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Abstract: Phenazine-based redox-active centers are capable of averting chemical bond rearrangements
by coupling during the reaction process, leading to enhanced stabilization of the material. When
introduced into a high-performance polymer with excellent physicochemical properties, they can be
endowed with electrochemical properties and related prospective applications while maintaining the
capabilities of the materials. In this study, a facile C-N coupling method was chosen for the synthesis
of serial poly(aryl ether sulfone) materials containing phenazine-based redox-active centers and to
explore their electrochemical properties. As expected, the cyclic voltammetry curves of PAS-DPPZ-
60, which basically overlap after thousands of cycles, indicate the stability of the electrochemical
properties. As an electrochromic material, the transmittance change in PAS-DPPZ-60 exhibits only
a slight attenuation after as long as 600 cycles. Meanwhile, as an organic battery cathode material,
PAS-DPPZ has a theoretical specific capacity of 126 mAh g−1, and the capacity retention rate is 82.6%
after 100 cycles at a 0.1 C current density. The perfect combination of advantageous features between
phenazine and poly(aryl ether sulfone) is considered to be the reason for the favorable electrochemical
performance of the material series.

Keywords: poly(aryl ether sulfone); phenazine; electrochromism; organic battery cathode

1. Introduction

Polymers possess various advantages including light weight, corrosion resistance,
and molding ease, and have thus gained popularity in all walks of life throughout the
development of society. Nevertheless, pure polymers typically suffer from their own
inherent defects including poor thermal resistance and limited mechanical strength, a
problem that urgently needs to be solved [1–6]. The emergence of high-performance
special engineering plastics has increased the adaptability of plastics in harsh conditions
to a certain extent [7–9]. Poly(aryl ether sulfone) (PAS) is a class of high-performance
polymer materials with comprehensive properties formed by the interpenetration bond
of an ether bond and a sulfone group [10]. The aromatic ring structure in the backbone is
rigid, which is found in large amounts, imparting to the resin exceptional levels of heat
resistance, radiation resistance, creep resistance, and flame retardancy. The sulfone group
in the molecular chain is a steric structure, which prevents the polymer from being melt-
crystallized; thus the resin base exhibits an amorphous nature and a highly transparent
state. The sulfur element contained in the sulfone group lies at the highest oxidation
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state, which enhances the oxidative stability of the polymer. The presence of ether bonds
and sulfone groups makes the PAS molecular chain’s flexibility increase, providing great
toughness and ductility for the resin, while the increased chain flexibility allows PAS
to be suitable for a variety of processing and molding methods as well as improves its
resistance to high-temperature hydrolysis. The superior overall performance of PAS enables
it to have extensive applications in the military, machinery manufacturing, petrochemical,
electronics, transport, medical equipment, and other high-tech industries [11–15]. The
various structures of poly(aryl ether sulfone) are quite similar, all of which are prepared by
a nucleophilic polycondensation reaction between monomers containing a diphenylsulfone
moiety structure and corresponding biphenol monomers under certain conditions [16,17].
In other words, different functionalized poly(aryl ether sulfone) materials can be attained by
selecting bisphenol monomers containing diverse functional units. The aromatic ring, ether
bond, and sulfone group still form the primary structure of the functionalized polymer.
Therefore, the functionalized PAS retains the excellent properties of poly(aryl ether sulfone)
materials to a large extent. Moreover, there are varying functionalized structures that
allow poly(aryl ether sulfone) materials to meet the needs of various applications with
corresponding properties [18–22]. In view of employing the remarkable properties of PAS
and endowing it with electrochemical activity so that it can satisfy the demands of relevant
applications in the field of electrochemistry, it is obviously necessary to modify the PAS
material itself.

