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Abstract: Pain affects one-third of the global population and is a significant public health issue. The
use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such
as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic
agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive
activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the dis-
covery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The
aim of this review is to present peptides of human and animal origin with antinociceptive potential
and to show the possibilities of their modification, as well as the design of novel structures. The study
presents the current knowledge on structure-activity relationship in the design of peptide-based
biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity,
and improvement of metabolic stability and pharmacodynamic profile. The procedures employed
in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the
conditions leading to the development of potential morphine replacements.

Keywords: natural antinociceptive peptides; opioids; analgesia; nociceptin/orphanin; peptidomimetics;
bioconjugates

1. Introduction: Opioid Peptides and Their Receptors

Pain treatment was one of humanity’s main problems even in ancient times. The
pain-relieving properties of opium, the poppy plant (Papaver somniferum) extract, have been
known for centuries. Even today, the most effective painkiller in the treatment of severe
and chronic pain is morphine, an alkaloid obtained from opium. Morphine acts through
opioid receptors, localized in the central nervous system (CNS) and many peripheral
tissues [1]. There are three main types of opioid receptors designated µ, δ, and κ (or MOR,
DOR, and KOR, respectively). These receptors, called classical opioid receptors, were
discovered in the 1970s, and they all mediate analgesia in humans as well as in animal
models of pain [2,3]. The strongest antinociceptive effect is associated with the activation
of the MOR, which plays the main role in the signal transduction cascades responsible for
pain perception. Morphine binds to all three types of opioid receptors, but its affinity to
MOR is about 100 times greater than that of DOR and KOR [4]. Unfortunately, morphine
treatment, especially chronic, causes serious side effects, including sedation, tolerance and
dependence, constipation, respiratory depression, and hypotension [5].

The fourth member of the opioid receptor family is the nociceptin/orphanin FQ
(N/OFQ) receptor (NOP), previously referred to as opioid-receptor-like1 (ORL1), identified
in 1994 [6]. On the basis of its structural similarity to the classical opioid receptors, the
NOP receptor was classified as belonging to the opioid receptor family despite its unique
pharmacological profile [7].
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Opioid receptors are members of the G protein-coupled receptors (GPCRs) family
and are coupled with Gi/Go proteins. GPCR activation leads to the modulation of various
intracellular signaling partners, including adenylyl cyclase, phospholipase C, ion channels,
and components of the mitogen-activated protein kinase (MAPK) pathway [8]. GPCR
stimulation inhibits the activity of adenylyl cyclase and cAMP production, triggering
the modulation of synaptic plasticity, pain processing, and memory and reward process-
ing [9,10]. The opening of inwardly rectifying K+ channels and inhibition of voltage-gated
dependent Ca2+ channels (VDCCs) cause intracellular hyperpolarization of the neuron
and a reduction in the release of presynaptic neurotransmitters such as glutamate and
substance P, which are vital in the transmission of pain. Thus, the activation of opioid
receptors creates a strong analgesic effect [9].

The discovery of opioid receptors resulted in the search for their endogenous ligands,
known as opioid peptides [2,11]. In the 1970s, DOR-selective enkephalins [12], KOR-
selective dynorphins [13,14], and non-selective β-endorphins [15] were isolated from the
mammalian brain. All these peptides have the same N-terminal amino acid sequence
(Tyr-Gly-Gly-Phe) and free carboxylic group at the C-terminus. Peptides with such struc-
ture were named “typical” opioid peptides. Much later, in 1997, Zadina and co-workers
discovered two tetrapeptides in the bovine brain [16] and human cerebral cortex [17], which
showed high affinity and selectivity for MOR. These peptides act through the same opioid
receptor as morphine and, therefore, were named endomorphin-1 and endomorphin-2
(Table 1). Endomorphins, unlike other opioid peptides, possess a proline residue in position
2 and have amidated N-terminus. Due to these differences, they were named ”atypical”
opioid peptides [2].

Table 1. Endogenous mammalian opioid peptides and their selectivities for the opioid receptors.

Endogenous Peptide Amino Acid Sequence Opioid Receptor Affinity

Mammalian

[Met]enkephalin H-Tyr-Gly-Gly-Phe-Met-OH DOR, MOR
[Leu]enkephalin H-Tyr-Gly-Gly-Phe-Leu-OH (DOR >> MOR)

dynorphin A H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-
Asn-Gln-OH KOR, MOR, DOR

dynorphin B H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-OH (KOR >> MOR and DOR)

β-endorphin H-Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-
Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu-OH

MOR, DOR
(MOR = DOR)

endomorphin-1 H-Tyr-Pro-Trp-Phe-NH2 MORendomorphin-2 H-Tyr-Pro-Phe-Phe-NH2

nociceptin/orphanin FQ
(N/OFQ)

H-Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-Ala-Arg-Lys-Leu-Ala-
Asn-Gln-OH NOP

The endogenous ligand of the NOP receptor was identified in 1995, independently
by two groups, and named nociceptin/orphanin FQ (N/OFQ) [18,19]. Nociceptin has no
affinity for classical opioid receptors, and MOR and DOR ligands do not bind to the NOP
receptor [20]. The main structural difference between nociceptin and other opioid peptides
is the presence of Phe instead of Tyr as the N-terminal amino acid. The endogenous ligands
of all four opioid receptors are presented in Table 1.

Several “atypical” opioid peptides (Table 2) have been obtained from body fluids such
as milk and blood, including β-casomorphin [21] and its shorter form, morphiceptin [22,23],
that are products of enzymatic digestion of β-casein, while hemorphins originate from
the blood protein hemoglobin [24]. Another important group of opioid peptides is com-
pounds isolated from the amphibian skin: MOR-selective dermorfin [25], DOR-selective
dermenkephalin [26], and deltorphin I and II [27]. Interestingly, all these peptides from
amphibians are characterized by a very high affinity for mammalian opioid receptors
(Table 2).
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Table 2. Selected examples of atypical opioid peptides.

Origin Peptide Amino Acid Sequence Opioid Receptor Affinity

β-casein
bovine β-casomorphin(1–7) H-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-OH MOR
human β-casomorphin(1–7) H-Tyr-Pro-Phe-Val-Glu-Pro-Ile-OH MOR

morphiceptin H-Tyr-Pro-Phe-Pro-NH2 MOR

hemoglobin hemorphin-4 H-Tyr-Pro-Trp-Thr-OH MOR

amphibian skin *

dermorphin H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2 MOR
dermenkephalin H-Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 DOR

deltorphin I H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 DOR
deltorphin II H-Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 DOR

* more examples of peptides of animal origin are presented in Section 2.

Although all three types of classic opioid receptors are involved in analgesic processes,
each activation produces different specific effects. Despite strong antinociceptive activity,
activation of MOR may lead to respiratory depression, inhibition of intestinal peristalsis,
physical addiction, and euphoria. DOR agonists have reduced addictive potential but also
lower antinociceptive efficacy. KOR ligands are responsible for strong dysphoric effects
but can also be viewed as potential analgesics only for peripheral use [3,11,28]. The phar-
macological profile of the NOP receptor differs from that of classic opioid receptors. The
NOP receptor plays important roles in various physiological functions, most importantly
in learning and memory, locomotion, and anxiety. Antinociceptive effects mediated via the
NOP receptor are complex; activation via N/OFQ was shown to produce either anti- or
pro-nociceptive effects, depending on the animal species, dosage, route of administration,
as well as the pain model [29,30].

Since the endogenous opioid system is known to play an essential role in pain percep-
tion and modulation, opioid receptors and their ligands have been important targets in
medicinal chemistry. Numerous opioid peptides and their synthetic analogs have been stud-
ied extensively in order to determine their structure–activity relationship (SAR) and also in
the hope of finding structural leads for novel analgesics safer than morphine [11,31–33].

The opioid system, discussed in detail above, has an indisputable and long history
in the treatment of pain [8]. However, in addition to the opioidergic system, there are
several other systems, such as neurotensin, cannabinoid, neurokinin, and melanocortin, as
well as varieties of neurotransmitters involved in the modulation of pain perception. The
major types of pain-associated neurotransmitters (inflammatory mediators: prostaglandins
PGE2 and PGI2, leukotriene B4 (LTB4), nerve growth factor (NGF), proton, bradykinin,
ATP, adenosine, substance P, neurokinins A and B, 5-hydroxytryptamine (5-HT), histamine,
glutamate, norepinephrine and NO; non-inflammatory mediators: calcitonin gene-related
peptide (CGRP), GABA, glycine and cannabinoids), their cognate receptors (either pre- or
post-synaptic) and eventual pharmacological effects on pain regulation are discussed in
excellent review by Yam et al. [34].

Due to their evolutionary role, various natural compounds are regular ligands of
receptors involved in physiological functions, including pain modulation, and, at the same
time, they are inspirations for the design and development of novel bioactive compounds.
Among them, nature-derived peptides, mostly GPCR ligands, are frequently studied
because of their selectivity and the accumulated knowledge on peptide design and synthesis
for specific purposes. The well-known metabolism and vast possibilities for derivatization
make peptides one of the favorite starting points in the search for drug candidates [35].

This review aims to present natural sources of potential analgesic peptides and meth-
ods of modification, as well as the design of novel structures with improved bioavailability
and pharmacodynamic properties. We will discuss antinociceptive peptides from the ani-
mal kingdom and the strategies employed in the transformation of their sequences into
more drug-like molecules.
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Pain affects one-third of the global population, and it is a public health issue. Cur-
rently, opioid drugs are associated with several disorders, such as tolerance, addiction,
overdose, and sometimes death [36]. Problems related to the use of opioid analgesics in
patients have prompted scientists to search for alternative drugs with new structures and
improved properties.

2. Antinociceptive Peptides of Animal Origin

The exploration of alternative therapeutic options has led researchers to delve into the
world of animal peptides [37–39]. Many creatures in the animal kingdom produce peptides
as a part of their defense mechanisms, signaling systems, or for various physiological
functions. In recent years, scientists have been studying these peptides for their potential
therapeutic benefits, including their ability to alleviate pain.

Animal peptides exhibit antinociceptive properties by interacting with the body’s
pain-signaling pathways. They can modulate pain perception through various mechanisms,
including interaction with receptors involved in pain transmission, inhibition of inflamma-
tory processes, and modulation of neuronal excitability [39]. Understanding the specific
mechanisms through which animal peptides exert their antinociceptive effects is crucial for
developing targeted and effective pain management strategies.

One of the remarkable aspects of animal peptides is the diversity in their sources
and structures. Venomous creatures, such as snakes, spiders [40,41], and cone snails, are
well-known for producing peptides with potent bioactivities, including antinociceptive
effects [42]. Additionally, peptides derived from insects or the skin secretions of amphibians
have also shown promise in pain modulation.

2.1. Peptides Derived from Sea Snails

Among the venomous animals, snails are an important source of peptides with differ-
ent biological activities. Several peptides with antinociceptive activity are characterized by
the venoms of various snails [43–45]. The very interesting molecules with antinociceptive
activity are conotoxins (Table 3). These peptides from cone snails are potent and highly
selective blockers or modulators of ion channel functions [46].

Table 3. Selected peptides from sea snails.

Peptide Sequence Organism Ref.

α-conotoxin RgIA GCCSDPRCRYRCR
disulfide bonds: C2–C8, C3–C12 Conus regius [46]

α-conopeptide Eu1.6 GCCSNPACMLKNPNLCa
disulfide bonds: C2–C8, C3–C16 Conus eburneus [47]

ω-conotoxin MVIIA
(SNX-111, ziconotide, or
Prialt®)

CKGKGAKCSRLMYDCCTGSCRSGKCa
disulfide bonds: C1–C16, C8–C20, C15–C25 Conus magus [43]

ω-conotoxin GVIA
(SNX-124)

CKSOGSSCSOTSYNCCRSCNOYTKRCYa
disulfide bonds: C1–C16, C8–C19, C15–C26 Conus geographus [43]

CVIID
ω-conotoxin

CKSKGAKCSKLMYDCCSGSCSGTVGRCa
disulfide bonds: C1–C16, C8–C20, C15–C27 Conus catus [43,48]

ω-conotoxin SO-3 CKAAGKPCSRIAYNCCTGSCRSGKCa
disulfide bonds: C1–C16, C8–C20, C15–C25 Conus striatus [43,44]

FVIA
ω-conotoxin

CKGTGKSCSRIAYNCCTGSCRSGKCa
disulfide bonds: C1–C16, C8–C20, C15–C25 Conus fulmen [49]

CVIE
ω-conotoxins

CKGKGASCRRTSYDCCTGSCRSGRCa
disulfide bonds: C1–C16, C8–C20, C15–C25 Conus catus [50]
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Table 3. Cont.

Peptide Sequence Organism Ref.

CVIF
ω-conotoxins

CKGKGASCRRTSYDCCTGSCRLGRCa
disulfide bonds: C1–C16, C8–C20, C15–C25 Conus catus [50]

MoVIA
ω-conotoxins

CKPOGSKCSOSMRDCCTTCISYTKRCRKYYN
disulfide bonds: C1–C16, C8–C19, C15–C26 Conus moncuri [45]

MoVIB
ω-conotoxins

CKPOGSKCSOSMRDCCTTCISYTKRCRKYY
disulfide bonds: C1–C16, C8–C19, C15–C26 Conus moncuri [45]

RsXXIVA CKGQSCSSCSTKEFCLSKGSRLMYDCCTGSCCGVKTAGVT
disulfide bonds: location not reported Conus regularis [51]

O represents hydroxyproline residue.

