Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts
Abstract
:1. Introduction
2. Fundamentals of Unconventional Crystal Phase and Strain Effect
2.1. What Is the Unconventional Crystal Phase?
2.2. What Is Strain?
3. Structure–Performance Relationship of Strain-Engineered Unconventional-Crystal-Phase Noble Metal Nanomaterials
3.1. Oxygen Reduction Reaction (ORR)
3.2. Hydrogen Evolution Reaction (HER)
3.3. CO2 Electroreduction (CO2RR)
3.4. Alcohol/Formic Acid Oxidation Reaction (AOR/FAOR)
4. Strain-Assisted Phase Transformation
4.1. The 4H-to-fcc Phase Transformation
4.2. The 2H-to-fcc Phase Transformation
5. Summary and Outlook
- Currently, the strain effect of noble metal nanocatalysts with different crystal phases, consisting of conventional or unconventional crystal phases, has been studied. However, the strain effect aroused by the strain imposed on different facets of unconventional-crystal-phase noble metal nanocatalysts has not been widely investigated. To study this issue, the prerequisite is to synthesize various shapes of unconventional-crystal-phase noble metal nanocatalysts covered by different facets. Taking 4H Au as an example, until now, only 4H Au NRBs covered by {110}4H facets have been prepared. The preparation of 4H Au nanostructures enclosed by {100}4H or {111}4H facets would be not only interesting but also significant in solving this issue.
- At present, only a few types of unconventional crystal phases in specific noble metal nanostructures have been synthesized, such as fcc Ru, fct PtFe, amorphous and 2H Pd, 2H, and 4H Au. It is critical to synthesize 4H Ru, Pt, Pd, and amorphous Pt, Ir, and Os, among others, in facile one-pot methods, instead of epitaxial growth methods, to comprehensively and systemically study the structure–performance relationships of the unconventional-crystal-phase noble metal nanocatalysts.
- Considering the fact that noble metal nanocatalysts with unconventional crystal phases feature metastable crystal structures and the original crystal phase may be changed by the catalysis reaction due to the adsorption of the reaction intermediates, in situ technology and characterization are indispensable to elaborate the structure–performance relationships of the unconventional-crystal-phase noble metal nanocatalysts towards the specific catalytic reaction.
- An understanding of the phase transformation is still lacking. Theoretical simulations would be helpful to determine the phase transformation mechanism and thereby give some general principles to rationally construct the target crystal phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C.L.; Boey, F.; Mirkin, C.A.; Zhang, H. Synthesis of Hexagonal Close-Packed Gold Nanostructures. Nat. Commun. 2011, 2, 292. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yang, N.; Liu, G.; Ge, Y.; Huang, J.; Yun, Q.; Du, Y.; Sun, C.; Chen, B.; Liu, J.; et al. Ligand-Exchange-Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Adv. Mater. 2020, 32, 1902964. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K.P.; Akimov, Y.A.; Wu, L.; Li, B.; Wu, J.; et al. Stabilization of 4H Hexagonal Phase in Gold Nanoribbons. Nat. Commun. 2015, 6, 7684. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q.; Zhu, Y.; Liu, Q.; Li, B.; Zeng, Z.; Wu, J.; et al. Surface Modification-Induced Phase Transformation of Hexagonal Close-Packed Gold Square Sheets. Nat. Commun. 2015, 6, 6571. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lai, Z.; Zhang, X.; Fan, Z.; He, Q.; Tan, C.; Zhang, H. Phase Engineering of Nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. Erratum: The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 364. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Zhai, W.; Lu, S.; Liang, J.; He, Z.; Long, H.; Xiong, T.; Sun, H.; He, Q.; et al. Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications. Adv. Energy Mater. 2020, 10, 2002019. [Google Scholar] [CrossRef]