As a classical aromatic nitrogen-containing heterocyclic compound, phenazine is non-
biotoxic and synthesized from low-cost source materials. Benefiting from its remarkable
properties regarding redox activity [23,24], photosensitivity, conductivity, and structural modi-
fiability, phenazine and its derivatives have been extensively employed in the fields of batteries,
fluorescent probes, dyes, conductive agents, magnetic materials, and photocatalysts [25–29].
More surprisingly, the effective positive charge dispersion in the conjugated structure enables
the phenazine unit to be electrically active with multi-site reactions occurring in situ, with
almost no change in the skeleton, which prevents chemical rearrangement. Once oxidized,
the π electrons in the periphery of the phenazine transform from 4n to 4n+2, and the discrete
dispersion of the large π-electron cloud formed by the electron loss in the conjugated system
occurs, thereby stabilizing the charge center. Simultaneously, the aromaticity in the system
turns from the initial weak anti-aromaticity to aromaticity. According to Hückel’s law, the
corresponding phenazine cation becomes even more stable [30]. In recent years, researchers
have linked several functional groups with specific properties to phenazine groups to obtain
more characteristic functionalized phenazine derivatives [31–35]. Integrating the unique per-
formance of phenazine with the virtues provided by the introduced moiety not only promotes
the evolution of phenazine derivatives but also enriches their variety and applications among
intelligent substances.

Herein, phenazine was selected as the electroactive center and poly(aryl ether sulfone)
as the basic backbone to construct functionalized poly(aryl ether sulfone) materials via a
facile and efficient C–N coupling method [36]. The synthesized serial polymers fulfilled the
design strategy as expected by combining the excellent and steady electrochemical activity
of phenazine with the prominent comprehensive performance of PAS itself. Phenazine-
based functionalized PAS suitable for diverse alternative applications were fabricated with
adjusted phenazine moiety occupancy ratios. Among them, PAS-DPPZ-60, employed as
an electrochromic material, exhibited just a slight degradation in optical contrast (∆T)
following up to 12,000 s (600 cycles) of circulation. PAS-DPPZ, meanwhile, a candidate
as an organic battery cathode material, demonstrated a theoretical specific capacity of
126 mAhg−1 and a promising battery performance, with a capacity maintained up to 82.6%
after 100 cycles at a 0.1 C current density.
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2. Results and Discussion
2.1. Monomer Synthesis

The 5,10-dihydrophenazine was prepared according to the published literature [37].
Briefly, 1.80 g phenazine (10 mmol) and 120 mL ethanol were added to a 250 mL three-
necked flask and heated to steady reflux with nitrogen protection. Subsequently, 50 mL
of a solution containing 3.48 g (20 mmol) of sodium dithionite was prepared in deionized
water and slowly dripped into the reaction flask using a constant-pressure dropping
funnel. The reaction continued for two hours. When the reaction solution was cooled
to room temperature, it was filtered and washed three times each with deionized water
and anhydrous ethanol. The obtained light green solid product was directly used in the
following polymerization reaction after vacuum drying at 50 ◦C for 4 h.

2.2. Polymer Synthesis and Characterization

Scheme 1 depicts the synthetic route of the target polymers in detail. Series of
phenazine-based poly(aryl ether sulfone) polymers were prepared by a modified C–N
coupling procedure [36]. The polymerization was carried out in N-methylpyrrolidone
(NMP) under conditions of 2.5 equivalents K2CO3 as a catalyst through adapting the ra-
tio of monomers 5,10-dihydrophenazine and bisphenol AF. The polymers obtained were
washed with deionized water and anhydrous ethanol before purification by Soxhlet extrac-
tion to remove products with relatively low molecular weight. The polymeric materials
with narrow molecular weight distribution were ultimately gained. Based on the propor-
tion of phenazine-based monomer in the polymers, they were designated as PAS-DPPZ-20,
PAS-DPPZ-40, PAS-DPPZ-60, PAS-DPPZ-80, and PAS-DPPZ. 1H NMR and FT-IR were se-
lected for the structural characterizations of the subject polymers, and the results are shown
in Figures S1 and S2. The FT-IR spectra of the polymers displayed duly characteristic
absorption peaks near 1322 cm−1, 1303 cm−1, 1256 cm−1, and −1109 cm−1 wavenum-
bers corresponding to the C-SO2-C, N(Ar)3, Ar-O-Ar, and CF3 stretching vibrations, as
appropriate [38–40].
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2.3. Solubility and Molecular Weight