For example, α-conotoxin RgIA, the peptide containing 13 amino acid residues with
two intramolecular disulfide bonds (Table 3), was isolated from Conus regius [46]. It has
been reported that in rat models of neuropathy, RgIA is a potent pain-relieving com-
pound. Its effects are associated with modulating N-type Cav2.2 VGCCs. Furthermore, the
structure–activity relationship (SAR) studies led to the development of a new analog of
RgIA (RgIA4—H-Gly-Cys-Cys-Thr-Asp-Pro-Arg-Cys-Cit-Tyr(3-I)-Gln-Cys-Tyr-OH) with
high potency in humans and rodents [46].

Liu et al., described the strong antinociceptive activity of α-conopeptide, Eu1.6 from
Conus eburneus. Eu1.6 exhibited antinociceptive activity in rat partial sciatic nerve injury
and chronic constriction injury models, and its activity was more potent than that of a
combination of morphine and gabapentin [47].

Other important classes of conotoxin peptides are theω-conotoxins that block calcium
channels [43]. Theω-conotoxin GVIA (27 amino acids peptide with three disulfide bonds) is
the first peptide isolated from C. geographus [43]. Theω-conotoxins have also been isolated
from many other species, such as C. magus and C. catus, forming a family of peptides
24–30 residues long and containing three intramolecular disulfide bonds (Table 3). The
ω-conotoxin GVIA is a selective blocker of N-type voltage gated Cav (VGCCs) channels.

The most extensively analyzed ω-conotoxin is ω-conotoxin MVIIA (Table 3) from
C. magus [43]. This peptide specifically blocks N-type Cav channels (Cav2.2) and inhibits
K+-induced [3H]-γ-aminobutyric acid (GABA) release in the hippocampus in vivo. This
conotoxin has been approved by the Food and Drug Administration (FDA) as a non-opioid
analgesic peptide against long-term neuropathic pain in humans under the commercial
name of ziconotide or Prialt® [48]. However, theω-conotoxin GVIA is more potent than
ω-conotoxins MVIIA or morphine. Several studies have reported that ziconotide does not
interact with opioid receptors, and it does not cause analgesic tolerance or other opioid-
induced systemic effects. However, its injection causes different CNS adverse effects, such
as dizziness or memory impairment [48].

2.2. Peptides Derived from Spiders

Spider venom contains a broad range of peptide toxins, exerting several activities in
biological systems. To date, a large number of peptides with antinociceptive properties
have been isolated from several spider venoms [40,41,52]. Typical spider peptides are rich
in disulfide brides, which form the inhibitor cystine knot (ICK) motif. Most contain six
cysteine residues that form three disulfide bonds through connections between Cys1–Cys4,
Cys2–Cys5 and Cys3–Cys6. However, spider peptides may also contain four or even five
disulfide bonds [52]. More peptides have shown antinociceptive effects by modulating ion
channels such as acid-sensing ion channels (ASICs), stretch-activated channels (SACs), or
voltage-gated ion channels, including calcium (Cav) and sodium (Nav) channels. Spider
peptides may also activate receptors such as purinergic receptors (P2X3). Some of these
neurotoxins could be the starting point for developing future analgesics.
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Among antinociceptive toxins present in spider venoms are purotoxins. Purotoxin-1
(PT1) was isolated from the crude venom of the Central Asian Spider Geolycosa sp. [53,54].
This single-chain peptide contains 35 amino acid residues, including 8 cysteines involved
in 4 intramolecular disulfide bridges (Table 4). Three disulfide bridges (Cys3–Cys16,
Cys10–Cys21, and Cys15–Cys32) form the cystine knot, although there is also a loop se-
cured by the disulfide bridge Cys23–Cys30. PT1 selectively inhibits P2X3 receptors, which
are known to be implicated in pain mechanisms. Moreover, in the behavioral experi-
ments carried out in rats, the antinociceptive effect was observed after injection of PT1 [53].
Purotoxin-2 (PT2), consisting of 64 amino acid residues with 4 disulfide bonds (Table 4) [54],
was isolated from the venom of the same spider, and similar to PT1, it modulates P2X3 receptors.

Table 4. Selected peptides from spider venom.

Peptide Sequence Organism Ref.

Purotoxin-1 (PT1) GYCAEKGIRCDDIHCCTGLKCKCNASGYNCVCRKKa
disulfide bonds: C3–C16, C10–C21, C15–C32, C23–C30 Lycosa kazakhstanicus [54]

Purotoxin-2 (PT2)
AKACTPLLHDCSHDRHSCCRGDMFKYVCDCFYPEGEDKTEVCSC
QQPKSHKIAEKIIDKAKTTLa
disulfide bonds: C4–C19, C11–C28, C18–C44, C30–C42

Lycosa kazakhstanicus [54]

PnTx2-6
(δ-CNTX-Pn2a)

ATCAGQDQPCKETCDCCGERGECVCGGPCICRQGYFWIAWYKLAN
CKK
disulfide bonds: C3–C17, C10–C23, C14–C46, C16–C31, C25–C29

Phoneutria nigriventer [55,56]

PnTx2-5
ATCAGQDQTCKVTCDCCGERGECVCGGPCICRQGNFLIAWYKLAS
CKK
disulfide bonds: C3–C17, C10–C23, C14–C46, C16–C31, C25–C29

Phoneutria nigriventer [55,56]

PnTx3-1 AECAAVYERCGKGYKRCCEERPCKCNIVMDNCTCKKFISEL
disulfide bonds: C3–C18, C10–C23, C17–C34, C25–C32 Phoneutria nigriventer [56]

PnTx3-2
(Tx3-2, PNTx3-2)

ACAGLYKKCGKGASPCCEDRPCKCDLAMGNCICKKKFIEFFGGGK
disulfide bonds: C2–C17, C9–C22, C16–C33, C24–C31 Phoneutria nigriventer [56]

PnTx3-3
(Phα1β)

GCANAYKSCNGPHTCCWGYNGYKKACICSGXNWK
disulfide bonds: C2–C16, C9–C26, C15–C28 Phoneutria nigriventer [56,57]

PnTx3-6
(Phα1β)

ACIPRGEICTDDCECCGCDNQCYCPPGSSLGIFKCSCAHANKYFCNR
KKEKCKKA
disulfide bonds: C2–C16, C9–C22, C13–C52, C15–C37, C18–C45, C24–C35

Phoneutria nigriventer [58]

PnTx3-4

SCSINVGDFCDGKKDDCQCCRDNAFCSCVIFGYKTNCRCEVGTTATS
YGICMAKHKCGRQTTCTKPCLSKRCKKNHG
disulfide bonds: C2–C20, C10–C26, C17–C51, C19–C39, C28–C37, C57–C63,
C67–C72

Phoneutria nigriventer [56]

PnTx3-5 GCIGRNESCKFDRHGCCWPWSCSCWNKEGQPESDVWCECSLKIGK
disulfide bonds: C2–C17, C9–C22, C16–C39, C24–C37 Phoneutria nigriventer [56,59]

PnTx4(6-1)
(δ-Ctenitoxin-Pn1a,
δ-CNTX-Pn1a)

CGDINAACKEDCDCCGYTTACDCYWSKSCKCREAAIVIYTAPKKK
LTC
disulfide bonds: C1–C15, C8–C21, C12–C48, C14–C31, C23–C29

Phoneutria nigriventer [56,60]

β-TRTX-Cd1a DCLGWFKSCDPKNDKCCKNYSCSRRDRWCKYDLa
disulfide bonds: C2–C17, C9–C22, C16–C29 Ceratogyrus darling [61]

JzTx-34 ACREWLGGCSKDADCCAHLECRKKWPYHCVWDWTV
disulfide bonds: C2–C16, C9–C21, C15–C29 Chilobrachys guangxiensis [62]

Hainantoxin-IV
(µ-TRTX-Hhn1b,
HNTX-IV)

ECLGFGKGCNPSNDQCCKSSNLVCSRKHRWCKYEIa
disulfide bonds: C2–C17, C9–C24, C16–C31 Ornithoctonus hainana [63]
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Table 4. Cont.

Peptide Sequence Organism Ref.

Huwentoxin-I
(HWTX-I
or HWAP-I)

ACKGVFDACTPGKNECCPNRVCSDKHKWCKWKL
disulfide bonds: C2–C17, C9–C22, C16–C29 Ornithoctonus huwena [64,65]

Huwentoxin-XVI
(HWTX-XVI)

CIGEGVPCDENDPRCCSGLVCLKPTLHGIWYKSYYCYKK
disulfide bonds: C1–C16, C8–C21, C15–C36 Ornithoctonus huwena [66]

SNX-482 GVDKAGCRYMFGGCSVNDDCCPRLGCHSLFSYCAWDLTFSD
disulfide bonds: C7–C21, C14–C26, C20–C33 Hysterocrates gigas [67]

Phlotoxin 1
(Ph1Tx1)

ACLGQWDSCDPKASKCCPNYACEWKYPWCRYKLF
disulfide bonds: C2–C17, C9–C22, C16–C29 Phlogiellus spider [68]

ω-Agatoxin IVA
KKKCIAKDYGRCKWGGTPCCRGRGCICSIMGTNCECKPRLIMEGL
GLA
disulfide bonds: C4–C20, C12–C25, C19–C36, C27–C34

Agelenopsis aperta [69]

Tick peptide LVVYPWTKM Amblyomma
testindiarium (tick) [70]

The venom of the Brazilian armed spider Phoneutria nigriventer contains several potent
peptide toxins. The most toxic components derived from this venom are neurotoxins
PnTx2-6 (δ-CNTX-Pn2a) and PnTx2-5. These molecules contain 48 amino acid residues
(Table 4) [55,71,72]. PnTx2-6 modulates voltage-gated Na+ channels and stimulates the
production of nitric oxide (NO). However, PnTx2-6 induces nociception but is highly toxic;
therefore, its therapeutic use is not possible. To overcome these limitations, the synthetic
19 amino acid peptide PnPP-19 was developed (Ac-GERRQYFWIAWYKLANSKKa) [72].
This molecule does not act on the Nav channels but shows great potential as a therapeutic
drug without significant toxicity. The PnPP-19 can act on the activation of DOR, MOR,
or CB1 cannabinoid receptors. Moreover, the antinociception induced by this peptide
appears to involve the inhibition of neprilysin, a neutral endopeptidase that prevents the
destruction of endogenous opioids [72].

The next molecule isolated from the venom of the Brazilian armed spider, Phoneutria
nigriventer [58,73], is Phα1β, also known as PnTx3-6. This neurotoxin is a small protein
containing 55 amino acids and 6 disulfide bridges (Table 4). It was originally identified
as an antagonist of two ion channels involved in nociception: the N-type voltage-gated
calcium channel (Cav2.2) and transient receptor potential ion channel (TRPA1). In animal
models, the administration of Phα1β has been shown to reduce both acute and chronic
pain. PnTx3-6 also produces a strong antinociceptive effect on cancer-related pain and
causes minimal side effects at high doses. This peptide is more effective and potent as an
antinociceptive agent than ω-conotoxins (peptides isolated from cone snail venom that
inhibit Nav channels with great potency and selectivity).

Brazilian armed spider venom also contains other peptides such as PnTx3-1, PnTx3-2,
PnTx3-3, PnTx3-4, and PnTx3-5 (Table 4) [56]. These peptides inhibit voltage-activated
calcium channels and induce antinociceptive effects. Recently, it was shown that PnTx3-1
also causes an antinociception by interfering with the activation of the cholinergic sys-
tem [56]. The peptide PnTx3-3 is a 34-amino acid polypeptide (Table 4) [56,57]. It inhibits
all known high-voltage activated calcium channels (L-, P/Q- and R-type currents) (Cav),
and most effectively, the P/Q- (Cav2.1/CACNA1A) and R-type (Cav2.3/CACNA1E) cur-
rents, and produces antinociception in models of neuropathic pain and inflammation. The
sequence of PnTx3-5 consists of 36 amino acids (Table 4) [59]. It is a blocker of L-type
VGCCs [59]. It was reported that the intrathecal administration of the peptide PnTx3-5
produced antinociception in postoperative, neuropathic, and cancer-related pain models.
Moreover, antinociceptive effects induced by this peptide were observed at a dose much
lower than morphine [59].
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Another peptide toxin-peptide PnTx4(6-1) (Table 4), called δ-Ctenitoxin-Pn1a (δ-CNTX-
Pn1a), was also isolated from that venom. It is a 48-amino-acid polypeptide with 5 disulfide
bridges [56,60]. In various experimental models of pain, this peptide induced a clear
antinociceptive effect in inflammatory, neuropathic, and nociceptive conditions. According
to Emerich et al., in the nociceptive pain model, this effect seems to involve CB1 cannabinoid
receptors as well as MOR and DOR, although the specific mechanisms have not been
clarified [74]. Based on the amino acid sequence of PnTx4(6-1), a 13 amino acid analog
PnAn13 (CDSYWSKSSKCREa) was synthesized, with a clear antinociceptive effect in rats,
which involves the cannabinoid and opioid systems [75].

The β-theraphotoxin-Cd1a (β-TRTX-Cd1a) was isolated from the African rear-horned
baboon tarantula Ceratogyrus darling, and it is a 33-amino acid peptide (Table 4) [61] that
blocks Cav2.2, Nav1.1–1.2, and Nav1.7–1.8 channels, with a higher potency for Nav1.7.
Due to its ability to regulate ion channels and its antinociceptive effects, β-TRTX-Cd1a has
potential therapeutic applications for developing peripheral pain treatment drugs [61].