- Yu, Y.; Nam, G.-H.; He, Q.; Wu, X.-J.; Zhang, K.; Yang, Z.; Chen, J.; Ma, Q.; Zhao, M.; Liu, Z.; et al. High Phase-Purity 1T′-MoS2- and 1T′-MoSe2-Layered Crystals. Nat. Chem. 2018, 10, 638–643. [Google Scholar] [CrossRef]
- Gogotsi, Y.G.; Kailer, A.; Nickel, K.G. Transformation of Diamond to Graphite. Nature 1999, 401, 663–664. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, H. Crystal Phase-Controlled Synthesis, Properties and Applications of Noble Metal Nanomaterials. Chem. Soc. Rev. 2016, 45, 63–82. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Niu, W.; Tan, C.; Zhang, H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem. Rev. 2021, 121, 5830–5888. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, H. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications. Acc. Chem. Res. 2016, 49, 2841–2850. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.; Nguyen, Q.N.; Xia, Y. Colloidal Metal Nanocrystals with Metastable Crystal Structures. Angew. Chem. 2021, 133, 12300–12311. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, N.; Lu, Q.; Zhang, Z.; Zhang, H. Syntheses and Properties of Metal Nanomaterials with Novel Crystal Phases. Adv. Mater. 2018, 30, 1707189. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-C.; Chou, S.-W.; Tseng, W.-H.; Chen, I.-W.P.; Liu, C.-C.; Liu, C.; Liu, C.-L.; Chen, C.; Wu, C.-I.; Chou, P.-T. Large AuAg Alloy Nanoparticles Synthesized in Organic Media Using a One-Pot Reaction: Their Applications for High-Performance Bulk Heterojunction Solar Cells. Adv. Funct. Mater. 2012, 22, 3975–3984. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, C.; Hu, M.; Xu, Y.; Yu, L.; Wen, L.; Zhao, Y.; Xu, W.; Yu, S. Magnetic Alloy Nanorings Loaded with Gold Nanoparticles: Synthesis and Applications as Multimodal Imaging Contrast Agents. Adv. Funct. Mater. 2010, 20, 3701–3706. [Google Scholar] [CrossRef]
- Xiao, Q.; Sohn, H.; Chen, Z.; Toso, D.; Mechlenburg, M.; Zhou, Z.H.; Poirier, E.; Dailly, A.; Wang, H.; Wu, Z.; et al. Mesoporous Metal and Metal Alloy Particles Synthesized by Aerosol-Assisted Confined Growth of Nanocrystals. Angew. Chem. Int. Ed. 2012, 51, 10546–10550. [Google Scholar] [CrossRef]
- Liu, Y.; Walker, A.R.H. Monodisperse Gold-Copper Bimetallic Nanocubes: Facile One-Step Synthesis with Controllable Size and Composition. Angew. Chem. 2010, 122, 6933–6937. [Google Scholar] [CrossRef]
- Choi, B.-S.; Lee, Y.W.; Kang, S.W.; Hong, J.W.; Kim, J.; Park, I.; Han, S.W. Multimetallic Alloy Nanotubes with Nanoporous Framework. ACS Nano 2012, 6, 5659–5667. [Google Scholar] [CrossRef]
- Cui, C.; Gan, L.; Li, H.-H.; Yu, S.-H.; Heggen, M.; Strasser, P. Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition. Nano Lett. 2012, 12, 5885–5889. [Google Scholar] [CrossRef]
- Wang, S.-B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y.-W. Pd–Rh Nanocrystals with Tunable Morphologies and Compositions as Efficient Catalysts toward Suzuki Cross-Coupling Reactions. ACS Catal. 2014, 4, 2298–2306. [Google Scholar] [CrossRef]
- Wang, L.; Holewinski, A.; Wang, C. Prospects of Platinum-Based Nanostructures for the Electrocatalytic Reduction of Oxygen. ACS Catal. 2018, 8, 9388–9398. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Li, H.; Du, W.; Khan, M.U.; Zhao, S.; Ma, C.; Li, Z.; Zeng, J. Ratio-Controlled Synthesis of CuNi Octahedra and Nanocubes with Enhanced Catalytic Activity. J. Am. Chem. Soc. 2015, 137, 14027–14030. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Shao, Q.; Pi, Y.; Yao, J.; Luo, M.; Lang, J.; Hwang, S.; Xin, H.; Huang, B.; Guo, J.; et al. Coupled S-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. Chem 2018, 4, 359–371. [Google Scholar] [CrossRef]