The solubility properties determined how the polymers were processed in practical
situations, and qualitative measurement results of polymer solubility are summarized
in Table S1. At low proportions to phenazine-based monomers, the polymers had rela-
tively favorable solubility in a wide range of conventional solvents including chloroform,
tetrahydrofuran (THF), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc),
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and so on. The dissolution behavior decreased as the percentage of phenazine-based
monomers in the polymer increased. Once the percentage exceeded 60%, polymers were
virtually insoluble in conventional solvents. The aforementioned solubility testing results
also predicted that there should be inherent discrepancies in the employment scenarios of
PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60 versus PAS-DPPZ-80 and PAS-DPPZ. The
molecular weights of these polymers were determined by high-temperature permeation
gel chromatography (GPC). As the poor solubility of PAS-DPPZ-80 and PAS-DPPZ in
DMF limited the tests, only data related to PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-
60 are listed in Table 1. The combination of a high-number-average molecular weight
(65.5–92.7 kDa) and a low degree in dispersion (1.5–2.3) set the foundation for the consider-
able photovoltaic characteristics [41].

Table 1. Molecular weights and thermal stabilities of PAS-DPPZs.

Polymer Code
GPC (kDa) a Thermal Stability (◦C)

Mn Mw PDI Tg
b Td5%

c

PAS-DPPZ-20 65.5 95.8 1.5 218.1 512.0
PAS-DPPZ-40 92.7 213.5 2.3 241.9 486.3
PAS-DPPZ-60 91.0 204.3 2.2 259.3 482.6
PAS-DPPZ-80 - - - 272.4 466.1

PAS-DPPZ - - - 275.5 434.8
a Mn, Mw, and PDI were determined by GPC in DMF and are reported relative to polystyrene standards. Molecular
weight characteristics of PAS-DPPZ-80 and PAS-DPPZ could not be determined by GPC due to insolubility in
DMF; b determined by DSC; c defined as the temperature at which 5% mass loss was observed as determined by
TGA. Heating rate: 10 ◦C min−1, atmosphere: N2.

2.4. Thermal Properties

The thermal properties of the polymeric materials were investigated via thermogravimet-
ric analysis (TGA) and differential scanning calorimetry (DSC) (Table 1, Figures S3 and S4).
The results indicated that the introduction of the phenazine group did not negatively affect
the thermal stability in the system, and the polymer materials as a whole still maintained the
advantageous thermal stability of PAS. All the polymers did not suffer any significant weight
loss under the high-temperature test condition of 400 ◦C. Amongst them, the 5% thermal
weight loss temperature (Td5%) of PAS-DPPZ-20 was as high as 512.0 ◦C in a nitrogen atmo-
sphere. Furthermore, the glass transition temperature (Tg) of the polymers progressed steadily
with rising proportions on phenazine radicals in polymers, from 218.1 ◦C for PAS-DPPZ-20
to 275.5 ◦C for PAS-DPPZ. This result could be attributed to the fact that the presence of a
planar structure with a strong rigidity underlying the phenazine matrix was able to restrict
the movement of the polymer chain segments, leading to the PAS-DPPZ with the highest
phenazine content exhibiting the minimum chain mobility [42]. Such an outstanding thermal
stability undoubtedly broadens the scope of possibilities in which the material might be
utilized and extends its service life.