The venom of the Chinese tarantula Chilobrachys guangxiensis contains a family of
peptides named Jingzhaotoxins (JzTx). The JzTx-34 is a 35-residue polypeptide (Table 4)
that inhibits Nav1.7 channels, exhibiting antinociceptive properties with higher affinity as
compared to all other subtypes of Nav [62]. This toxin also inhibits voltage-gated potassium
channels (Kv) in rat dorsal root ganglion (DRG) neurons. Moreover, JzTx-34 shows a longer
duration, and it is more effective than morphine in rodent pain models [76].

Hainantoxin-IV, also termed µ-TRTX-Hhn1b (HNTX-IV), is a 35-residue peptide (Table 4)
from the Chinese bird spider Ornithoctonus hainana (Haplopelma hainanum) venom [63]. The
native µ-TRTX-Hhn1b inhibits Nav1.2, Nav1.3, and Nav1.7. The antinociceptive effect
of µ-TRTX-Hhn1b is attributed to its ability to inhibit the tetrodotoxin-sensitive (TTX-
S) voltage-gated sodium channels (VGSCs), especially human Nav1.7 expressed in HEK
293 cells. It was reported that the activity of this peptide in rat models of inflammatory and
neuropathic pain might be comparable or superior to morphine and mexiletine [63].

Several peptide toxins were purified from the venom of the tarantula Ornithoctonus
huwena and named huwentoxins [64–66,77]. Huwentoxin-XVI (HWTX-XVI) contains
39 amino acid residues and 3 disulfide bridges (Table 4) [66]. This molecule is a specific
blocker of N-type VGCCs in DRG rat neurons. HWTX-XVI induces a slight but significant
antinociceptive effect on thermal pain in rat formalin tests. Moreover, after injection of this
peptide, pain reduction occurred immediately and lasted longer, while morphine-induced
pain reduction was immediate but lasted for a shorter time.

SNX-482 peptide (Table 4) was isolated from the venom of the African tarantula
Hysterocrates gigas [67]. As the R-type channel selective blocker, it causes antinociception
in neuropathic pain models. Moreover, this peptide inhibits the N-type Cav2.3 at the
nanomolar range and the L-type Cav1.2 channel at the low micromolar range. Some results
indicate that SNX-482 inhibits neuronal responses in a neuropathic pain model; therefore,
it is possible that SNX-482 can be used to reduce dorsal horn neuronal pain in neuropathic
pain therapy.

Another interesting spider peptide is phlotoxin 1 (Ph1Tx1), a promising antinocicep-
tive peptide with a high affinity for Nav. It is a 34-residue toxin purified from Phlogiellus
spider venom (Table 4) [68]. Phlotoxin-1 is a potent blocker of the Nav1.7 channel, which
was identified as the most sensitive ion channel for Ph1Tx1.

It has already been demonstrated that agatoxins (µ-Aga-I andω-agatoxin IVA) from
the venom of the funnel web spider Agelenopsis aperta possess an antinociceptive effect. The
ω-agatoxin IVA is 48 amino acid polypeptide (Table 4) [69], and it is a specific blocker of
the voltage-gated calcium channels (Cav2.1) in vertebrate central neurons.

Liang et al., isolated from the hard tick’s synganglia (central nervous system), Ambly-
omma testindiarium, an opioid peptide, which shares similarities with mammalian hemor-
phins (Table 4). This peptide displayed a dose-related antinociceptive effect in mice [70].
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2.3. Peptides from Scorpion Venom

Numerous antinociceptive peptides have been isolated from scorpion venoms. These
peptides exhibit various biological and pharmacological activities [78]. The first peptide
from the venom of the Chinese Scorpion Buthus martensi Karsch (BmK) with an antinocicep-
tive activity was described in 1994, and now more than 10 peptides with antinociceptive
effect in mice and rats have been identified: BmK I1, BmK I4, BmK I6, BmK AngP1,
BmK dITAP3, BmK ANEP, BmK Ang P1, BmK AS, BmK AS-1, BmK AGP-SYPU1, BmK
AGP-SYPU2, BmK AGAP, etc.

BmK AGAP is a long-chain peptide with 66 amino acid residues (Table 5). It was
observed that BmK AGAP has antitumor activity and a weak inhibitory effect on the
voltage-gated sodium channel Nav1.7. Therefore, this channel may not be the primary
target of BmK AGAP. Moreover, the study also suggests that BmK AGAP inhibits the
transient receptor potential vanilloid-1 (TRPV1) and the potassium channels KCNQ2/3
currents, and intrathecal injection of this venom peptide with lidocaine produces long-
lasting antinociception [79].

Table 5. Selected peptides from scorpions.

Peptide Sequence Organism Ref.

BmK AGAP
VRDGYIADDKNCAYFCGRNAYCDDECKKNGAESGYCQWAGV
YGNACWCYKLPDKVPIRVPGKCNGG
disulfide bonds; C12–C63, C16–C36, C22–C46, C26–C48

Buthus martensi [80]

BmK AGAP-SYPU2
VKDGYIVDDKNCAYFCGRNAYCDDECEKNGAESGYCQWAGVY
GNACWCYKLPDKVPIRVPGRCNG
disulfide bonds: C12–C63, C16–C36, C22–C46, C26–C48

Buthus martensi [80]

BmK AS
DNGYLLDKYTGCKVWCVINNESCNSECKIRGGYYGYCYFWKLA
CFCQGARKSELWNYNTNKCDGKL
disulfide bonds: C12–C62, C16–C37, C23–C44, C27–C46

Buthus martensi [78,81]

BmK AS1
DNGYLLNKYTGCKIWCVINNESCNSECKLRRGNYGYCYFWKLA
CYCEGAPKSELWAYETNKCDGKL
disulfide bonds: C12–C62, C16–C37, C23–C44, C27–C46

Buthus martensi [81]

BmK IT2
DGYIKGKSGCRVACLIGNQGCLKDCRAYGASYGYCWTWGLAC
WCEGLPDNKTWKSESNTCG
disulfide bonds: C10–C60, C14–C35, C21–C42, C25–C44

Buthus marten [78,82]

BmK-YA YGGYMNPAa Buthus marten [83]

BmK Ang P1 KKNGYAVDSSGKVAE Buthus marten [84]

TsNTxP
MKRMILFISCLLLIDIVVGGREGYPADSKGCKITCFLTAAGYCNTE
CTLKKGSSGYCAWPACYCYGLPDSVKIWTSETNKCGKK
disulfide bonds: C31–C81, C35–C57, C43–C62, C47–C64

Tityus serrulatus [85]

Hetlaxin ISCTGSKQCYDPCKKKTGCPNAKCMNKSCXCYGCa
disulfide bonds: C3–C24, C9–C29, C13–C31, C19–C34 Heterometrus laoticus [86]

The high homology to BmK AGAP shows BmK AGP-SYPU2 (Table 5), differing in
only four amino acids: Lys2, Val7, Glu27, and Arg62 [80]. BmK AGP-SYPU2 exhibits strong
antinociceptive effects against both visceral and somatic pain and shows antitumor activity
in mice. However, it has stronger antitumor activity and weaker antinociceptive activity
compared with those of BmK AGAP. Similarly, highly homologous peptides BmK AS and
BmK AS-1, containing 66 amino acid residues (Table 5), induce strong central and peripheral
antinociceptive effects in rats. Peptide BmK AS modulates voltage-gated Na+ channels
of animals [78]. It is interesting that the amino acid sequence of BmK AS-1 indicates a
structural homology to AaH IT4 isolated from the venom of African Scorpion Androctonus
australis Hector.
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Peptide BmK IT2, derived from venom of Buthus martensi Karsch, is composed of
61 amino acids with 4 disulfide bonds (Table 5) [78,82]. Peptide BmK-YA contains an
enkephalin-like sequence and activates three subtypes of opioid receptors, MOR, DOR, and
KOR, but with selectivity for the DOR subtype [83].

TsNTxP was isolated from the venom of the scorpion Tityus serrulatus. It exhibits
antinociceptive effects in rodents by inhibiting glutamate release and stimulating the
voltage-gated sodium channels. It is structurally similar to neurotoxins that interact with
Nav channels, although it is non-toxic [78].

The venom of scorpion Heterometrus laoticus contains peptide hetlaxin, showing both
antinociceptive and antiinflammatory activity (Table 5). Hetlaxin possesses a high affinity
to the Kv1.3 potassium channel [86].

2.4. Peptides Isolated from Other Arthropods

In recent years, an increasing number of insect peptides have been proving useful
in several pharmaceutical applications. Several insect peptides with different amino acid
sequences and the length of the peptide chain were reported to display the antinocicep-
tive effect, such as proctolin [87], leucopyrokinin [88], trypsin modulating oostatic factor
(TMOF) [89], alloferon [90] and myotropins peptide [91]. This activity was at least in part
mediated by the central opioid system as it was blocked by naloxone—an opioid antagonist.
Moreover, the pentacosapeptide poneratoxin, discovered in the venom of ant Paraponera
clavata, also exerts an antinociceptive effect in rats [92]. However, this effect does not
seem to be mediated by the central opioid system but perhaps by central neuronal sodium
channels, central nicotinic receptors, or NO• radicals.

The literature data indicate great potential for studying the neuroactive compounds
isolated from Hymenoptera in the treatment of pain [93]. The antinociceptive compound
[Thr6]-bradykinin (Thr6-BK) (Table 6) was isolated from the venom of wasp Polybia occiden-
talis [93]. It exerts a strong effect on i.c.v. administration in rats. Pallipin-III, isolated from
the social wasp Agelaia pallipes pallipes, is a 22-amino acid peptide that exhibits antinocicep-
tive and anti-inflammatory effects when injected peripherally into mice (Table 6).

Table 6. Selected peptides from other arthropods.

Peptide Sequence Organism Ref.

[Thr6]-bradykinin (Thr6-BK) RPPGFTPFR Polybia occidentalis (wasp) [93]
Pallipin-III SIKKHKCIALLKRRGGSKLPFCa Agelaia pallipes pallipes (wasp) [94]
Protonectin ILGTILGLLKGLa Parachartergus fraternus (wasp) [95]
Agelaia-MP I INWLKLGKAIIDALa Parachartergus fraternus (wasp) [94]
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Apis mellifera (bee) [96]
Proctolin RYLPT Perplaneta americana (cockroach) [87]
Neb-TMOF NPTNLH Neobellieria bullata (fly) [89]
Alloferon HGVSGHGQHGVHG Calliphora vicina (fly) [90]
LPK pETSFTPRLa Leucophaea madera (cockroach) [88]
MAS MT I pEDVVHSFLRFa Manduca sexta (cockroach) [91]
Poneratoxin FLPLLILGSLLMTPPVIQAIHDAQRa Paraponera clavata (ant) [92]

pE represents pyroglutamic acid residue.

Galante et al., identified a 12-amino acid long peptide (Table 6) called protonectin
from the venom of the wasp Parachartergus fraternus [95]. This peptide induces the antinoci-
ceptive effect, but it may cause some sort of toxicity. However, its analog, protonectin-F,
containing the phenylalanine residues in positions 2 and 8, has increased bioavailability
and antinociceptive effect comparable to that of morphine [95]. Gonçalves et al., identified
the peptide Agelaia-MP I from the same wasp [94]. It is interesting that the sequence
is identical to the mastoparan peptide described in another wasp species, Parachartergus
fraternus. Agelaia-MP I displayed dose-dependent antinociceptive activity when injected
directly into the CNS of mice. The biological results suggest that this peptide may act on
non-opioid receptors.
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Bee venom from Apis mellifera is a complex mixture that includes proteins and peptides
such as melittin or adolapin [97]. Adolapin is a polypeptide with 103 amino acid residues,
known for its antinociceptive properties [98]. Melittin evokes antinociceptive effect in
chemotherapy-induced peripheral neuropathy. This effect is mediated by activating the
spinal α1 and α2-adrenergic receptors [99].

2.5. Peptides of Amphibian Origin

It has been demonstrated that some bioactive peptides from amphibians, such as
bradykinins, tachykinins, and cholecystokinins, exert algesic effects [100,101]. Dermorphins
and deltorphins (Table 7) are the family of antinociceptive peptides that have been found
in the skin of South American frogs [25]. Dermorphins are the most potent and selective
MOR agonists, whereas deltorphins are peptides with high affinity and selectivity for
DOR [102,103]. The antinociceptive peptide was also extracted from the brain of the
frog Odorrana graham. So far, the molecular mechanism of the antinociceptive effect of
odorranaopin is unknown [104].

Table 7. Selected peptides from amphibia.

Peptide Sequence Organism Ref.