- Asadi, M.; Kim, K.; Liu, C.; Addepalli, A.V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J.M.; Haasch, R.; et al. Nanostructured Transition Metal Dichalcogenide Electrocatalysts for CO2 Reduction in Ionic Liquid. Science 2016, 353, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Bosman, M.; Huang, Z.; Chen, Y.; Ling, C.; Wu, L.; Akimov, Y.A.; Laskowski, R.; Chen, B.; Ercius, P.; et al. Heterophase Fcc-2H-Fcc Gold Nanorods. Nat. Commun. 2020, 11, 3293. [Google Scholar] [CrossRef]
- Ge, Y.; Huang, Z.; Ling, C.; Chen, B.; Liu, G.; Zhou, M.; Liu, J.; Zhang, X.; Cheng, H.; Liu, G.; et al. Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. J. Am. Chem. Soc. 2020, 142, 18971–18980. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Liu, G.; Ling, C.; Chen, B.; Huang, J.; Liu, X.; Li, B.; Wang, A.-L.; Hu, Z.; et al. Crystal Phase-Controlled Growth of PtCu and PtCo Alloys on 4H Au Nanoribbons for Electrocatalytic Ethanol Oxidation Reaction. Nano Res. 2020, 13, 1970–1975. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J.G. Modification of the Surface Electronic and Chemical Properties of Pt(111) by Subsurface 3d Transition Metals. J. Chem. Phys. 2004, 120, 10240–10246. [Google Scholar] [CrossRef]
- Greeley, J.; Nørskov, J.K.; Mavrikakis, M. Electronic Structure and Catalysis on Metal Surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348. [Google Scholar] [CrossRef] [PubMed]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-Strain Control of the Activity in Dealloyed Core–Shell Fuel Cell Catalysts. Nat. Chem. 2010, 2, 454–460. [Google Scholar] [CrossRef]
- Mavrikakis, M.; Hammer, B.; Nørskov, J.K. Effect of Strain on the Reactivity of Metal Surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822. [Google Scholar] [CrossRef]
- Wu, T.; Sun, M.; Huang, B. Strain Modulation of Phase Transformation of Noble Metal Nanomaterials. InfoMat 2020, 2, 715–734. [Google Scholar] [CrossRef]
- Yao, Q.; Yu, Z.Y.; Li, L.G.; Huang, X.Q. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem. Rev. 2023, 123, 9676–9717. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.Y.; Huang, B.; Li, L.J.; Yun, Q.B.; Shi, Z.Y.; Chen, B.; Zhang, H. Structural Transformation of Unconventional-Phase Materials. ACS Nano 2023, 17, 12935–12954. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.H.; Guo, S.J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278. [Google Scholar] [CrossRef]
- Luo, M.; Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059. [Google Scholar] [CrossRef]
- Barlow, W. Probable Nature of the Internal Symmetry of Crystals. Nature 1883, 29, 186–188. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, Y.; Zhu, Y.; Wang, J.; Li, B.; Zong, Y.; Han, Y.; Zhang, H. Epitaxial Growth of Unusual 4H Hexagonal Ir, Rh, Os, Ru and Cu Nanostructures on 4H Au Nanoribbons. Chem. Sci. 2017, 8, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Xia, G.-J.; Cai, C.; Wang, Q.; Wang, Y.-G.; Gu, M.; Li, J. Gas-Assisted Transformation of Gold from Fcc to the Metastable 4H Phase. Nat. Commun. 2020, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, Z.; Luo, Z.; Liu, X.; Lai, Z.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/Fcc Au@Pd Core–Shell Nanorods for Electrocatalytic Ethanol Oxidation. Adv. Mater. 2017, 29, 1701331. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zheng, X.; Cui, P.; Jiang, H.; Wang, X.; Qu, Y.; Chen, W.; Lin, Y.; Li, H.; Han, X.; et al. A General Synthesis Approach for Amorphous Noble Metal Nanosheets. Nat. Commun. 2019, 10, 4855. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Yin, P.; Chen, Y.; Cheng, H.; Liu, J.; Chen, B.; Tan, C.; Yin, P.; Zheng, H.; Li, Q.; et al. Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis. Adv. Mater. 2021, 33, 2006711. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bao, D.; Shi, M.; Wulan, B.; Yan, J.; Jiang, Q. Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions. Adv. Mater. 2017, 29, 1700001. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Meng, F.; Liu, K.; Yi, S.; Li, S.; Yan, J.; Jiang, Q. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies. Adv. Mater. 2018, 30, 1706194. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, Y.; Liu, Y.; Wen, J.; Okasinski, J.S.; Miller, D.J. Ambient-Stable Tetragonal Phase in Silver Nanostructures. Nat. Commun. 2012, 3, 971. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, W.; Ren, Y.; Wang, L.; Lei, C. Multiple-Step Phase Transformation in Silver Nanoplates under High Pressure. Small 2011, 7, 606–611. [Google Scholar] [CrossRef]
- Mettela, G.; Bhogra, M.; Waghmare, U.V.; Kulkarni, G.U. Ambient Stable Tetragonal and Orthorhombic Phases in Penta-Twinned Bipyramidal Au Microcrystals. J. Am. Chem. Soc. 2015, 137, 3024–3030. [Google Scholar] [CrossRef]
- Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. J. Am. Chem. Soc. 2013, 135, 5493–5496. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; He, D.S.; Lin, Y.; Feng, X.; Wang, X.; Yin, P.; Hong, X.; Zhou, G.; Wu, Y.; Li, Y. Modulating Fcc and Hcp Ruthenium on the Surface of Palladium–Copper Alloy through Tunable Lattice Mismatch. Angew. Chem. 2016, 128, 5591–5595. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S.-Z. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Z.; Liu, J.-X.; Gu, J.; Zhou, W.; Yao, S.-Y.; Si, R.; Guo, Y.; Su, H.-Y.; Yan, C.-H.; Li, W.-X.; et al. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer–Tropsch Synthesis. J. Am. Chem. Soc. 2017, 139, 2267–2276. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, Q.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M.J.; Liu, Y.; Sun, Y.; Xia, X. Ru Nanoframes with an Fcc Structure and Enhanced Catalytic Properties. Nano Lett. 2016, 16, 2812–2817. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Li, Z.; Duan, H.H.; Cheng, Z.Y.; Li, Y.D.; Zhu, J.; Yu, R. Formation of Hexagonal-Close Packed (HCP) Rhodium as a Size Effect. J. Am. Chem. Soc. 2017, 139, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Carvalho, D.; Shirodkar, S.N.; Lahiri, S.; Bhattacharyya, S.; Banerjee, R.; Waghmare, U.; Ayyub, P. Novel Hexagonal Polytypes of Silver: Growth, Characterization and First-Principles Calculations. J. Phys. Condens. Matter 2011, 23, 325401. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Gao, L.; Sun, T.; Guo, J.; Yuan, Y.; Zhang, J.; Li, M.; Li, X.; Liu, M.; Ma, C.; et al. Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO2 Electroreduction. Nano Lett. 2021, 21, 1003–1010. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Y.; Wang, Z.; Skrabalak, S.E.; Lin, Z.; Xia, Y. Size dependence of cubic to trigonal structural distortion in silver micro- and nanocrystals under high pressure. J. Phys. Chem. C 2008, 112, 20135–20137. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Y.; Mao, W.L.; Wang, Z.; Xiong, Y.; Xia, Y. Cubic to Tetragonal Phase Transformation in Cold-Compressed Pd Nanocubes. Nano Lett. 2008, 8, 972–975. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S.; Su, D.; Lu, G.; Sun, S. Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Wang, X.; Chen, B.; Huang, Z.; Shi, Z.; Huang, B.; Liu, J.; Wang, G.; Chen, Y.; Li, L.; et al. Preparation of Fcc-2H-Fcc Heterophase Pd@Ir Nanostructures for High-Performance Electrochemical Hydrogen Evolution. Adv. Mater. 2022, 34, 2107399. [Google Scholar] [CrossRef]
- Fan, Z.; Luo, Z.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y.; Zhang, H. Synthesis of 4H/Fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Scofield, M.E.; Zhou, Y.; Yue, S.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M.B.; Adzic, R.R.; Wong, S.S. Role of Chemical Composition in the Enhanced Catalytic Activity of Pt-Based Alloyed Ultrathin Nanowires for the Hydrogen Oxidation Reaction under Alkaline Conditions. ACS Catal. 2016, 6, 3895–3908. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Nan, P.; Xiong, F.; Lin, S.; Zhang, X.; Chen, Y.; Chen, L.; Ge, B.; Pei, Y. Lattice Strain Advances Thermoelectrics. Joule 2019, 3, 1276–1288. [Google Scholar] [CrossRef]
- Timoshenko, J.; Roldan Cuenya, B. In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem. Rev. 2021, 121, 882–961. [Google Scholar] [CrossRef] [PubMed]
- Kolobov, A.V.; Oyanagi, H.; Tanaka, K.; Tanaka, K. Structural Study of Amorphous Selenium by in Situ EXAFS: Observation of Photoinduced Bond Alternation. Phys. Rev. B 1997, 55, 726–734. [Google Scholar] [CrossRef]
- Henderson, C.M.B.; Charnock, J.M.; Plant, D.A. Cation Occupancies in Mg, Co, Ni, Zn, Al Ferrite Spinels: A Multi-Element EXAFS Study. J. Phys. Condens. Matter 2007, 19, 076214. [Google Scholar] [CrossRef]
- Meng, G.; Sun, W.; Mon, A.A.; Wu, X.; Xia, L.; Han, A.; Wang, Y.; Zhuang, Z.; Liu, J.; Wang, D.; et al. Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic-Layer IrOx. Adv. Mater. 2019, 31, 1903616. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Z.; Gao, W.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X.; Wang, C.; Greeley, J. Tunable Intrinsic Strain in Two-Dimensional Transition Metal Electrocatalysts. Science 2019, 363, 870–874. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Snoeck, E.; Kilaas, R. Quantitative Measurement of Displacement and Strain Fields from HREM Micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Johnson, C.L.; Snoeck, E.; Ezcurdia, M.; Rodríguez-González, B.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Hÿtch, M.J. Effects of Elastic Anisotropy on Strain Distributions in Decahedral Gold Nanoparticles. Nat. Mater. 2008, 7, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Goris, B.; De Beenhouwer, J.; De Backer, A.; Zanaga, D.; Batenburg, K.J.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Aert, S.; Bals, S.; Sijbers, J.; et al. Measuring Lattice Strain in Three Dimensions through Electron Microscopy. Nano Lett. 2015, 15, 6996–7001. [Google Scholar] [CrossRef]
- Mukherjee, D.; Gamler, J.T.L.; Skrabalak, S.E.; Unocic, R.R. Lattice Strain Measurement of Core@Shell Electrocatalysts with 4D Scanning Transmission Electron Microscopy Nanobeam Electron Diffraction. ACS Catal. 2020, 10, 5529–5541. [Google Scholar] [CrossRef]
- Bu, L.; Guo, S.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J.; Guo, J.; Huang, X. Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nat. Commun. 2016, 7, 11850. [Google Scholar] [CrossRef]
- Jiang, K.; Zhao, D.; Guo, S.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Efficient Oxygen Reduction Catalysis by Subnanometer Pt Alloy Nanowires. Sci. Adv. 2017, 3, e1601705. [Google Scholar] [CrossRef]
- Luo, M.; Sun, Y.; Zhang, X.; Qin, Y.; Li, M.; Li, Y.; Li, C.; Yang, Y.; Wang, L.; Gao, P.; et al. Stable High-Index Faceted Pt Skin on Zigzag-Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Adv. Mater. 2018, 30, 1705515. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, Y.; Zhu, X.; Guo, S.; Guo, J.; Huang, X. Superior Bifunctional Liquid Fuel Oxidation and Oxygen Reduction Electrocatalysis Enabled by PtNiPd Core-Shell Nanowires. Adv. Mater. 2017, 29, 1603774. [Google Scholar] [CrossRef]
- Liu, M.; Xin, H.; Wu, Q. Unusual Strain Effect of a Pt-Based L10 Face-Centered Tetragonal Core in Core/Shell Nanoparticles for the Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2019, 21, 6477–6484. [Google Scholar] [CrossRef]
- Maiti, K.; Balamurugan, J.; Peera, S.G.; Kim, N.H.; Lee, J.H. Highly Active and Durable Core-Shell Fct-PdFe@Pd Nanoparticles Encapsulated NG as an Efficient Catalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2018, 10, 18734–18745. [Google Scholar] [CrossRef]
- Tripkovic, V.; Zheng, J.; Rizzi, G.A.; Marega, C.; Durante, C.; Rossmeisl, J.; Granozzi, G. Comparison between the Oxygen Reduction Reaction Activity of Pd5Ce and Pt5Ce: The Importance of Crystal Structure. ACS Catal. 2015, 5, 6032–6040. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, G.; Du, M.; Zhou, J.; Wang, K.; Wu, W.; Chen, X.; Li, Y.; Ma, P.; Dong, W.; et al. Atomic-Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Adv. Mater. 2018, 30, 1707301. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D.C.B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nat. Mater. 2013, 12, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ji, Y.; Luo, X.; Geng, S.; Fang, M.; Pi, Y.; Li, Y.; Huang, X.; Shao, Q. Compressive Strain in N-Doped Palladium/Amorphous-Cobalt (II) Interface Facilitates Alkaline Hydrogen Evolution. Small 2021, 17, 2103798. [Google Scholar] [CrossRef] [PubMed]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.L.; Hahn, C.; Jaramillo, T.F.; Bell, A.T. Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. J. Am. Chem. Soc. 2017, 139, 15848–15857. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, A.-L.; Gong, Y.; Hao, W.; Cheng, H.; Chen, J.; Li, B.; Yang, N.; Niu, W.; Wang, J.; et al. Crystal Phase-Based Epitaxial Growth of Hybrid Noble Metal Nanostructures on 4H/fcc Au Nanowires. Nat. Chem. 2018, 10, 456–461. [Google Scholar] [CrossRef]
- Kim, D.; Xie, C.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E.J.; Nørskov, J.K.; Yang, P. Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336. [Google Scholar] [CrossRef]
- Hahn, E.; Kampshoff, E.; Wälchli, N.; Kern, K. Strain Driven Fcc-Bct Phase Transition of Pseudomorphic Cu Films on Pd(100). Phys. Rev. Lett. 1995, 74, 1803–1806. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.C.; Tian, D.; Quinn, J.; Li, Y.S.; Jona, F.; Marcus, P.M. Epitaxial Growth of Body-Centered-Tetragonal Copper. Phys. Rev. B 1989, 40, 5841–5844. [Google Scholar] [CrossRef]
- Ramesh, R.; Schlom, D.G. Creating Emergent Phenomena in Oxide Superlattices. Nat. Rev. Mater. 2019, 4, 257–268. [Google Scholar] [CrossRef]
- Giordano, H.; Atrei, A.; Torrini, M.; Bardi, U.; Gleeson, M.; Barnes, C. Evidence for a Strain-Stabilized Bct Phase of Cobalt Deposited on Pd{100}: An X-ray Photoelectron Diffraction Study. Phys. Rev. B 1996, 54, 11762–11768. [Google Scholar] [CrossRef] [PubMed]
- Celorrio, V.; Quaino, P.M.; Santos, E.; Flórez-Montaño, J.; Humphrey, J.J.L.; Guillén-Villafuerte, O.; Plana, D.; Lázaro, M.J.; Pastor, E.; Fermín, D.J. Strain Effects on the Oxidation of CO and HCOOH on Au-Pd Core-Shell Nanoparticles. ACS Catal. 2017, 7, 1673–1680. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Y.; Ge, Y.; Zhu, S.; Cui, Y.; Chen, B.; Liao, L.; Yun, Q.; He, Z.; Long, H.; et al. Preparation of Au@Pd Core-Shell Nanorods with Fcc-2H-Fcc Heterophase for Highly Efficient Electrocatalytic Alcohol Oxidation. J. Am. Chem. Soc. 2022, 144, 547–555. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Wang, W.; Shi, F.; Yang, X.; Li, X.; Wu, J.; Yin, Y.; Jin, M. Mastering the Surface Strain of Platinum Catalysts for Efficient Electrocatalysis. Nature 2021, 598, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.; Yun, Q.; Zhou, X.; Liu, X.; Chen, Y.; Cheng, H.; Ge, Y.; Huang, J.; Hu, Z.; et al. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation. Acta Phys. Chim. Sin. 2023, 39, 2305034. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, X.; Huang, B.; Huang, Z.; Chen, B.; Ling, C.; Liu, J.; Liu, G.; Zhang, J.; Wang, G.; et al. Seeded Synthesis of Unconventional 2H-Phase Pd AlloyNanomaterials for Highly Efficient Oxygen Reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299. [Google Scholar] [CrossRef]