2.5. Optical and Electrochemical Properties

The fundamental optical properties that characterize polymeric substances were ex-
plored with the help of UV–vis absorption spectroscopy. Limited by solubility, comparative
trials were performed exclusively across PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-
60. The data obtained are summarized in Table 2. The UV–Vis absorption spectra in
NMP solution (Figure 1a) revealed that the intensity of the characteristic absorption peaks
(316 nm–331 nm) ascribed to phenazine increased with the growing share of phenazine moi-
eties as part of the polymer chain segments [43]. Concurrently, a new peak began to appear
near the wavelength of 430 nm and continuously enhanced owing to the intramolecular
charge transfer (ICT) effect that initiated between the electron-rich and electron-deficient
groups. The spectral absorption for the solid-state film (Figure 1b) demonstrated a broadly
comparable pattern of variation versus that of the solution. There was only a limited degree
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of redshift in the spectrum as a whole. The intensity of the redshift phenomenon was
positively correlated with the total conjugation level within the polymer.
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The cyclic voltammetry (CV) curves were measured in an inert gas atmosphere for the
materials using indium tin oxide (ITO) glass spin-coated with a polymer film as the working
electrode, a Ag/Ag+ electrode as the reference, and a platinum wire as the counter electrode
(Figures 2 and S5). The experiments were carried out in an acetonitrile (ACN) solution with
tetrabutylammonium perchlorate (TBAP) at a concentration of 0.1 M. The specific redox
process is illustrated in Scheme 2. With that in mind, the electrochemical properties of PAS-
DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60 were evaluated. Primarily, a pair of redox peaks
existed in the cyclic voltammetry curves of all three polymers, which corresponded to the
reversible redox process of phenazine [44]. Moreover, increasing the proportion of phenazine
groups in the polymers contributed to the overall electrochemical enhancement upon compar-
ison. It was specifically reflected by the growth in the redox peak current density in the cyclic
voltammetry curves; the reduction in the onset oxidation potential (Eonset) and half-wave
potential (Eox1/2) (Eonset: 0.18 V–0.11 V, E: 0.26 V–0.20 V); the increase in the ratio between the
reduction and oxidation peak current (Jred/Jox) (0.73–0.92); and the decrease in electrochemical
degradation after 10,000 consecutive cyclic voltammetry cycles. In the CV curve, the higher
peak current represented the better electrochemical activation of the material; the closer the
value of Jred/Jox to one, the greater the reversible extent of this electrochemical redox pro-
cess [45]; and lower Eonset and Eox1/2 commonly imply more excellent electrochemical stability.
The significant improvement in these indicators was undoubtedly evidence of the success
of the modification strategy that introduced phenazine-based redox-active centers into high-
performance polymers in order to endow them with electrochemical properties. This initiative
made the already superior physicochemical properties of PAS break through the constraints
imposed by their own lack of electroactivity in order to shine in electrochemical-related areas.
This tremendously expands usage opportunities and enhances the actual application value of
the materials.

The introduction of phenazine groups bringing about an enhancement in electrochem-
ical properties could also be explained from the viewpoint of molecular orbitals and energy
band gaps (Eg). The highest occupied molecular orbital (HOMO) energy levels of PAS-
DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60 were calculated based on the onset oxidation
potentials determined by cyclic voltammetry, with ferrocene as the internal standard, as
tabulated in Table 3. The Eg and lowest unoccupied molecular orbital (LUMO) energy
levels of the three polymers were summarized with the assistance of the onset absorption
wavelength (λonset) obtained from UV–Vis absorption spectra and the relevant formulae.
The data revealed that the strengthened D–A (donor–acceptor) effect brought about by the
elevated content of phenazine moieties was reflected at the molecular level by a decrease
in Eg (2.33 eV–2.19 eV). That finding coincided with the results concerning the gradual
progression of the long-term stability tests in the CV curves.
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TBAP/ACN (scanning rate: 0.1 V/s).
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Table 2. Optical characteristics of PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60.

Polymer Code
Solution Film

λmax (nm) λmax (nm) λonset (nm)

PAS-DPPZ-20 316,434 445 533
PAS-DPPZ-40 328,437 452 546
PAS-DPPZ-60 331,439 460 565
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Table 3. Electrochemical properties, energy levels, and energy band gaps of PAS-DPPZ-20, PAS-
DPPZ-40, and PAS-DPPZ-60.