Dermorphin H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2 Phyllomedusa sauvagei [100]
[Hyp6]-dermorphin H-Tyr-D-Ala-Phe-Gly-Tyr-Hyp-Ser-NH2 Phyllomedusa sauvagei [105]
[Lys7]-dermorphin-OH H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Lys-OH Phyllomedusa bicolor [101]
[Lys7]-dermorphin-NH2 H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Lys-NH2 Phyllomedusa bicolor [101]
[Trp4-NH2]-dermorphin H-Tyr-D-Ala-Phe-Trp-Tyr-Pro-Ser-NH2 Phyllomedusa bicolor [101]
[Trp4, Asn7]-dermorphin H-Tyr-D-Ala-Phe-Trp-Tyr-Pro-Asn-OH Phyllomedusa bicolor [105]
[Trp4, Asn7-NH2]-dermorphin H-Tyr-D-Ala-Phe-Trp-Tyr-Pro-Asn-NH2 Phyllomedusa bicolor [101]
[Trp4, Asn-OH5]-dermorphin H-Tyr-D-Ala-Phe-Trp-Asn-OH Phyllomedusa bicolor [101]
Y10A H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-Gly-Glu-Ala-OH Phyllomedusa sauvagei [101]

Y131 H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-Gly-Glu-Ala-Lys-
Lys-Ile-OH Phyllomedusa sauvagei [101]

DAla-deltorphin I H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 Phyllomedusa bicolor [105]
DAla-deltorphin II H-Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 Phyllomedusa bicolor [105]
DMet-deltorphin,
dermenkephalin, Deltrophin H-Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 Phyllomedusa bicolor [105]

Deltorphin H-Tyr-Ala-Phe-Gly-Tyr-Pro-Ser-NH2 Phasmahyla jandaia [101]

Dlle-deltorphin H-Tyr-D-Ile-Phe-His-Leu-Met-Asp-NH2
Pachymedusa dacnicolor,
Agalychnis annae [101]

[Met(Ox)]6-deltorphin H-Tyr-Met-Phe-His-Leu-Met(O)-Asp-NH2 Phasmahyla jandaia [101]

DLeu-deltorphin-17 H-Tyr-D-Leu-Phe-Ala-Asp-Val-Ala-Ser-Thr-Ile-Gly-
Asp-Phe-Phe-His-Ser-Ile-NH2

Phasmahyla jandaia [101]

Odorranaopin H-Asp-Tyr-Thr-Ile-Arg-Thr-Arg-Leu-His-Gln-Glu-
Ser-Ser-Arg-Lys-Val-Leu-OH Odorrana graham [104]

Tryptophyllin L1.2 H-Phe-Pro-Trp-Leu-NH2 Litoria rubella [101]
Tryptophyllin L3.1 H-Phe-Pro-Trp-Pro-NH2 Litoria rubella [101]
- H-Phe-Pro-Kyn-Leu-NH2 Litoria rubella [101,106]
Adenoregulin GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV Phyllomedusa bicolor [101]

Tt7 EQDPKCLLPRNLGKGKGSTIRYYYDKSAGT
disulfide bonds: C6–C4, C2–C3 Trachycephalus typhonius [107]

Kyn-kynurenine. For clarity, the short sequences in this table are presented in a three-letter code to accommodate
nonproteinaceous amino acid residues and to avoid confusion between D-Ala (frequently indicated as a) and
C-terminal amide.

2.6. Peptides from Snake Venom

Several studies reported that peptide toxins purified from snake venom have the
potential to become new painkillers [39].

Three isoforms of mambalgin peptides have been isolated from the venom of black
(Dendroaspis polylepis) and green mamba (Dendroaspis angusticeps) (Table 8) [108]. Mambalgin-
1,-2,-3 evoke antinociceptive effects after local subcutaneous injection or after injection into
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the central nervous system. These peptides block a set of acid-sensing ion channels to
relieve pain.

Table 8. Selected peptide from snake venom.

Peptide Sequence Organism Ref.

Mambalgin-1
LKCYQHGKVVTCHRDMKFCYHNTGMPFRNLKLI
LQGCSSSCSETENNKCCSTDRCNK
disulfide bonds: C3–C19, C12–C37, C41–C49, C50–C55

Dendroaspis polylepis [108]

Mambalgin-2
LKCFQHGKVVTCHRDMKFCYHNTGMPFRNLKLIL
QGCSSSCSETENNKCCSTDRCNK
disulfide bonds: C3–C19, C12–C37, C41–C49, C50–C55

Dendroaspis polylepis [108]

Mambalgin-3
LKCYQHGKVVTCHRDMKFCYHNIGMPFRNLKLIL
QGCSSSCSETENNKCCSTDRCNK
disulfide bonds: C3–C19, C12–C37, C41–C49, C50–C55

Dendroaspis angusticeps [108]

α-cobratoxin
(α-CbTX, α-elapitoxin–Nk2a)

IRCFITPDITSKDCPNGHVCYTKTWCDAFCSIRGKR
VDLGCAATCPTVKTGVDIQCCSTDNCNPFPTRKRP
disulfide bonds: C3–C20, C14–C41, C26–C30, C45–C56,
C57–C62

Naja naja kaouthia [48,109]

Crotalphine pEFSPENCQGESQPC
disulfide bond: C7–C14 Crotalus durissus terrificus [110]

µ-EPTX-Na1a
LKCHNTQLPFIYKTCPEGKNLCFKATLKKFPLKFPK
RGCADNCPKNSALLKYVCCSTDKCN
disulfide bonds: C3–C22, C15–C40, C44–C55, C56–C61

Naja atra [111]

It has been reported that crotalphine a 14-amino acids peptide with a pyroglutamic acid
and a disulfide bond (Table 8), isolated from the venom of the South American rattlesnake
Crotalus durissus terrificus, produces an antinociception by displaying opioid activity [110]. It is
worth noting that the antinociceptive effect of crotalphine is blocked by the KOR antagonist nor-
binaltorphimine and partially reversed by N,N-diallyl-Tyr-Aib-Phe-Leu-OH, DOR antagonist,
whereas in a PGE2-induced hyperalgesia model the activity is reversed by intraplantar injection
of dynorphin A antiserum, indicating the involvement of endogenous opioids [112,113]. It is
interesting that crotalphine has a higher antinociceptive activity compared to morphine.

The µ-EPTX-Na1a is a 62-residue polypeptide (Table 8) from the venom of the Chinese
cobra (Naja atra). It was shown to be a potent inhibitor of the voltage-gated sodium
channel Nav1.8 subtypes and hence contributes to reducing inflammatory and neuropathic
pain [111]. In vivo, in rodent inflammatory and neuropathic pain models, µ-EPTX-Na1a
attenuates nociceptive behavior more strongly than morphine.

The α-cobratoxin (α-CbTX) (Table 8) has been isolated from the venom of the cobra
snake Naja kaouthia. It was suggested that the analgesic effect α-CbTX, independent of the
opioid system, occurs by blocking T-type VGCCs [48,109].

The interactions between receptors and ligands open the possibilities of intervention
based on the design of agonists and antagonists modifying the selectivity and intensity
of response [114]. Peptides, being natural ligands, serve as templates in search for novel
biomodulators. GPCR-targeted peptide-based drug discovery aimed at antinociception
uses peptides of animal origin to develop new structures [35]. The opportunities resulting
from studies of venoms and toxins, supported by genomics, peptidomics, and other omics,
deliver structural motives to be used in the molecular modeling of potential drug candidates.
The diversity of peptides and structural opportunities are combined with the flexibility
of peptide synthesis based on solid-support strategies or in-solution transformations.
Modular peptide assembly delivers the desired compounds, frequently containing non-
proteinaceous amino acids or post-translational modifications. Larger structures could be
formed by conjugation or biotechnological procedures [115]. Other advantages of peptides
result from the compatibility with regular metabolism and lack of accumulation. Synthetic
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opportunities and the predictability of metabolic fate are the main advantages of peptides
when compared with small molecules in drug development [35].

The pharmacological disadvantages of peptides, including limited stability, oral
bioavailability and biodistribution, could be overcome by modification strategies presented
in the following parts of the text.

3. Structural Modifications of Opioid Peptides

In the last two decades, the interest in opioid peptides as potential drug candidates
has increased significantly. Peptides generally are characterized by relatively high activity,
selectivity, and low toxicity. However, the native opioid peptides have several limitations,
such as low metabolic stability, poor bioavailability, and low blood–brain barrier (BBB)
permeability, which discriminate them as therapeutic agents for clinical use [31,116,117].
Most peptides cannot be administered orally as gastrointestinal enzymes rapidly inactivate
them; therefore, subcutaneous or intravenous administration is required. The very low
brain permeability or inability to cross BBB limits the access of exogenously administered
peptides to the required site of action in the brain.

To overcome these problems and to optimize the therapeutic potential, various strate-
gies have been proposed to develop novel analogs of opioid peptides with a better pharma-
cological profile than the native compounds, i.e., increased metabolic stability, bioavailabil-
ity and/or selectivity of the site of action (central or peripheral action) [3,11,31–33,116–118].
The main chemical modifications in opioid peptidomimetic design include incorporating
unnatural or D-amino acids, forming non-peptide bonds, N/C-terminal modifications, cy-
clizing linear peptides, and synthesizing conjugates and hybrid structures. These methods
have proven to be effective in achieving high selectivity and specificity [31–33,116–120].

Extensive structure–activity relationship (SAR) studies of opioid peptides are focused
on the development of centrally acting analogs that cross the blood–brain barrier, which
would produce an analgesic effect as strong as morphine without causing addiction or
tolerance. In this case, particular emphasis is placed on obtaining lipophilic peptides that
will penetrate the BBB and activate MOR in CNS. On the other hand, compounds that do
not cross BBB are also interesting, especially when a local antinociceptive effect is required,
e.g., in the inflammation processes in the gastrointestinal tract [121,122].

The three families of endogenous opioid peptides, β-endorphins, dynorphins, and
enkephalins (ENKs), share a similar amino acid sequence of Tyr-Gly-Gly-Phe-X. Due to
their structural homology and natural flexibility, endogenous linear opioid peptides may
interact with multiple receptor subtypes.

Natural opioid peptides contain aromatic amino acids that are generally recognized
as key pharmacophoric residues. According to the message–address concept [123], the
N-terminal tri- or tetrapeptide is responsible for the biological activity, whereas the address
region is the variable structure responsible for selectivity. The address region is the variable
structure responsible for selectivity (Figure 1). SAR research has shown that the interactions
with opioid receptors have strict requirements for the message sequences, whereas the sta-
bility of the peptides is more dependent on the address sequence. The key pharmacophoric
residues in the message region of opioid peptides are Tyr and Phe, and their Nα-amino,
phenolic, and aromatic groups are critical for activity. Therefore, the tyrosine residue is not
typically involved in structural modifications of opioid peptides [31].

3.1. The First Step: Amino Acid Replacement

For decades, researchers have been developing opioid peptide analogs as drug candi-
dates. Studies on SAR of opioid peptides in the 1970s showed that substituting D-Ala at
position 2 in enkephalin analogs increased their stability and activity [124]. In addition, the
incorporation of D-Ala, MePhe, and Met(O)-ol at positions 2, 4, and 5 of [Met]enkephalin,
respectively, results in a remarkable increase in antinociceptive efficacy. A comparable
result can be achieved by replacing the peptidase-susceptible peptide bond with a dipeptide
isostere such as an olefin, ester, or triazole (Table 9). According to a recent study, the use
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of β-Ala at the N-terminal amide of an ENK-like tetrapeptide results in longer-lasting
antinociceptive effects due to reduced availability of endopeptidases [125]. Another study
demonstrated that the addition of an N-terminal Nα-guanidyl group to form guanidyl-
Tyr-D-Ala-Gly-Phe-Leu-tetrazole, in combination with a C-terminal tetrazole and D-Ala,
significantly enhances stability, lipophilicity, affinity, and potency [126]. SAR studies al-
low the identification of changes in the amino acid sequence that will result in a viable
drug candidate. Amino acid residues included in pharmacophores can be replaced with a
residue that modifies the receptor binding and biological activity of the peptide, whereas
residues that are enzymatically unstable but do not significantly affect the overall biological
activity of the peptide can be replaced with more stable moieties. Applying these principles,
new linear analogs, DADLE and DSLET (Table 9), have been developed. These examples
of enkephalin structural analogs exhibit higher selectivity and agonist activity for DOR.
Research has shown that agonist activation of DOR does not produce as potent an antinoci-
ceptive effect as MOR but is likely to cause fewer side effects. Another example is DAMGO,
a synthetic derivative of [Met]enkephalin. Although native [Met]enkephalin activates both
receptors non-selectively, DAMGO is a highly selective MOR agonist [127].
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Dermorphin and enkephalin analogs containing N-terminal derivative of tyrosine
with two methyl groups at the 2′,6′ positions of the aromatic ring but without amino group
(deaminated Dmt) were found to be moderately potent antagonists of DOR and MOR. It can
be concluded that the amino group is not necessary for receptor binding, and its removal
in agonistic opioid peptides containing the regular N-terminal 2′,6′-dimethyltyrosine (Dmt)
residue may be a general method to convert them into antagonists [136]. The dermorphin-
derived peptide H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA) (Table 9) [133] is a highly
potent MOR agonist with subnanomolar MOR binding affinity. It is systemically active
(crosses the blood–brain barrier) and, in comparison with morphine, it has much higher
antinociceptive potency in both acute and neuropathic pain models [137,138].

Endomorphins differ from other endogenous opioids in their sequence. The opioid
receptor motif in endomorphin-1 (EM-1) differs from the typical Tyr-Gly-Gly-Phe-X pattern,
as it has the sequence H-Tyr-Pro-Trp-Phe-NH2. Similarly, endomorphin-2 (EM-2) has the
sequence H-Tyr-Pro-Phe-Phe-NH2. The presence of Pro in position 2 induces a turn in the
peptide structure, allowing the aromatic groups Tyr and Phe/Trp to bind to the MOR recep-
tor. Modifications to increase enzymatic stability have primarily involved the replacement
of the Pro residue. The introduction of D-Pro significantly decreased the binding affinity to
the receptor, but the addition of unnatural amino acids with six-membered heterocyclic
rings, such as piperidine-2, 3-, and 4-carboxylic acids, which mimic Pro, significantly
increased the metabolic stability and antinociceptive activity of the analogs [31].

