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Abstract: A single combi oven, known for its versatility, is an excellent choice for a variety of chicken
soup preparations. However, the impact of universal steam ovens on the flavor quality of chicken
soup remains unclear. This study aimed to explore the impact of different cooking methods on the
aroma and taste of chicken soup. Three cooking methods with various stewing times were compared:
ceramic pot (CP), electric pressure cooker (EPC), and combi oven (CO). Analyses were conducted
using electron-nose, electron-tongue, gas chromatography–ion mobility spectrometry (GC–IMS),
automatic amino acid analysis, and chemometric methods. A total of 14 amino acids, including
significant umami contributors, were identified. The taste components of CP and CO chicken soups
were relatively similar. In total, 39 volatile aroma compounds, predominantly aldehydes, ketones,
and alcohols, were identified. Aldehydes were the most abundant compounds, and 23 key aroma
compounds were identified. Pearson’s correlation analyses revealed distinct correlations between
various amino acids (e.g., glutamic acid and serine) and specific volatile compounds. The aroma
compounds from the CP and CO samples showed similarities. The results of this study provide a
reference for the application of one-touch cooking of chicken soup in versatile steam ovens.

Keywords: chicken soup; cooking methods; combi oven; aroma and taste; amino acids; key
aroma compounds

1. Introduction

Chicken meat is a valuable source of essential nutrients, including vitamins,
amino acids, and collagen, for the human body. Phospholipid nutrients present in chicken
play a vital role in human growth and development, making them significant contributors
to the fat and phospholipid intake in the Chinese diet [1]. Fresh chicken meat has a subtle
rawness, metallic taste, and hint of saltiness. Stewing chicken is a widely adopted cooking
technique in China [2]. Simmering chicken in soup enhances its flavor by releasing high-
quality proteins, creatinine, functional peptides, umami peptides, and free amino acids [3].
This enhances the flavor and fragrance of chicken soup, rendering it more easily digestible
and absorbable [4,5]. In Sichuan cuisine, chicken soup, whether clear or milk-based, is
commonly used as an additive to dishes, greatly enhancing their umami taste and gaining
popularity among consumers [5,6].

The flavor of chicken soup is a key determinant of its quality and desirability, with
aroma and taste being the crucial components [7]. Existing research has predominantly
explored the effects of cooking time, temperature, and salt addition methods on the aroma
and taste of chicken soup [4,8–10]. As crucial taste components and aroma precursors,
free amino acids contribute to diverse taste sensations, including sweetness, acidity, and
bitterness [11]. For instance, serine, alanine, glycine, threonine, lysine, proline, and hydrox-
yproline impart sweetness, while aspartic acid and glutamic acid contribute to acidity and
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serve as important precursors for umami substances [12]. Arginine, histidine, methionine,
valine, leucine, isoleucine, phenylalanine, tyrosine, and tryptophan produce bitterness.
The Maillard reaction, involving the interaction of free amino acids with reducing sugars,
significantly contributes to the development of meat flavors. From the Maillard reaction, key
aroma compounds identified in chicken broth include 3-methylthiopropanal, 2-methyl-3-
mercaptofuran, methylpyrazine, 2-ethyl-4-methylthiazole, and (E, E)-2,4-nonadiena [13–15].
The identification of aroma compounds in chicken broth has been conducted using gas
chromatography (GC), GC–ion mobility spectrometry (GC–IMS), GC–mass spectrometry
(GC–MS), and GC–olfactory determination (GC–O) [3,5,10,16]. In particular, GC–IMS has
recently emerged as a cutting-edge technology for gas-phase separation and detection.
In comparison to GC–MS, GC–IMS offers the advantages of user-friendly operation, robust
separation capabilities, shorter analysis times, heightened sensitivity, and preservation
of the sample’s original flavor. GC–IMS analytical technology has broad applications for
analyzing volatile flavor compounds and conducting quality testing for diverse food prod-
ucts [17,18]. However, its application in the study of volatile aroma substances in chicken
broth is relatively limited.

The rise of the social economy and acceleration of urbanization have generated
an increased demand for kitchen processing equipment within the catering industry.
To cater to the evolving needs of the catering industry, this study concentrated on how
stewing technology influences the quality of chicken soup, aiming to offer consumers a
more user-friendly cooking experience [1,8]. Lai et al. [4] explored the impact of different
cooking modes (utilizing stainless-steel pots, ceramic pots, and electric ceramic stewpots)
on the chemical compositions, whiteness, 5′-nucleotides, fatty acids, sensory quality, and
flavor substances in chicken soup. Additionally, Zou et al. [19] investigated the chemical
composition and sensory characteristics of pork rib and Silkie chicken soups and examined
the effects of various cooking techniques.

In recent years, combi ovens have emerged as highly versatile and advanced kitchen
appliances with applications in both professional and home kitchens. This innovative cook-
ing technique combines various methods, including convective cooking, steam cooking,
combination cooking, and stewing, into a single unit. Notably, the combi oven excels in
steaming vegetables, fish, and other foods as well as in baking and roasting dishes, making
it an ideal choice for a diverse array of culinary preparations. Combi ovens have been
widely adopted in commercial kitchens, such as restaurants, bakeries, and catering services,
owing to their flexibility and efficiency [20–22]. While existing research on combi ovens
primarily explores the production process of dishes, such as whole fish frying, sweet and
sour spare ribs, and barley meat, there is a noticeable gap in understanding the impact of
universal steam ovens on the flavor quality of chicken soup.