Polymer Code
Oxidation a (V)

Eg
b (eV)

Energy Level c (eV)

Eonset Eox1/2 HOMO LUMO

PAS-DPPZ-20 0.18 0.26 2.33 −4.98 −2.65
PAS-DPPZ-40 0.13 0.21 2.27 −4.93 −2.66
PAS-DPPZ-60 0.11 0.20 2.19 −4.91 −2.72

a Obtained from CV curve; b Eg = 1240/λonset. c LUMO = HOMO-Eg.

2.6. Spectroelectrochemistry and Electrochromic Properties

Encouraged by the promising electrochemical long-term stability in cyclic voltam-
metry testing, spectroelectrochemical measurements were performed to evaluate the elec-
trochromic potency of PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60. Spectroelectro-
chemical testing is one of the most common means to confirm the presence or absence of
electrochromic properties through the combination of electrochemical workstation and
UV–Vis absorption spectroscopy to measure the spectral absorption change in a material in
situ under different applied voltages. The concrete experimental conditions were analogous
to those of cyclic voltammetry tests. The variation in the UV–Vis absorption spectra of
the three materials to be assessed with the applied voltage are illustrated in Figure 3. The
patterns of the three spectral lines were highly consistent, with a new absorption band
appearing at 400 nm–500 nm in the process of voltage gradient elevation. In parallel,
moderate-intensity broadband absorption was observed in the visible and near-infrared
regions from 600 nm to 800 nm, where the highest intensity peaks were located at 628 nm,
688 nm, and 763 nm. When the voltage rose to 0.4 V, that round of absorption enhancement
reached saturation, suggesting that the stage-by-stage oxidation process of the electroactive
units in the polymer was essentially complete. The polymer film on the working electrode
surface at this point turned from the initial light yellow to the green color of the radical
cation [46–48]. Additionally, further comparisons revealed that the identical voltage al-
terations did not result in the same modification of the spectral absorption intensities for
the three polymers. The larger the proportion of phenazine groups, the more the spectral
intensity changed under consistent conditions, which implied that the observed color
variation was more pronounced. As a result, when it comes to the practical implemen-
tation of electrochromism, it was predicted that PAS-DPPZ-60 is more competitive than
PAS-DPPZ-20 and PAS-DPPZ-40.
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Tangible electrochromic performance metrics were derived by monitoring the transmittance
of electrochromic materials at specific wavelengths with applied pulses by the chronoamperom-
etry approach. The duration to accomplish 90% of the total transmittance change is commonly
defined as the electrochromic switching time required for the material [49]. Under identical test
conditions (pulse voltage and time interval), as illustrated in Figure 4, the transmittance evolu-
tion of the polymers enhanced dramatically as the proportion of phenazine within the system
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increased from 0.81% in PAS-DPPZ-20 to 33.44% in PAS-DPPZ-60. The electrochromic switching
time was further shortened from nearly 9 s (coloring time: 8.94 s, bleaching time: 8.48 s) for
PAS-DPPZ-20 to just about 6 s (coloring time: 6.19 s, bleaching time: 6.41 s) for PAS-DPPZ-60.
All these performance improvements could be traced to the electroactive enhancement brought
to the material by the increase in phenazine occupancy.

Figure 4. (a–c) Variation in transmittance in electrochromic stability tests for PAS-DPPZ-20, PAS-
DPPZ-40, and PAS-DPPZ-60; (d–f) variation in current at the working electrode in electrochromic
stability tests for PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60; (g–i) coloring/bleaching time of
PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60; (j–l) coloration efficiency of PAS-DPPZ-20, PAS-
DPPZ-40, and PAS-DPPZ-60 (obtained by linear fitting).