The main limitation that must be overcome in designing centrally active peptides
is their poor ability to penetrate the blood–brain barrier [139]. One way to improve the
permeability of the BBB is to increase the lipophilicity of the therapeutic agent by removing
polar groups from the side chains of the amino acids. However, studies have shown that
the removal of the Tyr hydroxyl group in endomorphin results in a complete loss of activity.
Another method is to add hydrophobic groups, such as methyl or acetyl, to increase the
lipophilicity of the peptide. N-methylation effects of subsequent amino acid residues in
the EM-2 molecule and the introduction of methyl groups to the aromatic rings of Tyr and
Phe have been studied over the years. The 2′,6′-dimethyltyrosine (Dmt) analog, obtained
by methylation of the phenolic tyrosine ring, resulted in a significantly increased level of
bioactivity. The lipophilicity, permeability of BBB, and activity can also be increased by
guanidino-addition and chlorohalogenation of amino acid side chains [140].

Currently, peptides that have mixed opioid receptor profiles represent an interesting
new generation of candidates for peptide-based analgesics with improved potency and/or
reduced side effects [141–143]. The first peptidic MOR opioid agonist/DOR antagonist H-
Dmt-TicΨ[CH2NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]) was reported by Schiller and co-workers.
DIPP-NH2[Ψ] produced a potent antinociceptive effect, no physical dependence, and less
tolerance than morphine [144]. In the following decades, extensive structure–activity
relationship studies of opioid receptor ligands concentrated on obtaining analogs with
high selectivity for one opioid receptor type. Indeed, the strongest antinociceptive effects,
but also undesired side effects, are mostly mediated through the activation of MOR [2,11].
However, DOR and KOR can also contribute to the analgesic effects of opioids [142,145].
Now, it is widely accepted that simultaneous activation of multiple opioid receptors may
result in additional analgesia with fewer side effects [143,145].

KOR selective agonists produce analgesia accompanied by some dysphoric effects [146],
and this property limits their therapeutic development. However, the MOR/KOR agonists
of the alkaloid structure, such as ethylketazocine (EKC), are safer than selectively acting
agonists and have been used to treat cocaine addiction [147].

DOR agonists have been found to enhance the antinociceptive effects of MOR agonists,
while DOR antagonists inhibit the development of tolerance and addiction, side effects
of MOR agonists [145]. This observation resulted in the search for ligands that act simul-
taneously on two receptors, such as MOR agonist/DOR agonist or MOR agonist/DOR
antagonist [148].



Molecules 2024, 29, 1544 17 of 35

3.2. Biphalin—A Prominent Example of SAR Study

Biphalin, (H-Tyr-D-Ala-Gly-Phe)2hydrazine, a dimeric analog of two enkephalin-
like fragments connected “tail-to-tail” via a hydrazine bridge, is the best-known and the
most studied example of a peptide ligand with the dual MOR/DOR agonist profile [149]
(Figure 2). Biphalin displays exceptionally high antinociceptive activity, induces analgesia
in acute, neuropathic, and chronic animal pain models, and is 1000 times more potent
than morphine when administered intrathecally. Moreover, in tests conducted on rodents
after long-term administration, biphalin induces less physical dependence and withdrawal
syndromes than morphine [150,151]. Despite its excellent antinociceptive activity, the
clinical use of this compound is limited due to its poor penetration of the BBB and/or low
metabolic stability. To overcome these limitations and to obtain compounds with modified
BBB penetration and better pharmacological profile, several analogs based on the structure
of biphalin have been designed and synthesized. The modifications include the reduction
of the length of the peptide chain in one biphalin arm, modification of the hydrazide bridge,
replacement of amino acid residues in positions 4,4′ and 3,3′, conjugation with polyethylene
glycol (PEG), the introduction of fluorescent residues, and cyclization [152,153].
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Different fragments of biphalin and their analogs were modified by the replacement of
Phe4 by Trp, whereas the Phe residue in the second arm was replaced by D-Phe, L/D-Nle
(norleucine), Tyr, or Trp. SAR analysis revealed that H-Tyr-D-Ala-Gly-Phe-NH-NH<-Phe is
the minimal fragment necessary to express equal affinities and the same biological activity
profile as the parent biphalin. A shorter fragment, H-Tyr-D-Ala-Gly-Phe-NH-NH2 exhibits
good affinity for MOR, similar to biphalin, but the affinity for DOR is 100 times lower.
Moreover, it was shown that the presence of the N-terminal Tyr is crucial for biphalin’s
high affinity with opioid receptors and its pharmacological activity [153].

In order to determine the influence of hydrazine linkers on biphalin opioid receptor
affinity and its activity, several biphalin analogs with different non-hydrazine linkers were
obtained [149,154,155]. Modification of the hydrazide bridge by using alkyl diamines of
variable length (CH2)n led to reduced activity, probably because of the higher degree of
freedom around the diamide bridge positioning the two pharmacophores in the receptor
pockets [149,154].

Stepinski et al., used diaminepolyoles for connecting biphalin motives (Figure 3)
and demonstrated that the use of hydrophilic spacers creates new possibilities in the
modulation of activity and selectivity of opioid peptide bivalent ligands, and both the
length and configuration of these spacers are important factors in determining receptor
potency and selectivity, but still accompanied by a loss of activity [156].
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Mollica and co-workers [155] synthesized biphalin analogs, in which the hydrazide
bridge was replaced with diamines containing an aromatic or an aliphatic cyclic structure:
1,4-phenylenediamine, 1,2-phenylenediamine, and piperazine. These new analogs showed
better affinity and in vitro bioactivity than biphalin itself, thus suggesting that the high
activity of biphalin is not critically related to the structural and conformational properties
of the hydrazide bridge and that hydrazine bridge can be conveniently substituted by
different conformationally constrained cycloaliphatic and cycloaromatic diamine linkers
(Figure 3).

To enhance the message-address interactions between the ligand and the receptors
and thus increase the activity of biphalin, the modifications of amino acid residues were
made in the peptide chain. It has been demonstrated that substituting Phe residue in posi-
tion 4 of enkephalins can significantly affect binding to the MOR and DOR. Misicka et al.,
synthesized a series of biphalin analogs in which different substituents in the para position
of the aromatic ring of Phe residue (-NO2, -Cl, -F, -I, and -NH2) were introduced [157]. Sym-
metrical incorporation of pF or pNO2-Phe residues in position 4 of biphalin (see Figure 2)
resulted in analogs that showed, although to a different degree, enhancement of affinity
towards DOR and MOR accompanied by an increase of DOR/MOR selectivity [157,158].
Different non-hydrazine linkers were incorporated with the pF-Phe to improve BBB perme-
ability [159] further. The introduction of piperazine linker and pF-Phe led to the analog with
remarkable in vitro and in vivo activity. A new compound (H-Tyr-D-Ala-Gly-(pF)Phe)2-
piperazine, named AM94, showed high binding affinity at MOR and DOR and a greater
and longer-lasting antinociceptive effect than biphalin after different administrations routes
such as intrathecal and subcutaneous and was one of the most potent linear biphalin
analog described.

Substituting α-amino acids with their β-isomers in biologically active peptides may
result in increased enzymatic stability and a strong influence on peptide conformation. The
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replacement of Phe by β3 homoamino acid (hβ3-Phe) resulted in a biphalin derivative with
good MOR- and DOR affinities and antinociceptive activity in vivo together with increased
enzymatic stability in human plasma [160]. Incorporation of hβ3-pNO2-Phe and a 1,2-
phenylenediamine or hydrazine bridge also leads to active and selective analogs, with a
selectivity depending on the type of linker. The compound with a hydrazine linker showed
noticeable binding selectivity to MOR, while the peptide with a 1,2-phenylenediamine
linker had slight DOR selectivity. Both analogs produced a greater antinociceptive effect
compared to morphine after i.t. administration [161].

3.3. Cyclic Analogs: Frozen Structure

Among various synthetic approaches, cyclization is a powerful tool in peptide chem-
istry that is well-recognized and used to develop peptidomimetics with improved pharma-
cological properties. Cyclic analogs adopt more strict conformations that are better defined
than those of their linear counterparts, which often results in higher receptor binding
affinity, metabolic stability, and increased lipophilicity, usually followed by improved BBB
permeability [119,120]. Linear sequences can be cyclized using different strategies and in
different positions by forming bonds between peptide ends or side chains. Apart from
disulfide bridges in peptides containing cysteine residues, the most often used bridging
methods between side chains are amide bonds and urea bonds [119]. The first cyclic analogs
of opioid peptides (enkephalin analogs) were synthesized already in the 1980s [162–164].
In the last 50 years, a great number of cyclic opioid peptides have been synthesized in the
hope of designing a new generation of peptide-based analgesics [119,120].

MOR selective endomorphins and morphiceptin analogs are difficult to cyclize due
to their short tetrapeptide sequence and the lack of reactive side-chain groups. Therefore,
different approaches have been used to obtain cyclic analogs of such peptides, such as
extending a peptide chain by introducing additional amino acids or/and functionalizing
amino acid side chains.

In the search for new MOR-selective opioid peptide analogs with improved anal-
gesic profiles, Janecka and co-workers described several series of endomorphins and
morphiceptin analogs of a general formula H-Tyr-c[Xaa-Phe-Phe-Yaa]-NH2 or H-Tyr-c[Xaa-
Phe-D-Pro-Yaa]-NH2, respectively (where Xaa, Yaa = L/D-Asp or L/D-Lys), obtained by
cyclization through an amide bond between the side-chain of bifunctional amino acids
Lys and Asp introduced into the peptide chain in positions 2 and 5, respectively [165–167].
New cyclic peptides were designed to preserve the most important structural elements
necessary for binding endomorphin-2 and morphiceptin with MOR, which are amino and
phenolic groups of Tyr1 and the aromatic ring of Phe3 [168]. Some of those new analogs
showed higher MOR affinity than endomorphin-2 or morphiceptin and produced a strong
and long-lasting antinociceptive effect in hot plate test in mice after intracerebroventricular
(i.c.v.) administration. Among others, analog H-Tyr-c[D-Lys-Phe-Phe-Asp]-NH2 displayed
greatly improved stability in the rat brain homogenate and produced antinociception also
after intravenous (i.v.) administration, which showed that it was able to cross, at least to
some extent, the blood–brain barrier [166]. Cyclic pentapeptides mentioned above became
parent compounds for further structural modifications aimed at obtaining analogs with
increased metabolic stability and BBB permeability [121,167,169,170].

Perlikowska et al., modified the sequence of analog H-Tyr-c[D-Lys-Phe-Phe-Asp]-
NH2 by the introduction of D-1- or 2-naphthylalanine residues (D-1-Nal and D-2-Nal,
respectively) in position 3 [167]. Both analogs showed high MOR affinity and agonist
activity and were enzymatically stable. Unfortunately, the increase in lipophilicity was
achieved at the expense of water solubility. The analog H-Tyr-c[D-Lys-D-2-Nal-Phe-Asp]-
NH2 showed a strong antinociceptive effect when given i.c.v., but could not be tested after
i.v. administration where higher concentrations of the compound are required.

The lipophilic character of a peptide can be increased by introducing methyl groups
into the aromatic rings of Tyr and Phe. The replacement of Tyr in position 1 by highly
lipophilic unnatural amino acid 2′,6′-dimethyl-L-tyrosine (Dmt) resulted in analogs with
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increased affinity at MOR, drastically improved in vitro stability and very strong antinoci-
ceptive activity after i.c.v. injection [121,169]. However, the i.v. administration of these
peptides did not produce any significant antinociceptive effects, indicating that they did
not cross the BBB. More detailed studies of analog H-Dmt-c[D-Lys-Phe-Phe-Asp]-NH2
(C-36) using the parallel artificial membrane permeability assay (PAMPA), considered as
an accurate passive diffusion permeability model for BBB confirmed its very low perme-
ation through this artificial barrier, suggesting that enhanced lipophilicity is not the only
factor deciding of the blood–brain barrier permeability [121,169]. As opposed to C-36,
Tyr1-containing analog H-Tyr-c[D-Lys-Phe-Phe-Asp]-NH2 could reach the brain after i.v.
administration. Recently, Zadina et al. [171] reported a series of cyclopeptides of a similar
structure also containing Tyr1 that were able to produce strong antinociception after periph-
eral administration. Therefore, the presence of Dmt1 in cyclic peptides may be a structural
element responsible for the lower permeability of such analogs through biological barriers.

Based on the structure of the analog C-36 H-Dmt-c[D-Lys-Phe-Phe-Asp]-NH2, Per-
likowska and co-workers synthesized a series of analogs, in which Phe3 and Phe4 residues
were consecutively replaced by 2′, 3′ or 4′-methylphenylalanine (MePhe) [170]. Analogs
with MePhe in position 4 showed an order of magnitude increased MOR affinity as com-
pared with a parent compound C-36 and were strong MOR/KOR agonists and weak DOR
agonists. In the in vivo hot-plate test in mice, the MePhe4-modified peptides showed
remarkable antinociceptive activity after i.c.v. administration, which was most likely due
to the concomitant activation of more than one opioid receptor type.

The Phe residues in position 3 or 4 in C-36 were also modified by the introduction
of D-1-Nal and D-2-Nal [172]. Cyclopeptides with D-1-Nal and D-2-Nal in position 4
retained the sub-nanomolar MOR and nanomolar KOR affinity, similar but not better than
that of a parent cyclopeptide. Analogs H-Dmt-c[D-Lys-Phe-D-1-Nal/D-2-Nal-Asp]-NH2
displayed high antinociceptive activity in mice not only after i.c.v. but also after systemic
intraperitoneal (i.p.) injection, indicating that they were able to cross the BBB.