- Li, Q.; Niu, W.; Liu, X.; Chen, Y.; Wu, X.; Wen, X.; Wang, Z.; Zhang, H.; Quan, Z. Pressure-Induced Phase Engineering of Gold Nanostructures. J. Am. Chem. Soc. 2018, 140, 15783–15790. [Google Scholar] [CrossRef]
- Fan, Z.; Zhu, Y.; Huang, X.; Han, Y.; Wang, Q.; Liu, Q.; Huang, Y.; Gan, C.L.; Zhang, H. Synthesis of Ultrathin Face-Centered-Cubic Au@Pt and Au@Pd Core-Shell Nanoplates from Hexagonal-Close-Packed Au Square Sheets. Angew. Chem. Int. Ed. 2015, 54, 5672–5676. [Google Scholar] [CrossRef]
- Skriver, H.L. Crystal Structure from One-Electron Theory. Phys. Rev. B 1985, 31, 1909–1923. [Google Scholar] [CrossRef]
- Ithurria, S.; Guyot-Sionnest, P.; Mahler, B.; Dubertret, B. Mn2+ as a Radial Pressure Gauge in Colloidal Core/Shell Nanocrystals. Phys. Rev. Lett. 2007, 99, 265501. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhu, Y.; Liu, C.; Shi, Z.; Fratalocchi, A.; Han, Y. Unravelling Thiol’s Role in Directing Asymmetric Growth of Au Nanorod-Au Nanoparticle Dimers. Nano Lett. 2016, 16, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Nie, A.; Wang, H. Deformation-Mediated Phase Transformation in Gold Nano-Junction. Mater. Lett. 2011, 65, 3380–3383. [Google Scholar] [CrossRef]
Topic | Journal | Year | Ref |
---|---|---|---|
Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. | Chem. Rev. | 2023 | [36] |
Structural Transformation of Unconventional-Phase Materials. | ACS Nano | 2023 | [37] |
Colloidal Metal Nanocrystals with Metastable Crystal Structures. | Angew. Chem. Int. Ed. | 2021 | [13] |
Phase Engineering of Nanomaterials. | Nat. Rev. Chem. | 2020 | [5] |
Strain Modulation of Phase Transformation of Noble Metal Nanomaterials. | InfoMat | 2020 | [35] |
Strain Engineering of Metal-based Nanomaterials for Energy Electrocatalysis | Chem. Soc. Rev. | 2019 | [38] |
Strain-Controlled Electrocatalysis on Multimetallic Nanomaterials. | Nat. Rev. Mater. | 2017 | [39] |
Elements | Conventional Phases | Unconventional Phases |
---|---|---|
Au | fcc | 2H [1], 4H [3], bct [50], bco [50], fct [58] |
Ag | fcc | 2H [57], 4H [29], bct [48], fct [49], trigonal [59] |
Pd | fcc | 2H [28], 4H [43], amorphous [2], fct [60] |
Pt | fcc | fct [61] |
Ru | 2H | fcc [51,52,53], amorphous [45] |
Rh | fcc | 2H [56], amorphous [45] |
Os | 2H | 4H [41] |
Ir | fcc | 4H [41], 2H [62], amorphous [44] |
Electrocatalytic Reaction | Catalyst | Performance | Ref. | |
---|---|---|---|---|
Mass Activity | Specific Activity | |||
ORR | fct-FeCuPt/Pt NPs | N/A | 2.55 | [61] |
2H-PdCuPt | 7.00 A/mg @ 0.85 V | N/A | [97] | |
HER | fcc-2H-fcc Pd45@Ir55 | 1.16 A/mg | 3.55 mA/cm2 | [62] |
4H/fcc Au-Ru NWs | N/A | 0.35 mA/cm2 | [87] | |
CO2RR | fcc-2H-fcc Pd@Au NPs | 93% (Faradaic efficiency) @−0.4 V 97% (Faradaic efficiency) @−0.6 V 92% (Faradaic efficiency) @−0.9 V | [28] | |
Ordered intermetallic AuCu3@fct Au | 94.5% (Faradaic efficiency) @−0.8 V | [58] | ||
AOR | 4H-Au@PtCu NRBs | 4.22 A/mg | 50.2 mA/cm2 | [29] |
4H-Au@PdFe NRBs | 3.69 A/mg | 23.6 mA/cm2 | [96] | |
fcc-2H-fcc Au@Pd nanorods | 1.14 A/mg | N/A | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ye, J.; Chen, S.; Zhang, Q. Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules 2024, 29, 1617. https://doi.org/10.3390/molecules29071617
Wang J, Ye J, Chen S, Zhang Q. Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules. 2024; 29(7):1617. https://doi.org/10.3390/molecules29071617
Chicago/Turabian StyleWang, Jie, Jiang Ye, Sixuan Chen, and Qinyong Zhang. 2024. "Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts" Molecules 29, no. 7: 1617. https://doi.org/10.3390/molecules29071617
APA StyleWang, J., Ye, J., Chen, S., & Zhang, Q. (2024). Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules, 29(7), 1617. https://doi.org/10.3390/molecules29071617