The long-term service reliability of electrochromic behavior is an alternative indicator
that called for attention during actual practice. In this regard, PAS-DPPZ-20, PAS-DPPZ-40,
and PAS-DPPZ-60 were tested for electrochromic cycling stability. The cyclic stability of
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PAS-DPPZ-20 with the lowest phenazine content was found to be the worst, followed by
PAS-DPPZ-40 with the medium phenazine content, while PAS-DPPZ-60 with the highest
phenazine content exhibited the best cyclic stability among the three. During an uninter-
rupted electrochromic switching cycle of up to 12,000 s (600 cycles), there was no significant
degradation in either the transmittance change or the corresponding current response.
The origin of its excellent electrochromic cycling stability is the highly reversible nature
of the electrochemical reaction, with the result that the charge injection and extraction
capabilities of the electrochemical redox process are relatively well-matched. To be specific,
the charge injection and extraction capabilities could be predicted by performing cyclic
voltammetry tests on the materials to be tested. The oxidation peak current density (Jox)
and reduction peak current density (Jred) in the curves represented, to some extent, the
charge injection and extraction capability during the electrochemical redox process [38].
Regarding the series of materials structurally similar to each other, the closer the Jred/Jox
value is to one, the higher the degree of matching and the higher the cyclic stability. The ex-
perimentally calculated Jred/Jox values of PAS-DPPZ-20, PAS-DPPZ-40, and PAS-DPPZ-60
consecutively enlarged up to 0.73, 0.90, and 0.92, respectively, which exactly corresponded
to the significantly enhanced cycling stability results. Moreover, the fitting outcome of
the coloration efficiency (CE) reconfirmed the considerable contribution of the elevated
phenazine ratio to the upgrade in the electrochemical performance of the system. With a
linear fit of the charge density and optical density relationship curve, the slope yielded is,
as defined, the coloration efficiency [50]. The magnitude of the value is an indication of
how much electrical energy the material is capable of converting when undergoing the
electrochromic process. As is obvious, materials with large coloration efficiencies consumed
less energy during the electrochromic process and thus offered a higher utility value. When
the proportion of phenazine groups increased from 20% to 60%, the coloration efficiency
in the system achieved an order of magnitude upgrade from 4.4 cm2/C to 88.8 cm2/C.
Comparing the electrochromic performance indices, it was not surprising to notice that
the comprehensive performance of PAS-DPPZ-60, which possessed a high proportion of
phenazine, was much better than that of PAS-DPPZ-20 and PAS-DPPZ-40. Together with
the introduction of phenazine into the poly(aryl ether sulfone) system, it demonstrated
another way to achieve the purpose of imparting stable electrochemical activity to the PAS
system without damaging its original benefits.

2.7. Battery Properties

Whether PAS-DPPZ, which has pretty poor solubility in common organic solvents,
could be utilized as an organic cathode material was tested using a coin battery. The
detailed assembly steps are shown in the Supporting Information. In order to investigate
the redox potential of the phenazine derivative electrode, the battery of PAS-DPPZ was
subjected to cyclic voltammetry tests at a scan rate of 0.1 mV/s (2.5–4.4 V). As shown
in Figure 5a, the polymer PAS-DPPZ exhibits two pairs of redox peaks corresponding to
two consecutive single-electron-transfer redox reaction processes. Among them, the two
pairs of reduction peak potentials of PAS-DPPZ were about 3.0 V and 3.8 V (vs. Li/Li+),
and the oxidation peak potentials were about 3.5 V and 4.1 V (vs. Li/Li+), respectively.
Figure 5b shows the Nyquist plots of PAS-DPPZ at different cycles. In particular, the initial
impedance of PAS-DPPZ was the smallest and increases with the number of cycles. After
100 cycles, the impedance increased to 1046 Ω. In addition, in order to further verify that
the PAS-DPPZ material has the potential to be used as a cathode material, the battery
of PAS-DPPZ was subjected to charge/discharge tests at different current densities and
constant current charge/discharge, respectively. The test results of PAS-DPPZ at 0.1 C,
0.2 C, 0.3 C, and 0.5 C multiplicity are shown in Figure 5c. