-based metrics [78,79].
The leverage value method was employed to limit the compound structure space in which
the model could reliably predict log Kca [28]. In addition, Williams plots of leverage values
(hi) versus normalized residuals (δ) were applied to visualize the applicability domains of
the QSPR models. In addition, response outliers (the point with |δ| > 3) and structural out-
liers (the point with h > h*) could be clearly identified from the plots [80,81]. The formulas
for hi, h*, and δ are presented in Text S3.

3.4. Model Interpretation

Understanding how dominant features affect model predictions is another important
principle in QSPR model development [24]. The SHAP method was applied to explain the
models developed using the GBDT algorithm and determine the effect of specific structural
features of molecules on plant cuticles’ adsorption of airborne organic pollutants [82].
The SHAP value of a feature is determined by the average of the feature’s contribution
across all possible feature alignments in the feature set [38]. It measures the degree and
direction of the descriptor’s contribution to the prediction result: higher absolute SHAP
values indicate a higher contribution, and whether a SHAP value demonstrates positivity
or negativity corresponds to the positive and negative impact of the descriptor on the
prediction result [83,84]. The global importance of a feature is reflected by averaging the



Molecules 2024, 29, 1381 11 of 15

absolute SHAP values corresponding to all the samples in that feature [85]. The formula
for calculating SHAP values and more information about them are presented in Text S4.

4. Conclusions

Kca is a key factor in assessing the capacity of plant cuticles to adsorb airborne organic
pollutants. However, the development of reliable predictive tools to estimate Kca has been
hampered by the complexity of the molecular structures of organic pollutants. In this study,
we established a comprehensive Kca dataset that covers 255 experimental log Kca values for
106 compounds in 25 plant species and 3 tissue types (dataset (I)). Additionally, 255 data
points were averaged to form a second dataset (dataset (II)) containing 106 measured
log Kca values for 106 compounds. Based on these two datasets, eight QSPR models
designed to predict Kca values were developed using four machine-learning algorithms
(MLR, MLP, KNN, and GBDT). Rigorous validation testing indicated that these models
have acceptable fit, stability, and external predictive power. In addition, the GBDT-1 model
(R2

adj = 0.995, Q2
LOO = 0.936, Q2

BOOT = 0.964, R2
ext = 0.911, Q2

ext = 0.902, and CCC = 0.952) and

the GBDT-2 model (R2
adj = 0.925, Q2

LOO = 0.756, Q2
BOOT = 0.864, R2

ext = 0.837, Q2
ext = 0.811,

and CCC = 0.891) showed the best performance on datasets (I) and (II), respectively. The
GBDT-2 model can be recommended as the best tool for predicting Kca values due to its
low risk of data leakage. Interpreting the GBDT-1 and GBDT-2 models using the SHAP
method revealed that molecular weight, molecular complexity, the number of hydrogen
bond donors, the number of hydrogen bond acceptors, and polarizability are the most
important factors that affect Kca predictions. In summary, the models presented in this work
provided a fast and reliable method for obtaining Kca values, overcoming the obstacles of
experimental challenges, halting kinetic models, and mistake-prone theoretical calculations.
We hope that our findings will inspire the refinement of the modeling process to help with
predicting other physicochemical properties using comparable workflows.
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