Piekielna et al., introduced fluorinated amino acids: 4-fluorophenylalanine (pF-Phe),
2,4-difluorophenylalanine (2,4-F-Phe), or 4-trifluoromethylphenylalanine (pCF3-Phe) into
the sequence H-Tyr/Dmt-c[D-Lys-Phe-Phe-Asp]-NH2 instead of the Phe residue in position
3 or 4 [173]. Depending on the fluorinated amino acid residue and its position in the
sequence, analogs were mixed with high-affinity MOR/KOR agonists, MOR/DOR/KOR
agonists, or selective KOR agonists. The most potent analogs containing mono- and
difluorinated Phe residues were full MOR and partial KOR agonists, showing high potency
at the MOR and KOR and much lower potency and efficacy at the DOR. In hot plate
tests in mice, these compounds produced strong antinociceptive effects after i.c.v. and i.p.
administration [173].

Incorporation of trifluoromethyl group into the aromatic ring of Phe in the sequence of
C-36 led to peripherally restricted opioid analog H-Dmt-c[D-Lys-Phe-(pCF3)Phe-Asp]-NH2
(F-81). This compound exhibited dose-dependent antinociceptive activity, significantly
stronger than that of endomorphin-2 after i.c.v. administration, when given directly to
CNS. On the other hand, peripheral i.v. administration of the peptide produced only a
negligible antinociceptive effect in the hot plate test in mice, indicating that it could not
cross BBB. The very low BBB permeability was also confirmed in the PAMPA test. After i.p.
administration, analog F-81 significantly attenuated inflammation in the mouse models
of colitis and showed strong antinociceptive activity in the mouse model of abdominal
pain [121]. Such peripherally restricted opioid analgesics can be useful as a safer alternative
for treating inflammatory painful disorders of the gastrointestinal tract.

In a search of endomorphins analogs with a low risk of adverse side effects, Zadina and
co-workers obtained novel cyclic analog H-Tyr-c-[D-Lys-Trp-Phe-Glu]-Gly-NH2 (ZH853).
The new compound showed high affinity, selectivity, and potent activation of the MOR. It
was metabolically stable, penetrated the BBB, and had a strong antinociceptive effect after
various routes of administration in multiple pain models. Compared to morphine, ZH853
showed dramatically improved antinociception-to-side-effect ratios, including reduction
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of respiratory depression, abuse liability, tolerance, motor impairment, and inflammation.
The authors suggested that ZH853 could provide effective therapy for a diverse spectrum
of pain conditions as well as reduce the opioid overdose epidemic [171,174].

The presented modification strategies, especially cyclization, were applied to biphalin.
In Section 3.2, various analogs of linear biphalin were discussed, whereas here, we would
like to present recent studies focused on the cyclization of biphalin by the incorporation of
an additional bridge between biphalin arms.

To overcome the moderate stability of biphalin in human plasma, several cyclic analogs
of biphalin with a disulfide linkage [152,175] or a xylene bridge were developed [176,177].
The first cyclic analogs of biphalin were synthesized by Mollica and co-workers in 2006.
D-Ala residues in position 2,2′ of parent peptide were replaced by L/D-cysteine, and an
intramolecular disulfide bond between the cysteine thiol groups was introduced [152], re-
sulting in two analogs (H-Tyr-c[L/D-Cys-Gly-Phe])2-hydrazine (Figure 4). The introduction
of a disulfide bridge was a step forward in revealing the active conformation at the binding
pocket, leading to more potent compounds than the parent linear peptide [152,175]. In the
next step, the native D-Ala residues were substituted with L/D-Pen (L or D-penicillamine,
β,β-dimethylcysteine). Compound with L-Pen was scarcely inactive, whereas the analog
(H-Tyr-c[D-Pen-Gly-Phe])2-hydrazine with D-Pen showed excellent MOR/DOR receptor
affinity and a very good in vivo antinociceptive activity, its analgesic effect after i.c.v.
injection was several times higher than for morphine.
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After i.v. administration (“hot plate” and “tail-flick” tests), the new compound dis-
played a greater and longer-lasting antinociceptive effect than biphalin, thus suggesting a
likely improvement of the pharmacokinetic parameters as compared to biphalin. However,
its antinociceptive activity after i.v. injection was still lower than morphine, probably due
to a reduced BBB penetration [175].

To further improve BBB permeability and plasma stability, the disulfide bridge in cyclic
biphalin structure was substituted by a xylene bridge using CLIPS technology [176]. Novel
biphalin analogs in which the two thiol groups of the D-Cys residues in position 2,2′ were
linked by using different dibromoxylene regioisomers (o-dibromoxylene, m-dibromoxylene,
and p-dibromoxylene) were synthesized. Among others, the analog containing the o-xylene
moiety elicited strong antinociception in in vivo assays and was more potent than the
biphalin after i.c.v., i.t., and s.c. administrations. A long-lasting antinociceptive effect after
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s.c. injection indicated improved human plasma stability and a better BBB penetration
compared to biphalin [176].

Based on the structure of one of the most potent linear biphalin analogs AM94 and
cyclic biphalin with piperazine or hydrazine linker with or without a xylene bridge, Ste-
fanucci et al., obtained novel fluorinated cyclic analogs of biphalin with excellent to a mod-
est binding affinity for MOR, DOR and KOR [178]. The novel compounds incorporating
xylene bridge and hydrazine linker (MACE2 and MACE4) (Figure 5) or piperazine linker
(MACE3) exhibited a significantly long half-life with enhanced plasma human plasma
stability and showed stronger antinociceptive effects after peripheral administration in
comparison to biphalin and AM94 [178].
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In searching for more stable and versatile peptides with improved pharmacokinetic
properties, replacing the labile S–S junction in cyclic peptides with an uncleavable C–C
bond appears to be a promising strategy [179]. Using a ring-closing metathesis reac-
tion, Stefanucci et al. [180] obtained two cis- and trans-cyclic olefin-bridged analogs of
biphalin: ABAM-A and ABAM-B (Figure 6). The new ABAM compounds were MOR
agonists/DOR partial antagonists, different from the mixed MOR/DOR agonist activity
exerted by biphalin and its cyclic analogs reported so far in the literature. The analogs
elicited a strong antinociceptive effect after i.c.v. and i.v. administration, higher than that of
the previously described cyclic biphalin analogs containing a disulfide bridge between the
side chains of two D-Cys or D-Pen residues [152,175].
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3.4. Bifunctional Analogs: Hybrid Peptides

A promising approach for developing novel opioid analgesics with limited side ef-
fects is combining opioids with other neurotransmitters involved in pain perception (e.g.,
cholecystokinin, neurotensin, substance P, etc.). Such novel hybrids, also known as multi-
target ligands that simultaneously target opioid and nonopioid receptors, can overcome
the current limitations of single-target opioid analgesics [181–184].

In order to better understand the role of the neurokinin system in opioid-induced
antinociception, Wtorek and co-workers synthesized a series of hybrid peptides combining
previously described cyclic mixed MOR/KOR agonist C36 with either substance P (NK1
agonist) or spantide II (NK1 antagonist) fragments [185]. All obtained hybrids were
characterized by high affinity to MOR and KOR, although lower compared to the opioid
fragment. Two analogs, opioid agonist/NK1 antagonist H-Tyr-c[D-Lys-Phe-Phe-Asp]-Asn-
D-Trp-Phe-D-Trp-Leu-Nle-NH2 and opioid agonist/NK1 agonist H-Tyr-c[D-Lys-Phe-Phe-
Asp]-Gln-Phe-Phe-Gly-Leu-Met-NH2 that had high affinity to NK1 were selected for in vivo
studies. In the writhing test in mice, both hybrids showed a significant antinociceptive
effect and did not cause the development of tolerance or constipation, the typical side
effects for opioids.

The MOR and NOP receptors are co-localized in the brain structures and share com-
mon signaling pathways. Recently, mixed MOR/NOP ligands came to the spotlight for
their favorable functional profiles, circumventing the harmful effects of pure MOR ago-
nists [186,187]. The first opioid agonist/nociceptin antagonist, H-Dmt-D-Arg-Aba-βAla-
Arg-Tyr-Tyr-Arg-Ile-Lys-NH2 (where Aba = 4-amino-2-benzazepinone), was reported by
Guillemyn and co-workers. When given i.v., this compound produced a potent antinoci-
ceptive effect in both acute and neuropathic pain models without inducing significant
respiratory depression [188].

Wtorek et al., reported two novel chimeric peptides composed of MOR/KOR cyclic
ligand C36 and the NOP receptor-binding peptide Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2, linked
either directly (KW-495) or through a three-glycine spacer KW-496 [30]. In vitro binding
and functional assays showed that KW-496 was a mixed ligand with inverted KOR > MOR
affinity without activity at the NOP receptor. On the other hand, KW-495 activated the NOP
receptor, although approximately 6-fold weaker than Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2,
and was a mixed MOR/KOR/NOP agonist. Analog KW-495 produced a dose-dependent
antinociceptive effect when given i.t., and this effect was antagonized by both the universal
opioid receptor antagonist naloxone and the selective NOP receptor antagonist SB-612111,
indicating the involvement of both classical opioid and NOP receptors in the mediation of
its antinociceptive activity. The new chimeric peptide did not alter the mice’s locomotor
activity, motor coordination, and balance.

The neuropeptide FF (NPFF) system plays an important role in regulating many
physiological or pathological processes. Neuropeptide FF receptors 1 and 2 (NPFFR1 and
NPFFR2) represent a relatively new target for many therapeutic applications, including
modulation of opioid’s antinociception, tolerance, dependence, and other opioid side ef-
fects [189]. Recently, several linear multitarget peptide agonists of opioid/NPFF receptors
have been reported [190]. These peptides produced potent, non-tolerance-forming antinoci-
ceptive activity with limited side effects. However, they were metabolically labile and
exhibited poor BBB permeation [190]. Using disulfide-bond modification, Zhang et al.,
obtained two cyclic analogs H-Tyr-c[D-Cys-Gly-Phe-Cys]-Pro-Gln-Arg-Phe-NH2, (OFP006)
and H-Tyr-c[D-Cys-Gly-NMe-Phe-Cys]-Pro-Gln-Arg-Phe-NH2 (OFP011) [190,191]. New
cyclic disulfide analogs similar to their corresponding linear peptides functioned as multi-
functional agonists for MOR, DOR, KOR-opioid, NPFF 1, and NPFF2 receptors in in vitro
experiments, but they had improved BBB permeability, metabolic stability, and antinoci-
ceptive potency compared with their linear parent peptides [190,191]. The antinociceptive
tolerance of analog OFP006 was greatly reduced after s.c. injection compared to fentanyl,
as was the rewarding effect, withdrawal reaction, and gastrointestinal inhibition [191].
Behavioral experiments revealed that s.c. or oral (p.o.) administration of OFP011 re-



Molecules 2024, 29, 1544 24 of 35

sulted in potent and long-lasting antinociceptive activity in different pain models, with
reduced opioid-like side effects, including constipation, tolerance, abuse potential, and
respiratory depression [190]. On the other hand, the amide-bond cyclized peptide H-
Tyr-c[D-Lys-Gly-NMe-Phe-Asp]-Pro-Gln-Arg-Phe-NH2 exhibited peripherally restricted
antinociception [122]. These results suggest that the multifunctional opioid/NPFF re-
ceptor agonists are a promising strategy for the long-term treatment of moderate to se-
vere nociceptive and pathological pain with fewer side effects. Recently, Drieu et al.,
obtained bifunctional peptididomimetic, H-Dmt-D-Arg-Aba-βAla-Bpa-Phe-NH2 (KGFF09)
(Aba = 4-amino-2-benzazepinone, Bpa = 4-benzoyl-L-phenylalanine), possessing MOR ag-
onist and NPFF receptor antagonist activity. KGFF09 displayed potent antinociception
after subcutaneous (s.c.) administration in acute and chronic inflammatory pain in mice
with a reduced propensity for unwanted side effects of conventional opioid analgesics,
such as morphine, including respiratory depression, analgesic tolerance, opioid-induced
hyperalgesia and physical dependence [192]. It was concluded that combining, within a
single molecule, the G-protein-biased MOR agonism and NPFF receptor antagonism have
beneficial effects on both acute and chronic side effects of classic opiates.

Further experiments revealed an effective and potent antinociceptive activity of
KGFF09 also in a mouse model of visceral pain after s.c. injection with the absence of
rewarding and locomotor dysfunction following chronic treatment [193].

It could be concluded that the development of dual MOR agonists/NPFF receptor
agonists or antagonists paves the way for the design of potent and safer therapeutic
treatments for various pain conditions.

3.5. Adding Novel Functionality: Peptide Conjugates

Among different strategies, conjugation with the oligoarginine vector, a kind of cationic
cell-penetrating peptide, has been shown to enhance the permeation of the compounds
through the BBB and their brain delivery [194]. To develop novel compounds with clinical
potential, Zhang et al., designed and synthesized a series of endomorphin analogs by
combined modifications, including cyclization, Dmt substitution in Tyr1, chlorination of
Phe4 at the para-position, and C-terminal oligoarginine-vector conjugation [195]. The
obtained conjugates were potent MOR agonists with enhanced stability and lipophilicity
in comparison to endomorphins. Analogs H-Dmt-c(Cys-Trp/Phe-(pCl)Phe-Cys)-Gly-D-
Arg-D-Arg-OH induced significant and prolonged antinociceptive effects in acute pain
with reduced or no opioid-like side effects on gastrointestinal transit, conditioned place
preference (CPP), and motor impairment after central and peripheral administration. New
conjugates showed reduced acute antinociceptive tolerance, particularly nontolerance-
forming antinociception at the peripheral level. In addition, they also produced long-acting
antiallodynic effects against neuropathic and inflammatory pain [195].

Starting from the structures of MOR-selective H-Tyr-c(SCH2CH2S)[D-Cys-Phe-D-Pen]-
NH2 (JOM-6) [196] (Pen = β,β-dimethylcysteine) and DOR-selective H-Tyr-c[D-Cys-Phe-
D-Pen]-OH (JOM-13) [197] cyclic tetrapeptides, Purington et al., synthesized, by a re-
placement of the Tyr and Phe residues in JOM-13 with a bulkier and more constrained
Dmt and 2-aminoindane-2-carboxylic acid (Aci), respectively, a new cyclic analog H-
Dmt-c(SCH2CH2S)[D-Cys-Aci-D-Pen]-OH (KSK-103) [198]. KSK-103 displayed MOR ago-
nist/DOR antagonist activity and had a greater antinociceptive potency than morphine,
but its main drawback was a poor bioavailability profile [198]. Glycosylation of this cy-
clopeptide by the addition of C-terminal β-glucosylserine residue [Ser(β-Glc)NH2] resulted
in a cyclic analog, H-Dmt-c(SCH2CH2S)[D-Cys-Aci-D-Pen]-Ser(β-Glc)-NH2 (Figure 7), with
increased bioavailability, that showed antinociceptive effect similar to morphine in the
mouse tail-flicking model after i.p. administration, but did not cause acute tolerance [199].
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The search for novel analogs with the potential to be good drug candidates with antinoci-
ceptive properties involves the selection of promising sequences, structure optimization by
amino acid substitution, amide bond replacement, stabilizing conformation by cyclization
of the molecule, and combining multiple structures for activity or physicochemical bene-
fits [31,116]. The rational design of an opioid peptide takes into account metabolic stability
and SAR, as well as pharmacokinetic and pharmacodynamic properties [31]. The biases and
demands on specificity, reduction of possible adverse effects, and even the sustainable and
environmentally friendly synthesis methods are being considered [200,201]. There is no silver
bullet or single strategy to produce an ideal antinociceptive agent [200]. The search continues,
with the limits and barriers being crossed and new challenges appearing.

4. Drug Delivery Systems for Antinociceptive Peptides

In general, clinical applications of opioid peptides have been limited due to their
poor metabolic stability. Natural peptides undergo enzymatic degradation, making oral
administration challenging or impossible [201]. The research is focused not only on more
efficient antinociceptive activity but also on improved bioavailability and stability. The
main strategies include the design of analogs resistant to peptide metabolism by introduc-
ing nonproteinaceous amino acids, cyclization, or peptide bond replacement. Another
approach explores the concept of providing protection to the peptide by a delivery method,
either based on non-oral administration, i.e., inhaled, buccal, intranasal, or transdermal,
or employing molecular drug delivery systems [31,116,202]. With the opioid crisis and
growing demand for pain relief, the idea of designing, adapting, and using drug delivery
systems is gaining importance [203]. Another aspect of the involved research is the design
aimed at extending the drug release profile of delivery systems to consider short-acting
opioid (SAO) or long-acting opioid (LAO) formulations.

Several extended-release systems have been developed for opioid analgesic drugs [204,205]
to produce stable drug concentration, limit the dosing frequency, reduce toxicity, and, in
general, diminish side effects and improve patient’s quality of life [204]. However, peptide-
based antinociceptive compounds are still at the experimental stage [204,206]. The main
strategies employed in extended-release systems are based on encapsulation of the cargo
into hydrogels, liposomes, and micelles, complexation and conjugation to dendrimers, and
attachment to nanoparticles [207,208]. Macroscopic systems based on microneedles are
intensively studied for transdermal delivery [209–211], whereas noninvasive nasal delivery
gains attention, especially for peptide drug candidates, because of sidetracking metabolic
traps and the proximity to CNS [212].

Hydrophilic compounds with limited stability create complications in drug delivery
systems. In the case of antinociceptive peptides, dermorphin, and endomorphin-2 were
selected for the study on the application of peptide hydrogels for controlled drug-delivery
systems. The injectable amphipathic peptide hydrogels were investigated for morphine as
well as opioid peptide cargoes [213]. Peptide-based hydrogels attract a lot of interest due to
their biocompatibility and biodegradability [213,214].
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Neurotoxin-1 (NT) was prepared for nasal delivery by loading on polymeric nanoparti-
cles coated with polysorbate. The concentration of neurotoxin in the brain was higher after
intranasal delivery of modified nanoparticles as compared with i.v. administration [215].
It is worth noting that solid lipid nanoparticles (SLN) were used to encapsulate noci-
ceptin/orphanin FQ for reduction of airway hyperresponsiveness, which is not directly
related to pain relief, although the results indicated improved bioavailability and delayed-
release [216]. Intranasal delivery was also adopted for Opiorphin administration in the
form of liposomal mucoadhesive thermo-sensitive gel containing PEGylated liposomal
peptide dispersion [217].

The idea of using multimerized peptides for increased resistance to proteolytic en-
zymes was investigated for various applications in dendrimeric-like structures [218–220].
Dendrimers formed from one of conotoxin peptides, χ-MrIA, NGVCCGYKLCHOCa, were
slightly more effective in vitro than the PEGylated analogs, although their potency was
comparable to the parent peptide. However, in the rat pain model, the macromolecules
were inactive, probably due to limited diffusion in the spinal cord after i.t. delivery [221].
Peptide welding technology synthesized bifunctional peptide constructs combining selec-
tive NOP receptor and MOR ligands as heterotetramers [222]. Dual NOP/MOR agonists
present an improved profile with limited side effects and abuse risk [223]. Multiplied
active peptides obtained in welding procedure, for example, H-PWT1-N/OFQ-[Dmt1]-
dermorphin, combining nociceptin/orphanin and dermorphin analog, were as active as
parent peptides but exhibited prolonged action [224].

5. Conclusions

The search for novel antinociceptive agents is focused on a better understanding
of molecular mechanisms of pain and the adaptation of emerging bioactive agents to
desired functionality through innovative methods of drug design [225]. The promising
structures are discovered through investigation of natural products and using in silico
methods [226]. The bioactive peptides from animal secretions offer an interesting starting
point in the search for pain relief medicine based on the evolutionary adaptation to various
receptors. The modification strategies described in this review are directed at increasing
the stability of emerging compounds and the improvement of their pharmacodynamic
profile. The use of peptide sequence as the origin of a new drug candidate benefits from
the vast knowledge of peptide structure modification and the impressive toolbox available
to peptide chemists, from non-proteinaceous amino acids and cyclization protocols to
conjugation and multiplication in delivery systems. The clinical application of peptides is
still limited; however, as the barrier for protein drugs was finally breached [227], the road
to peptide drugs is now open.
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35. Muratspahić, E.; Freissmuth, M.; Gruber, C.W. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends
Pharmacol. Sci. 2019, 40, 309–326. [CrossRef] [PubMed]

36. Zhang, T.J.; Qiu, Y.; Hua, Z. The Emerging Perspective of Morphine Tolerance: MicroRNAs. Pain Res. Manag. 2019, 2019, 9432965.
[CrossRef]

37. Quah, Y.; Tong, S.-R.; Bojarska, J.; Giller, K.; Tan, S.-A.; Ziora, Z.M.; Esatbeyoglu, T.; Chai, T.-T. Bioactive Peptide Discovery from
Edible Insects for Potential Applications in Human Health and Agriculture. Molecules 2023, 28, 1233. [CrossRef]

38. Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med.
Chem. 2018, 26, 2738–2758. [CrossRef] [PubMed]

39. De Oliveira, A.N.; Soares, A.M.; Da Silva, S.L. Why to Study Peptides from Venomous and Poisonous Animals? Int. J. Pept. Res.
Ther. 2023, 29, 76. [CrossRef]

40. Diochot, S. Pain-related toxins in scorpion and spider venoms: A face to face with ion channels. J. Venom. Anim. Toxins Incl. Trop.
Dis. 2021, 27, e20210026. [CrossRef]

41. Wu, T.; Wang, M.; Wu, W.; Luo, Q.; Jiang, L.; Tao, H.; Deng, M. Spider venom peptides as potential drug candidates due to their
anticancer and antinociceptive activities. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e146318. [CrossRef]

42. Dos Santos, A.T.; Cruz, G.S.; Baptista, G.R. Anti-inflammatory activities of arthropod peptides: A systematic review. J. Venom.
Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200152. [CrossRef]

43. Schroeder, C.I.; Lewis, R.J. ω-Conotoxins GVIA, MVIIA and CVID: SAR and Clinical Potential. Mar. Drugs 2006, 4, 193–214.
[CrossRef]

44. Wen, L.; Yang, S.; Qiao, H.; Liu, Z.; Zhou, W.; Zhang, Y.; Huang, P. SO-3, a new O-superfamily conopeptide derived from Conus
striatus, selectively inhibits N-type calcium currents in cultutured hipppcampal neurons. Br. J. Pharmacol. 2005, 145, 728–739.
[CrossRef]

45. Sousa, S.R.; McArthur, J.R.; Brust, A.; Bhola, R.F.; Rosengren, K.J.; Ragnarsson, L.; Dutertre, S.; Alewood, P.F.; Christie, M.J.;
Adams, D.J.; et al. Novel analgesicω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the
evolution of conopeptides. Sci. Rep. 2018, 8, 13397. [CrossRef]

46. Margiotta, F.; Micheli, L.; Ciampi, C.; Ghelardini, C.; McIntosh, J.M.; Di Cesare Mannelli, L. Conus regius-Derived Conotoxins:
Novel Therapeutic Opportunities from a Marine Organism. Mar. Drugs 2022, 20, 773. [CrossRef]

47. Liu, Z.; Bartels, P.; Sadeghi, M.; Du, T.; Dai, Q.; Zhu, C.; Yu, S.; Wang, S.; Dong, M.; Sun, T.; et al. A novel α-conopeptide Eu1.6
inhibits N-type (Cav2.2) calcium channels and exhibits potent analgesic activity. Sci. Rep. 2018, 8, 1004. [CrossRef]

48. Trevisan, G.; Oliveira, S.M. Animal Venom Peptides Cause Antinociceptive Effects by Voltage-gated Calcium Channels Activity
Blockage. Curr. Neuropharmacol. 2022, 20, 1579–1599. [CrossRef]

49. Lee, S.; Kim, Y.; Back, S.K.; Choi, H.W.; Lee, J.Y.; Jung, H.H.; Ryu, J.H.; Suh, H.W.; Na, H.S.; Kim, H.J.; et al. Analgesic effect of
highly reversibleω-conotoxin FVIA on N type Ca2+ channels. Mol. Pain 2010, 6, 97. [CrossRef]

50. Berecki, G.; Motin, L.; Haythornthwaite, A.; Vink, S.; Bansal, P.; Drinkwater, R.; Wang, C.I.; Moretta, M.; Lewis, R.J.; Alewood,
P.F.; et al. Analgesic (ω)-conotoxins CVIE and CVIF selectively and voltage-dependently block recombinant and native N-type
calcium channels. Mol. Pharmacol. 2011, 80, 356. [CrossRef]

51. Bernáldez, J.; Román-González, S.A.; Martínez, O.; Jiménez, S.; Vivas, O.; Arenas, I.; Corzo, G.; Arreguín, R.; García, D.E.; Possani,
L.D.; et al. A Conus regularis Conotoxin with a Novel Eight-Cysteine Framework Inhibits Cav2.2 Channels and Displays an
Anti-Nociceptive Activity. Mar. Drugs 2013, 11, 1188–1202. [CrossRef]

52. Guo, R.; Guo, G.; Wang, A.; Xu, G.; Lai, R.; Jin, H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research
Applications. Molecules 2024, 29, 35. [CrossRef]

53. Grishin, E.V.; Savchenko, G.A.; Vassilevski, A.A.; Korolkova, Y.V.; Boychuk, Y.A.; Viatchenko-Karpinski, V.Y.; Nadezhdin, K.D.;
Arseniev, A.S.; Pluzhnikov, K.A.; Kulyk, V.B.; et al. Novel peptide from spider venom inhibits P2X3 receptors and inflammatory
pain. Ann. Neurol. 2010, 67, 680–683. [CrossRef]

54. Kabanova, N.V.; Vassilevski, A.A.; Rogachevskaja, O.A.; Bystrova, M.F.; Korolkova, Y.V.; Pluzhnikov, K.A.; Romanov, R.A.;
Grishin, E.V.; Kolesnikov, S.S. Modulation of P2X3 receptors by spider toxins. Biochim. Biophys. Acta-Biomembr. 2012, 1818,
2868–2875. [CrossRef]

55. Matavel, A.; Fleury, C.; Oliveira, L.C.; Molina, F.; de Lima, M.E.; Cruz, J.S.; Cordeiro, M.N.; Richardson, M.; Ramos, C.H.I.; Beirão,
P.S.L. Structure and Activity Analysis of Two Spider Toxins That Alter Sodium Channel Inactivation Kinetics. Biochemistry 2009,
48, 3078–3088. [CrossRef]

56. Peigneur, S.; de Lima, M.E.; Tytgat, J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon 2018, 151, 96–110.
[CrossRef]

https://doi.org/10.3390/biom12091241
https://www.ncbi.nlm.nih.gov/pubmed/36139079
https://doi.org/10.1016/j.ddtec.2011.07.007
https://www.ncbi.nlm.nih.gov/pubmed/23316256
https://doi.org/10.1159/000484909
https://www.ncbi.nlm.nih.gov/pubmed/29132133
https://doi.org/10.3390/ijms19082164
https://www.ncbi.nlm.nih.gov/pubmed/30042373
https://doi.org/10.1016/j.tips.2019.03.004
https://www.ncbi.nlm.nih.gov/pubmed/30955896
https://doi.org/10.1155/2019/9432965
https://doi.org/10.3390/molecules28031233
https://doi.org/10.1016/j.bmc.2017.09.029
https://www.ncbi.nlm.nih.gov/pubmed/28988749
https://doi.org/10.1007/s10989-023-10543-0
https://doi.org/10.1590/1678-9199-jvatitd-2021-0026
https://doi.org/10.1590/1678-9199-jvatitd-14-63-18
https://doi.org/10.1590/1678-9199-jvatitd-2020-0152
https://doi.org/10.3390/md403193
https://doi.org/10.1038/sj.bjp.0706223
https://doi.org/10.1038/s41598-018-31245-4
https://doi.org/10.3390/md20120773
https://doi.org/10.1038/s41598-017-18479-4
https://doi.org/10.2174/1570159X19666210713121217
https://doi.org/10.1186/1744-8069-6-97
https://doi.org/10.1124/mol.109.058834
https://doi.org/10.3390/md11041188
https://doi.org/10.3390/molecules29010035
https://doi.org/10.1002/ana.21949
https://doi.org/10.1016/j.bbamem.2012.07.016
https://doi.org/10.1021/bi802158p
https://doi.org/10.1016/j.toxicon.2018.07.008


Molecules 2024, 29, 1544 29 of 35

57. Leão, R.M.; Cruz, J.S.; Diniz, C.R.; Cordeiro, M.N.; Beirão, P.S.L. Inhibition of neuronal high-voltage activated calcium channels
by theω-Phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology 2000, 39, 1756–1767. [CrossRef]

58. Lyukmanova, E.N.; Mironov, P.A.; Kulbatskii, D.S.; Shulepko, M.A.; Paramonov, A.S.; Chernaya, E.M.; Logashina, Y.A.; Andreev,
Y.A.; Kirpichnikov, M.P.; Shenkarev, Z.O. Recombinant Production, NMR Solution Structure, and Membrane Interaction of the
Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer. Toxins 2023, 15, 378. [CrossRef]

59. Oliveira, S.M.; Silva, C.R.; Trevisan, G.; Villarinho, J.G.; Cordeiro, M.N.; Richardson, M.; Borges, M.H.; Castro, C.J., Jr.; Gomez,
M.V.; Ferreira, J. Antinociceptive effect of a novel armed spider peptide Tx3-5 in pathological pain models in mice. Pflugers
Arch.-Eur. J. Physiol. 2016, 468, 881–894. [CrossRef]

60. Figueiredo, S.G.; Garcia, M.E.; Valentim, A.C.; Cordeiro, M.N.; Diniz, C.R.; Richardson, M. Purification and amino acid sequence
of the insecticidal neurotoxin Tx4(6-1) from the venom of the ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon 1995, 33, 83–93.
[CrossRef]

61. Sousa, S.R.; Wingerd, J.S.; Brust, A.; Bladen, C.; Ragnarsson, L.; Herzig, V.; Deuis, J.R.; Dutertre, S.; Vetter, I.; Zamponi, G.W.;
et al. Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi. PLoS ONE 2017,
12, e0182848. [CrossRef]

62. Lopez, L.; De Waard, S.; Meudal, H.; Caumes, C.; Khakh, K.; Peigneur, S.; Oliveira-Mendes, B.; Lin, S.; De Waele, J.; Montnach,
J.; et al. Structure-function relationship of new peptides activating human Nav1.1. Biomed. Pharmacother. 2023, 165, 115173.
[CrossRef]

63. Liu, Y.; Tang, J.; Zhang, Y.; Xun, X.; Tang, D.; Peng, D.; Yi, J.; Liu, Z.; Shi, X. Synthesis and Analgesic Effects of µ-TRTX-Hhn1b on
Models of Inflammatory and Neuropathic Pain. Toxins 2014, 6, 2363–2378. [CrossRef]

64. Liang, S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus
huwena (Wang)]. Toxicon 2004, 43, 575–585. [CrossRef]

65. Wang, M.; Guan, X.; Liang, S. The cross channel activities of spider neurotoxin huwentoxin-I on rat dorsal root ganglion neurons.
Biochem. Biophys. Res. Commun. 2007, 357, 579–583. [CrossRef]

66. Deng, M.; Luo, X.; Xiao, Y.; Sun, Z.; Jiang, L.; Liu, Z.; Zeng, X.; Chen, H.; Tang, J.; Zeng, W.; et al. Huwentoxin-XVI, an analgesic,
highly reversible mammalian N-type calcium channel antagonist from Chinese tarantula Ornithoctonus huwena. Neuropharmacology
2014, 79, 657–667. [CrossRef]

67. Newcomb, R.; Szoke, B.; Palma, A.; Wang, G.; Chen, X.; Hopkins, W.; Cong, R.; Miller, J.; Urge, L.; Tarczy-Hornoch, K.; et al.
Selective Peptide Antagonist of the Class E Calcium Channel from the Venom of the Tarantula Hysterocrates gigas. Biochemistry
1998, 37, 15353–15362. [CrossRef]

68. Nicolas, S.; Zoukimian, C.; Bosmans, F.; Montnach, J.; Diochot, S.; Cuypers, E.; De Waard, S.; Béroud, R.; Mebs, D.; Craik, D.; et al.
Chemical Synthesis, Proper Folding, Nav Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1.
Toxins 2019, 11, 367. [CrossRef]

69. Pringos, E.; Vignes, M.; Martinez, J.; Rolland, V. Peptide Neurotoxins That Affect Voltage-Gated Calcium Channels: A Close-Up
onω-Agatoxins. Toxins 2011, 3, 17–42. [CrossRef]

70. Liang, J.G.; Zhang, J.; Lai, R.; Rees, H.H. An opioid peptide from synganglia of the tick, Amblyomma testindinarium. Peptides 2005,
26, 603–606. [CrossRef]

71. Cordeiro Mdo, N.; Diniz, C.R.; Valentim Ado, C.; von Eickstedt, V.R.; Gilroy, J.; Richardson, M. The purification and amino acid
sequences of four Tx2 neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). FEBS Lett. 1992,
310, 153–156. [CrossRef] [PubMed]

72. Da Silva, C.N.; Nunes, K.P.; Dourado, L.F.N.; Vieira, T.O.; Mariano, X.M.; Cunha Junior, A.D.S.; de Lima, M.E. From the PnTx2-6
Toxin to the PnPP-19 Engineered Peptide: Therapeutic Potential in Erectile Dysfunction, Nociception, and Glaucoma. Front. Mol.
Biosci. 2022, 9, 831823. [CrossRef] [PubMed]

73. da Silva, J.F.; Binda, N.S.; Pereira, E.M.R.; de Lavor, M.S.L.; Vieira, L.B.; de Souza, A.H.; Rigo, F.K.; Ferrer, H.T.; de Castro, C.J.;
Ferreira, J.; et al. Analgesic effects of Phα1β toxin: A review of mechanisms of action involving pain pathways. J. Venom. Anim.
Toxins Incl. Trop. Dis. 2021, 27, e20210001. [CrossRef] [PubMed]

74. Emerich, B.L.; Ferreira, R.C.M.; Cordeiro, M.N.; Borges, M.H.; Pimenta, A.M.C.; Figueiredo, S.G.; Duarte, I.D.G.; De Lima, M.E.
δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and
Cannabinoid Systems, in Rats. Toxins 2016, 8, 106. [CrossRef] [PubMed]

75. Emerich, B.L.; Ferreira, R.C.M.; Machado-de-Avila, R.A.; Resende, J.M.; Duarte, I.D.G.; de Lima, M.E. PnAn13, an antinociceptive
synthetic peptide inspired in the Phoneutria nigriventer toxin PnTx4(6–1) (δ-Ctenitoxin-Pn1a). Toxicon X 2020, 7, 100045. [CrossRef]
[PubMed]

76. Zeng, X.; Li, P.; Chen, B.; Huang, J.; Lai, R.; Liu, J.; Rong, M. Selective Closed-State Nav1.7 Blocker JZTX-34 Exhibits Analgesic
Effects against Pain. Toxins 2018, 10, 64. [CrossRef] [PubMed]

77. Liu, Y.; Wu, Z.; Tang, D.; Xun, X.; Liu, L.; Li, X.; Nie, D.; Xiang, Y.; Yi, J.; Yi, J. Analgesic Effects of Huwentoxin-IV on Animal
Models of Inflammatory and Neuropathic Pain. Protein Pept. Lett. 2014, 21, 153–158. [CrossRef] [PubMed]

78. Peter Muiruri, K.; Zhong, J.; Yao, B.; Lai, R.; Luo, L. Bioactive peptides from scorpion venoms: Therapeutic scaffolds and
pharmacological tools. Chin. J. Nat. Med. 2023, 21, 19–35. [CrossRef] [PubMed]

79. Kampo, S.; Anabah, W.T.; Bayor, F.; Wilfred, S.-A. Scorpion Venom Component; BmK AGAP Potentiates the Analgesic Effects of
Lidocaine During Sciatic Nerve Block. Venoms Toxins 2023, 3, 63–68. [CrossRef]

https://doi.org/10.1016/S0028-3908(99)00267-1
https://doi.org/10.3390/toxins15060378
https://doi.org/10.1007/s00424-016-1801-1
https://doi.org/10.1016/0041-0101(94)00130-Z
https://doi.org/10.1371/journal.pone.0182848
https://doi.org/10.1016/j.biopha.2023.115173
https://doi.org/10.3390/toxins6082363
https://doi.org/10.1016/j.toxicon.2004.02.005
https://doi.org/10.1016/j.bbrc.2007.02.168
https://doi.org/10.1016/j.neuropharm.2014.01.017
https://doi.org/10.1021/bi981255g
https://doi.org/10.3390/toxins11060367
https://doi.org/10.3390/toxins3010017
https://doi.org/10.1016/j.peptides.2004.11.003
https://doi.org/10.1016/0014-5793(92)81318-G
https://www.ncbi.nlm.nih.gov/pubmed/1397265
https://doi.org/10.3389/fmolb.2022.831823
https://www.ncbi.nlm.nih.gov/pubmed/35480885
https://doi.org/10.1590/1678-9199-jvatitd-2021-0001
https://www.ncbi.nlm.nih.gov/pubmed/34868281
https://doi.org/10.3390/toxins8040106
https://www.ncbi.nlm.nih.gov/pubmed/27077886
https://doi.org/10.1016/j.toxcx.2020.100045
https://www.ncbi.nlm.nih.gov/pubmed/32875290
https://doi.org/10.3390/toxins10020064
https://www.ncbi.nlm.nih.gov/pubmed/29393892
https://doi.org/10.2174/09298665113206660119
https://www.ncbi.nlm.nih.gov/pubmed/24188048
https://doi.org/10.1016/S1875-5364(23)60382-6
https://www.ncbi.nlm.nih.gov/pubmed/36641229
https://doi.org/10.2174/2666121703666230613112851


Molecules 2024, 29, 1544 30 of 35

80. Shao, J.-H.; Cui, Y.; Zhao, M.-Y.; Wu, C.-F.; Liu, Y.-F.; Zhang, J.-H. Purification, characterization, and bioactivity of a new
analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides 2014, 53, 89–96. [CrossRef]

81. Ji, Y.-H.; Li, Y.-J.; Zhang, J.-W.; Song, B.-L.; Yamaki, T.; Mochizuki, T.; Hoshino, M.; Yanaihara, N. Covalent structures of BmK
AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon 1999, 37,
519–536. [CrossRef] [PubMed]

82. Li, Y.-J.; Tan, Z.-Y.; Ji, Y.-H. The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium
channels. Neurosci. Res. 2000, 38, 257–264. [CrossRef] [PubMed]

83. Zhang, Y.; Xu, J.; Wang, Z.; Zhang, X.; Liang, X.; Civelli, O. BmK-YA, an enkephalin-like peptide in scorpion venom. PLoS ONE
2012, 7, e40417. [CrossRef] [PubMed]

84. Guan, R.J.; Wang, M.; Wang, D.; Wang, D.C. A new insect neurotoxin AngP1 with analgesic effect from the scorpion Buthus
martensii Karsch: Purification and characterization. J. Pept. Res. 2001, 58, 27–35. [CrossRef] [PubMed]

85. Cologna, C.T.; Marcussi, S.; Giglio, J.R.; Soares, A.M.; Arantes, E.C. Tityus serrulatus scorpion venom and toxins: An overview.
Protein Pept. Lett. 2009, 16, 920–932. [CrossRef]

86. Hoang, A.N.; Vo, H.D.; Vo, N.P.; Kudryashova, K.S.; Nekrasova, O.V.; Feofanov, A.V.; Kirpichnikov, M.P.; Andreeva, T.V.;
Serebryakova, M.V.; Tsetlin, V.I.; et al. Vietnamese Heterometrus laoticus scorpion venom: Evidence for analgesic and anti-
inflammatory activity and isolation of new polypeptide toxin acting on Kv1.3 potassium channel. Toxicon 2014, 77, 40–48.
[CrossRef] [PubMed]
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