To address this gap, the aim of this study was to examine how different cooking
methods (ceramic pot [CP], electric pressure cooker [EPC], and combi oven [CO] with
varying stewing times) influence the aroma and taste of chicken soup. This investiga-
tion employed advanced tools such as electron-nose (E-nose), electron-tongue (E-tongue),
GC–IMS, automatic amino acid analysis, and chemometric methods. The results of this study
lay the foundation for optimizing chicken soup production using smart kitchen equipment.

2. Results and Discussion
2.1. E-Nose Analysis

An E-nose was used to detect and differentiate complex aroma substances in chicken
soup. E-nose sensors with low odor thresholds enable the identification of chemical vari-
ation during chicken soup stir-frying. A radar chart was used to show the differences
in the average sensor array responses to the samples (Figure 1). The chicken soup sam-
ples exhibited high response values from 12 sensors (P40/1, P40/2, P10/1, P10/2, T40/1,
T40/2, T70/2, T30/1, P30/1, P30/2, PA/2, and TA/2), indicating the generation of alco-
hols, fluorides, chloride combustion products, aldehydes, hydrogen sulfide, ammonia,
amine compounds, and aromatic compounds during cooking. These 12 sensors effectively
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distinguished the chicken soup samples based on different cooking times and methods.
In the CP and EPC methods, the response values increased with extended cooking time,
whereas, in the CO method, the response value peaked at a stewing time of 2 h. How-
ever, chicken soup samples showed no response to six sensors (LY2/LG, LY2/G, LY2/AA,
LY2/Gh, LY2/CT1, and LY2/GCT), suggesting the generation of sulfides, nitrogen oxides,
butane, propane, and acetone during cooking. The results indicated minimal differences
among these substances, whereas the remaining sensors exhibited significant differences
in nonpolar substances (hydrocarbons, ammonia, and chlorine), polar substances, aro-
matic substances (toluene and xylene), chlorine, amines, and other substances, suggesting
substantial variations in these types of substances among the samples.
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PCA was conducted to analyze multivariate data while considering variable quan-
tity restrictions [23]. The aromatic components in chicken soup samples processed using
different cooking methods were further studied using PCA as a non-targeted statistical
method (Figure 1). As shown in Figure 1b, the cumulative contribution rates of principal
components 1 (93.4%) and 2 (3.5%) reached 96.9%, providing a comprehensive reflec-
tion of the overall sample information. Consequently, the coordinates primarily repre-
sented by principal component (PC1) captured the odor characteristics of the samples.
The dispersion of data points for the chicken soup samples indicated substantial diversity
in their odor characteristics. The aroma components in the chicken soup exhibited little
overlap, underscoring the effectiveness of PCA in distinguishing between the various sam-
ples. The contribution ratio of PC1 significantly outweighed that of PC2. The greater the
horizontal distance of the samples in PC1, the more pronounced the olfactory differences
between them. The horizontal coordinate distance distribution indicated similarities in the
aroma of CP-2, CO-2, CO-1, CO-3, and EPC-3; conversely, the distance distributions of the
other samples (EPC-1, EPC-2, CP-1, and CP-3) were noticeably further apart. This suggests
an evident difference in aroma between the latter sets of samples.

2.2. E-Tongue Analysis

To detect and distinguish the complex taste characteristics of chicken soup, an
E-tongue was employed [24]. In contrast, the E-tongue emulates the taste organs of the
human oral cavity using an intelligent biomimetic system, enabling the detection of sample
flavors [12]. Unlike conventional sensory evaluations, the E-tongue mitigates the subjective
influence of human consciousness on sensory assessments and diminishes the impact of ex-
ternal factors. Figure 2a shows a radar chart illustrating the response values of the E-tongue
sensors, revealing the differences in taste characteristics among the chicken soup samples.
Noticeable variations were observed in the relative intensity values of the E-tongue sensors,
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demonstrating their effectiveness in distinguishing taste differences among different sam-
ples [25]. For instance, EPC-2 recorded the maximum response levels on the AHS-sources,
CTS-saltiness, PKS, ANS, and NMS-umami sensors. Conversely, CP-3 exhibited the highest
response among the SCS sensors. The heightened response of EPC-2 to sourness, saltiness,
and umami taste was attributed to the elevated concentration of salt-contributing sub-
stances (including ionized organic and inorganic matter) in its aqueous solution. Moreover,
sample EPC-2 contained a substantial concentration of umami-contributing substances,
such as amino acids and nucleotides.
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Figure 2. Electronic tongue (E-tongue) radar plot of principal component analysis (PCA) results
and a two-dimensional image of the E-tongue date for different chicken soup samples. CP, ceramic
pot; EPC, electric pressure cooker; CO, combi oven. (a) Radar map of the E-tongue; (b) PCA of
the E-tongue.

As shown in Figure 2b, PC1 and PC2 explained 83.1% and 9.5% of the total variation in
chicken soup samples, respectively, with PC1 making a more substantial contribution. PC1
and PC2, with a cumulative contribution rate of 92.6%, effectively captured and reflected
the overall flavor profiles of the nine chicken soup samples. Sample data points showed
concentrated patterns, indicating the stability of the E-tongue results for chicken soup.
Distinct distributions across the four quadrants were observed for the data points from
the various chicken soup samples, indicating noticeable taste differences. The weight of
PC1 was more significant than that of PC2. Consequently, even samples closely positioned
along PC1 exhibited substantial taste differences [26]. As shown in Figure 2b, EPC-3
and CO-1 occupied the first and fourth quadrants, respectively. The primary distinction
was attributed to PC2, which indicated a high degree of similarity. Similarly, CP-3 and
CO-3, located in the fourth quadrant, exhibited relatively similar horizontal coordinate
distribution distances, suggesting a high degree of similarity. In contrast, noticeable
differences were observed between CO-2, EPC-2, EPC-1, CP-2, and CP-1.

2.3. FAA Analysis

FAAs are crucial flavor substances that are closely linked to taste formation, enabling
the differentiation of tastes among various samples (Table 1). A total of 14 amino acids
were identified in the chicken soup, with total free amino acids (TFAAs) ranging from
28.17 to 42.75 mg/100 g. Categorized by taste intensity, these amino acids fall into umami
(Asp, Glu), sweet (Gly, Ala, Thr, Ser), and bitter (Val, Ile, Leu, Phe, His, Tyr, Lys, Arg)
groups [27]. The order of amino acid content based on different flavor types is as fol-
lows: CP-3 > CO-3 > CP-2 > CO-2 > CP-1 > CO-1 > EPC-3 > EPC-1 > EPC-2 for umami;
CP-3 > CP-2 > CO-3 > CP-1 > CO-2 > EPC-1 > CO-1 > EPC-2 > EPC-3 for sweet; and
CP-2 > CP-3 > CO-3 > EPC-2 > EPC-3 > CP-1 > CO-1 > CO-2 > EPC-1 for bitter. It is
noteworthy that the amino acid umami content sequence differed from the relative strength
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values observed with the E-tongue, possibly because of the diverse taste nucleotide contents
in different samples [28].

The TAV serves as an indicator for assessing the contribution of flavor substances
to the overall taste of a sample. TAV is calculated by dividing the concentration of a
specific taste-active compound in a food sample by its taste threshold. TAV > 1 signifies
a substantial impact on taste characteristics, whereas a TAV < 1 suggests a modifying
influence on the sample’s taste [29]. Table 1 presents the amino acid TAV of the chicken
soup samples. Notably, only the TAV value of glutamic acid exceeded 1, indicating that
umami amino acids significantly influenced the overall taste of all samples. In contrast, the
TAV values for sweet amino acids in all samples were <1, suggesting a modifying role in
the overall taste. Additionally, the TAV values for bitter amino acids were <1, indicating
that their taste activity was typically masked by umami and sweet flavors. These results
highlight the significant contribution of amino acids, especially in Sample CP-3, to the
overall taste.

Subsequent analysis of FAAs in the chicken soup resulted in another heat map based on
TAV, as shown in Figure 3. The results reveal significant variation in the FAA compositions
of the chicken soups. Notably, CP-3 and CO-3 clustered together, whereas CP-1, EPC-1,
EPC-2, EPC-3, CO-1, and CO-2 formed separate groups. CP-2 was distinctly positioned
within its own cluster. In summary, TAV analysis showed that the taste components of
amino acids in chicken soup prepared using CP and CO were relatively similar.
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Table 1. Effects of different cooking methods on free acid content and TAV values in chicken soup: TAV Taste Active Value, CP, ceramic pot; EPC, electric pressure
cooker; CO, combi oven.

Taste Name
Threshold

Value
mg/10 g

Free Amino Acid Content (mg/10 g) TAV

CP-1 CP-2 CP-3 EPC-1 EPC-2 EPC-3 CO-1 CO-2 CO-3 CP-1 CP-2 CP-3 EPC-1 EPC-2 EPC-3 CO-1 CO-2 CO-3

umami
Asp 10.00 8.68 ± 0.32 a 8.99 ± 0.32 a 9.87 ± 0.42 a 6.81 ± 0.28 b 7.20 ± 0.31 b 7.14 ± 0.28 b 7.34 ± 0.23 b 7.66 ± 0.34 b 9.42 ± 0.43 a 0.77 0.90 0.99 0.68 0.72 0.71 0.73 0.77 0.94
Glu 3.00 6.32 ± 0.14 c 7.39 ± 0.36 b 9.22 ± 0.32 a 6.21 ± 0.31 c 5.77 ± 0.23 c 6.03 ± 0.19 c 5.88 ± 0.32 c 7.35 ± 0.25 b 8.82 ± 0.36 a 2.11 2.46 3.07 2.07 1.92 2.01 1.96 2.45 2.94

Total 14.00 16.38 19.09 13.02 12.97 13.17 13.22 15.01 18.24

Sweet

Thr 26.00 1.23 ± 0.07 c 2.10 ± 0.11 a 2.04 ± 0.06 a 1.48 ± 0.08 b 1.53 ± 0.05 b 1.63 ± 0.12 b 1.61 ± 0.09 b 1.73 ± 0.12 b 2.12 ± 0.10 a 0.05 0.08 0.08 0.06 0.06 0.06 0.06 0.07 0.08
Ser 15.00 0.92 ± 0.06 a 0.81 ± 0.05 a 0.86 ± 0.11 a 0.53 ± 0.03 b 0.59 ± 0.06 b 0.60 ± 0.04 b 0.68 ± 0.03 b 0.72 ± 0.03 b 0.86 ± 0.04 a 0.06 0.05 0.06 0.04 0.04 0.04 0.05 0.05 0.06
Gly 13.00 3.12 ± 0.15 a 3.29 ± 0.13 a 3.29 ± 0.14 a 2.60 ± 0.12 b 2.39 ± 0.17 b 0 2.59 ± 0.21 b 2.72 ± 0.14 b 3.21 ± 0.12 a 0.24 0.25 0.25 0.20 0.18 -- 0.20 0.21 0.25
Ala 6.00 5.55 ± 0.23 a 5.42 ± 0.21 a 5.50 ± 0.19 a 4.41 ± 0.22 b 3.78 ± 0.17 c 3.90 ± 0.16 c 3.90 ± 0.17 c 4.18 ± 0.35 b 5.40 ± 0.21 a 0.92 0.90 0.92 0.76 0.63 0.65 0.65 0.70 0.9

Total 10.82 11.62 11.69 9.02 8.29 6.13 8.78 9.35 11.58

bitter

Val 4.00 0 0 1.81 ± 0.09 a 0 0 1.16 ± 0.06 b 1.08 ± 0.04 b 1.23 ± 0.06 b 1.64 ± 0.08 a 0 0 0.45 0 0 0.29 0.27 0.31 0.41
Ile 9.00 1.36 ± 0.06 a 1.33 ± 0.06 a 1.29 ± 0.05 a 0.71 ± 0.03 b 0.81 ± 0.05 b 0.94 ± 0.03 b 0.91 ± 0.07 b 0.91 ± 0.05 b 1.18 ± 0.06 a 0.15 0.15 0.14 0.08 0.09 0.10 0.10 0.10 0.13

Leu 19.00 2.28 ± 0.14 a 2.45 ± 0.12 a 2.39 ± 0.13 a 0 1.46 ± 0.07 b 1.61 ± 0.07 b 1.80 ± 0.13 b 1.59 ± 0.08 b 2.05 ± 0.09 a 0.12 0.13 0.13 0 0.08 0.08 0.09 0.08 0.11
Tyr 26.00 1.35 ± 0.08 a 1.43 ± 0.08 a 1.49 ± 0.06 a 0.93 ± 0.04 b 1.00 ± 0.06 b 1.06 ± 0.05 b 1.06 ± 0.05 b 1.05 ± 0.04 b 1.50 ± 0.06 a 0.05 0.06 0 0.04 0.04 0.04 0.04 0.04 0.0
Phe 9.00 1.05 ± 0.06 a 1.18 ± 0.11 a 1.22 ± 0.09 a 0.78 ± 0.03 b 0.90 ± 0.03 b 0.83 ± 0.03 b 0.81 ± 0.03 b 0.91 ± 0.05 b 1.34 ± 0.05 a 0.12 0.13 0.14 0.09 0.10 0.09 0.09 0.10 0.15
His 2.00 1.17 ± 0.04 a 1.26 ± 0.02 a 1.44 ± 0.07 a 0.95 ± 0.06 b 1.14 ± 0.05 a 1.19 ± 0.11 a 1.03 ± 0.06 b 0.93 ± 0.08 b 1.29 ± 0.06 a 0.59 0.63 0.72 0.48 0.57 0.60 0.52 0.47 0.65
Lys 5.00 0.00 4.69 ± 0.23 a 0.30 ± 0.04 e 0.13 ± 0.02 f 2.30 ± 0.13 b 0.92 ± 0.04 c 0.16 ± 0.02 f 0.61 ± 0.02 d 0.11 ± 0.02 f 0.00 0.94 0.06 0.03 0.46 0.18 0.03 0.12 0.02
Arg 5.00 1.36 ± 0.12 d 1.72 ± 0.08 c 2.03 ± 0.13 b 3.02 ± 0.19 a 2.05 ± 0.11 b 1.16 ± 0.13 e 1.52 ± 0.11 c 0.00 2.15 ± 0.13 b 0.27 0.34 0.41 0.60 0.41 0.23 0.30 0 0.43
Total 8.57 14.06 11.97 6.52 9.66 8.87 8.37 7.23 11.26

Free amino acid
content (TFAA) 33.39 42.06 42.75 28.56 30.92 28.17 30.37 31.59 41.08

Note: CP1-3 represent Sample CP1-3 cooked for 2–4 h with a ceramic pot, respectively; EPC1-3 represent Sample EPC1-3, cooked for 2–4 h with an electric pressure cooker, respectively;
CO1-3 represent Sample CO1-3, cooked for 2–4 h with a combi oven, respectively; Different letters (a–f) indicate significant differences in the content of free acid.
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2.4. GC–IMS Analysis

The GC–IMS spectra of the chicken soup prepared using the three distinct methods
were visually examined to identify potential distinctive signals [12]. Figure 4a shows the
three-dimensional spectra of volatile aroma compounds in chicken soup during the cooking
process, where the vertical axis denotes the retention time in GC separation and the hori-
zontal axis represents the ion migration time in IMS separation. Each peak in the reaction
ion peak (RIP) signifies a volatile aromatic substance [30]. Notably, the concentrations
of aromatic compounds varied with cooking method and duration [18]. Comprehensive
analysis of the GC–IMS profiles is shown in Figure 4b. In this two-dimensional plot, each
point flanking the reaction ion peak (RIP) signifies a distinct volatile organic compound.
The color intensity of the points corresponds to the area size, indicating higher concentra-
tions (red hues represent high intensity, blue hues represent low intensity).
Some compounds exhibited multiple spots, denoting different dimers or trimers with
distinct properties and concentrations. Figure 4b shows no generation or disappearance
of RIP points; instead, there is variation in the color intensity of RIP points. The analysis
suggested minimal divergence in the GC–IMS spectra among the different chicken soups.
Variations in aroma substances within each chicken soup sample primarily involved the
quantity, position, time, and intensity of the ion peaks. Such differences may arise from
factors such as water evaporation during cooking, nutrient dissolution, and the oxidative
decomposition of certain nutrients.
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Figure 4. Gas chromatography–ion mobility spectrometry (GC–IMS) topographic and fingerprint
chromatogram volatile compounds in samples of Pixian broad bean paste. (a) Three-dimensional to-
pographic image; (b) Two-dimensional spectrum; (c) Fingerprint chromatogram volatile compounds.
CP, ceramic pot; EPC electric pressure cooker; CO, combi oven; Region A, the aroma compounds ex-
clusive to chicken soup prepared by a single method; Region B, almost all volatile aroma compounds
present in all samples.

This study quantified aromatic compound levels in diverse chicken soups and estab-
lished their characteristic flavor fingerprint profiles. The brightness of each compound’s
signal corresponds to its intensity, with brighter signals indicating stronger intensity and
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darker signals indicating weaker intensity [17]. In Figure 4c, rows represent chicken soup
prepared by three different methods and columns signify a specific aromatic compound
across various samples (darker red signals indicate a relatively higher content of that
substance). On the fingerprint profile, two entities with the same name represent the
monomeric and dimeric forms of the compound. In Region A, aroma compounds were
exclusively present in chicken soup prepared using a single cooking method. Aroma
compounds such as 2-propanol, butun-2-one, 1, 8-cineole, and linalool were present in
chicken soup prepared using an electric pressure cooker, while 3-methybutanal was de-
tected in CO-2. In contrast to the aroma compounds exclusive to chicken soup prepared by
a single method in Region A, all aroma compounds in Region B were detected in chicken
soup prepared through all three cooking techniques. In Region B, almost all volatile aroma
compounds, such as aldehydes, ketones, and alcohol, were present in all samples, with
concentrations rising as stewing time increased. The content of almost all volatile aroma
compounds increased with stewing time.

We also performed a qualitative examination of volatile flavor compounds during
chicken soup simmering using the GC–IMS built-in NIST and IMS databases. The iden-
tification process considered the retention indices, retention times, and migration times
(Table S1). GC–IMS analysis identified 39 volatile aroma compounds, comprising 14 alde-
hydes, seven ketones, nine alcohols, two acids, two heterocyclic compounds, two ethers,
and three others.

As shown in Figure 5, aldehydes exhibited the highest content in each sample, rang-
ing from 51% to 60%, with no pronounced differences among the samples. Aldehydes
primarily result from the oxidative breakdown of fats, feature a low threshold, and serve as
vital volatile flavor compounds in chicken broth. These compounds can further react with
other substances, generating diverse flavor profiles [4,19]. The samples contained various
aldehydes, including (E)-2-octenal, (E)-2-heptenal, (E)-hept-2-enal, octanal, heptanal, hex-
anal, phenylacetaldehyde, (E)-2-hexenal, benzaldehyde, 3-methylthiopropanal, pentanal,
(E)-2-pentenal, nonanal, and 3-methylbutanal. (E)-2-octenal imparts a citrusy aroma with
fruity undertones, whereas octanal imparts a citrus-like scent with orange nuances [19].
(E)-2-pentenal adds a fruity note, (E)-heptenal provides a grassy fragrance with green
undertones, and (E)-hept-2-enal is associated with a green leafy scent [4]. (E)-2-hexenal is
recognized for its green and leafy aroma, whereas phenylacetaldehyde contributes a sweet,
floral fragrance. Nonanal is characterized by a floral and waxy aroma, while benzalde-
hyde has an almond-like scent, 3-methylthiopropanal adds a pungent, sulfuric note, and
3-methylbutanal contributes a malty fragrance to chocolate undertones. Heptanal adds a
fruity note with a waxy undertone and (E)-2-pentenal imparts a green and fatty character
to the aroma. Nonanal features a floral, waxy aroma, whereas pentanal contributes to a
pungent, fruity odor [4,31].

The ketone content in chicken broth ranged from 5% to 8%, with minimal variability
observed between samples. These compounds significantly contribute to the flavor profile
of fermented meat products, deriving mainly from β-keto acid decarboxylation, incomplete
β-oxidation of free fatty acids, and amino acid substance degradation [4,9,19]. The 2,3-
butanedione imparts a buttery and creamy aroma. Heptan-2-one contributes a sweet and
fruity fragrance. Butan-2-one adds a slightly sweet and solvent-like aroma, 2-heptanone
is characterized by a fruity and floral scent, and 2-butanone, also known as methyl ethyl
ketone, has a sweet and acetone-like odor. The 4-hydroxy-2,5-dimethyl-3(2H)-furanone
imparts a sweet, caramel-like aroma with fruity undertones, while butane-2,3-dione may
contribute to the overall aroma owing to its characteristic scent, including a buttery fra-
grance, a fermented scent, and a creamy aroma [31].

Alcohols, which are renowned for their association with plant and floral aromas,
play a pivotal role in enhancing food flavor. In fermented chicken broth, these alcoholic
compounds primarily originate from lipid degradation [31]. Unsaturated fatty alcohols
with lower thresholds can potentially enhance overall flavor. However, alcohols with
higher flavor thresholds exert a comparatively minor impact on taste [32], constituting
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21–28% of the total composition. Noteworthy examples include oct-1-en-3-ol, which im-
parts a woody, citrus-like aroma, and 2-octanol, imparting a mild, sweet, and alcoholic
scent. Pentan-1-ol adds a slightly fruity and floral note, while 2-propanol (isopropanol)
exhibits the characteristic alcohol odor. Other contributors include 3-methyl-3-buten-1-ol
with a fruity and floral aroma, and linalool oxide, which contributes to sweet and floral fra-
grance. Additionally, 2-furanmethanol, 5-methyl-, adds a sweet and caramel-like note, and
1,8-cineole (eucalyptol) imparts a fresh and camphoraceous aroma [10]. Alcohol content
within this range significantly influenced the sensory characteristics of the chicken broth.
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However, acids, heterocyclic compounds, ethers, and others, when present at relatively
low concentrations, make a noteworthy contribution to the overall flavor [16]. For example,
propanoic acid imparts a sour and slightly rancid aroma. Similarly, 2-methylbutanoic
acid adds a cheesy and sweaty scent, 2-pentylfuran contributes a sweet and caramel-like
note, and 2-acetylthiazol imparts a roasted and nutty fragrance [33]. Dipropyl disulfide
adds a pungent and garlic-like aroma, whereas tert-butylmethylether has a faintly sweet
and ether-like odor [34]. Acetic acid ethyl ester contributes to the fruity and sweet aroma,
whereas dimethylformamide is characterized by a faint, amine-like odor [35]. Despite their
relatively low amounts, these substances exert a discernible influence on the overall flavor
of chicken broth.

2.5. Key Volatile Aroma Compounds

The influence of key volatile aroma compounds on the overall aroma profile was
determined not only by their individual concentrations but also by their ROAV val-
ues. Compounds with higher ROAV contribute more significantly to overall aroma [30].
The volatile aroma compounds identified as key aroma compounds (ROAV ≥ 1) in chicken
broth were visualized in a heatmap (Figure 6). The results show noticeable differences in the
key volatile aroma compounds during the cooking process. The 23 identified key aromatic
compounds were (E)-2-octenal, octanal, (E)-hept-2-enal, heptanal, hexanal, pentanal, pheny-
lacetaldehyde, (E)-2-hexenal, 3-methylthiopropanal, nonanal, 3-methylbutanal, butane-
2,3-dione, 2,3-butanedione, heptan-2-one, oct-1-en-3-ol, 2-octanol, linalool, 1.8-cineole,
2-heptanone, tert-butylmethylether, propanoic acid, 2-pentylfuran, and 2-acetylthiazol.
Octanal had the highest ROVA of 100, making a substantial contribution to the overall
flavor, with a citrus-like scent enriched with orange nuances [31]. Simultaneously, heptanal,
hexanal, pentanal, 3-methylthiopropanal, and 3-methylbutanal, each with ROAV ≥ 30,
significantly influenced the overall flavor profile. Heptanal imparts a fruity and waxy
aroma, hexanal contributes a green and grassy fragrance, pentanal adds a pungent and
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fruity note, and 3-methylthiopropanal provides a pungent and sulfuric aroma [4,36]. Ad-
ditionally, 3-methylbutanal imparts a malty and photoplate-like scent. This suggests that
aldehydes play a pivotal role in shaping the impact of aromatic compounds on the overall
flavor profile.
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As shown in Figure 6, where blue corresponds to low content and red corresponds
to high content, CP-3, EPC-3, and CO-3 were grouped together and showed no signif-
icant differences in the distribution of the key volatile components. CP-1, CO-1, CO-2,
EPC-1, and EPC-2 samples shared a group of volatile aroma markers. CP-2 stood out as a
separate category, indicating that the aromatic compounds in the CP and CO samples were
relatively similar.

2.6. Correlation Analysis

Pearson correlation analyses were conducted to scrutinize the association between key
volatile aroma compounds (ROAV ≥ 1) and FAAs. FAAs play a pivotal role as flavor precur-
sors in foods, with aromatic volatile compounds responsible for flavor originating primarily
from the Maillard reaction between FAAs and reducing sugars [3]. The decarboxylation and
deamination of amino acids result in the formation of diverse alcohols and aldehydes [31].
Correlation analysis, as illustrated in Figure 7, revealed that each key volatile aroma
compound was correlated with FAA. Glutamic acid (Glu) was positively correlated with
octanal, non-anal, and heptan-2-one. Serine (Ser) displayed a notable positive correlation
with hexanal and an inverse correlation with benzaldehyde. Glycine (Gly) was negatively
correlated with benzaldehyde content. Glutamic acid and glycine are known to react with
sugar compounds to produce flavor substances in meat [35]. Valine (Val) exhibited notable
positive correlations with octanal, hexanal, heptanal, 3-methylthiopropanal, heptan-2-one,
2-octanol, and 2-acetylthiazol. Valine is a precursor of isobutyraldehyde, which is formed
via the Maillard reaction [36]. Histidine (His) positively correlated with heptan-2-one, while
lysine (Lys) positively correlated with 3-methylbutanal and tert-butylmethylether. Lysine
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can undergo the Maillard reaction to generate pyrazine compounds, imparting a meaty
aroma to meat products [14]. Leucine (Leu) was negatively correlated with 1,8-cineole and
linalool levels. Some reports have indicated that leucine undergoes a Maillard reaction with
reducing sugars to form isovaleraldehyde [36]. (E)-2-pentenal was positively correlated
with all amino acids.
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This study has some limitations. First, we focused on specific cooking methods and
their impact on chicken soup flavor, neglecting other potential factors influencing taste.
Additionally, correlations do not necessarily establish causation, and further research is
needed to explore the broader context of these associations. The study’s scope is confined
to certain amino acids and volatile compounds, potentially missing other contributors to
flavor complexity.

3. Materials and Methods
3.1. Materials

Sanhuang chicken (hens fed a commercial diet for 150 days), ginger, scallions, and salt
were purchased from a local Yonghui supermarket (Chengdu, China). Hydrochloric acid
(HCl; concentration ≥ 35%), phenol, and sulfosalicylic acid (analytically pure AR) were
purchased from Chengdu Cologne Chemical Co., Ltd. (Chengdu, China).

3.2. Instruments and Equipment

The following instruments and equipment were used: a J2-MI High-speed centrifuge
(Beckmen corporation, Brea, CA, USA); Fox 4000 electronic nose system and α-Astree
electronic tongue system (Toulouse Alpha MOS, Toulouse, France); S-433D Fully Auto-
matic Amino Acid Analyzer (SHYKAM LTD, Thedinghausen, Germany); FlavourSpec®

GC–IMS (Aerospace Center, Cologne, Germany); Electric pressure cooker (SY-50YC9086
Supor Co. Ltd., Hangzhou, China); and 20-2/1 iCombi Pro combi oven (Rational AG Co.,
Landsberg am Lech, Germany).

3.3. Cooking of Chicken Soup and Sample Preparation

The chickens were cleaned, gutted, and washed with water before being weighed.
Then, 30 chickens were halved, discarding the head, neck, claws, and visible fat, and
uniformly chopped into pieces of approximately 3 ± 0.2 cm before being thoroughly mixed.
The chicken soup was made with a carcass−ginger−water weight ratio of 100:2:300. Next,
salt was added to the soup at a carcass−salt weight ratio of 100:1 approximately 10 min
before the end of cooking. Nine chicken soups were produced using three different pots
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and stewing modes. Based on the literature and pre-experiments, the process parameters
for preparing chicken soup using the casserole stew mode were obtained. The chicken
broth ingredients and Combi oven were heated to 97 ◦C for 10 min (Ceramic Pot, CP)
and 20 min (Combi oven, CO), and the temperature was maintained at 97 ± 1 ◦C. The
stew mode was directly selected for the electric stew pot. During the cooking process, its
power remained steady at 900 watts, while its pressure was sustained at 70 kPa, resulting
in the pot’s temperature reaching its maximum value within 15 min. The stew mode was
promptly selected for the universal steam oven, with a steam power output of 36 kW
for optimal heating efficiency. The total stewing time for each type of chicken soup is
presented in Table 2. After filtering the chicken soup through four layers of cotton gauze
to eliminate solid residues, the clarified broth was stored at a temperature of 4 ◦C for
further examination.

Table 2. Parameters of the cooking methods for chicken soup.

Number Equipment Stewing Time/h Sample Number

1
Ceramic pot (CP)

2 CP-1
2 3 CP-2
3 4 CP-3
4

Electric pressure
cooker (EPC)

2 EPC-1
5 3 EPC-2
6 4 EPC-3
7

Combi oven (CO)
2 CO-1

8 3 CO-2
9 4 CO-3

Note: CP1-3 represent Sample CP1-3, cooked for 2–4 h with a ceramic pot, respectively; EPC1-3 represent Sample
EPC1-3, cooked for 2–4 h with an electric pressure cooker, respectively; CO1-3 represent Sample CO1-3, cooked
for 2–4 h with combi oven, respectively.

3.4. Physicochemical Measurements
3.4.1. E-Nose Analysis

Chicken soup samples were analyzed using a FOX-4000 E-nose system (Alpha MOS,
Nantes, France) with 18 metal oxide semiconductor sensors. A 2.0 g chicken soup sample
was placed in a 100-mL vial and heated to 70 ◦C, and its headspace gas was injected
into the sensor array at 2000 µL/s for a 300 s run. The sensors encompassed a diverse
array of functionalities, with their order being rearranged as follows: LY2/LG (oxynitride
and sulfides), LY2/G (ammonia, amine compounds, and oxynitride), LY2/AA (ammonia,
alcohol, and acetone), LY2/Gh (ammonia and amine compounds), LY2/gCT1 (hydrogen
sulfide), LY2/gCT (propane and butane), T30/1 (polar organic compound, hydrogen
sulfide), P10/2 (methane and ethane), P10/1 (carbon-oxygen compound, ammonia, and
chlorine), P40/1 (chloride and fluoride), T70/2 (aromatic compounds), PA/2 (alcohol,
ammonia, and amine compounds), P30/1 (hydrogen sulfide, chlorine, and fluoride), P40/2
(hydrogen sulfide, chlorine, and fluoride), P30/2 (alcohol, combustion products, aldehydes,
and hydrogen sulfide), T40/2 (chloride and fluoride, fluoride), T40/1 (fluoride), and TA/2
(alcohols) [37]. Each sensor was designed to detect specific analytes, ranging from alcohols
and amines to sulfides and fluorides, providing a comprehensive monitoring solution. For
each chicken soup sample, quintuplicate analyses were conducted. The measured data
were extracted and subjected to principal component analysis (PCA) using the Alpha Soft
statistical software (Alpha M.O.S., Version 2012.45). Statistical significance was assessed
through Duncan’s multiple range test, with significance established at p < 0.05.

3.4.2. E-Tongue Analysis

The Astree E-tongue featured a distinct set of seven sensors (AHS-sources, TS-Salsalami,
NMS-umami, PKS, CPS, ANS, and SCS) along with Ag/AgCl serving as the reference
electrode. These sensors are specifically designed to identify acidity, saltiness, and freshness.
To prepare each 10.0 g chicken soup sample, it was immersed in 100 mL of deionized water
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in a 100 mL beaker. Following 30 min of ultrasonic extraction, the filtered supernatant was
prepared for subsequent analysis. A volume of 80 mL of the filtrate was placed in a special
beaker on an E-tongue for analysis. Each sample underwent eight measurements, and the
final five stable values were considered as the test results. The response intensities of the
E-tongue sensors were normalized to obtain the relative influence intensity.

3.4.3. Free Amino Acid (FAA) Compositional Analysis

The detection of FAA followed a modified version of the procedure outlined in [30].
For each 1.0 g of a chicken soup sample, a 50-mL centrifuge tube received 40 mL of
0.01 mol/L HCl, which was mixed for 5 min. After centrifugation at 10,000 rpm for
4 min, the supernatant was collected, followed by dilution with deionized water in a 10-mL
volumetric flask. A 1-mL aliquot of the diluted supernatant was filtered through a 0.22-µm
Millipore filter (EMD Millipore, Billerica, MA, USA) for FAA determination.

3.4.4. GC–IMS

Each 2.0 g of a chicken soup sample was weighed, placed in a 20-mL headspace vial,
and heated to 60 ◦C for 15 min. Then, 500 µL of headspace gas was drawn and injected
into the sensor array. The analysis of each sample occurred in a column (Fs-SE-54-CB-1;
15 m × 0.53 mm) at 60 ◦C. The carried gas velocity began at 2.0 mL/min for 2 min, increased
to 10.0 mL/min over the next 10 min, and further escalated to 100.0 mL/min from 10 to
40 min. High-purity nitrogen (>99.999%) served as the drift gas at a flow rate of
150 mL/min in the drift tube, which measured 9.8 cm in length and was maintained
at a linear voltage of 500 V/cm. Both the IMS detector and drift tube temperature were set
at 45 ◦C.

3.4.5. Identification of Key Volatile Aroma Compounds

The relative odds activity value (ROAV) method was employed to identify key aroma
compounds in chicken soup at different stewing temperatures. The ROAV of aroma
compounds contributing significantly to chicken soup was established as 100, and the
ROAV for other aroma compounds was computed using the following formula [30]:

ROAV =
100 × Tstan × Cm

Cstan × Tm

where Cstan is the relative content of aroma compounds in the sample (%); Tstan is the odor
threshold in water (µg/kg), as documented in the literature [37]; Cm is the highest ROAV
among the aroma compounds that contributes significantly to the overall flavor of the
chicken soup; Tm is the odor threshold of the aroma compound with the most substantial
contribution to the overall flavor of the chicken soup sample. The ROAV scale ranges from
0 to 100, with a higher ROAV value suggesting a more significant impact on the overall
taste profile of the chicken soup sample. Aroma compounds with ROAV ≥ 1 are considered
key volatile aroma components.

3.5. Statistical Analysis

The experimental findings are expressed as mean ± standard deviation (SD) using
IBM SPSS software (version 20.0, IBM Corp., Armonk, NY, USA). Data from the samples,
measured using an E-nose and E-tongue, underwent PCA directly using the instrument’s
software. Mapping was performed using the Origin 2021 software. The choice of PCA
for our chemometric analysis was based on its simplicity and interpretability in extract-
ing data patterns [38], emphasizing aroma similarities between Ceramic Pot and Combi
Oven chicken soup samples. While Partial Least Squares Discriminant Analysis (PLS-DA)
and Linear Discriminant Analysis (LDA) are recognized for their stronger discrimination
capabilities [39], considering the limited sample size and experimental setup, PCA was
deemed sufficient to achieve our objectives and yield insightful results. The chicken soup
underwent qualitative analysis while utilizing the Laboratory Analytical Viewer software
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(VOCal 0.2.9) integrated with GC-IMS NIST/IMS databases. Correlations among E-nose
and E-tongue sensors, as well as key aroma and taste substances with a taste active value
(TAV) ≥ 1 and ROAV ≥ 1, were explored through partial least squares regression (PLSR).
PLSR analysis was performed using the Unscrambler X software (version 10.4, available at
https://the-unscrambler-x.software.informer.com/10.4/, accessed on 21 April 2020).

4. Conclusions

In this study, chicken soup was cooked via CP, EPC, and EC. E-nose and GC–IMS were
used to detect volatile aroma compounds. A total of 39 volatile aroma compounds were
detected, among which 23 key aroma compounds were identified. An automatic amino
acid analyzer was used to identify FAAs in Sample CP-3 that had significant contributions
to the overall taste. Cluster analysis showed that the aroma compounds and FAA of the CP
and CO samples were relatively similar. Pearson’s correlation analyses revealed distinct
correlations between various amino acids (e.g., glutamic acid, serine, and glycine) and
specific volatile compounds. This study provides data for the one-touch cooking of chicken
soup in a versatile steam oven. Future studies should investigate the impact of diverse
ingredients and recipe variations in the flavor profiles of chicken soup prepared using
combi ovens. Comparative analyses of cooking methods contribute to optimal cooking
techniques. Further research should focus on sensory evaluation and consumer acceptance
to guide culinary practices and enhance satisfaction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29071532/s1, Table S1. Volatile compounds detected
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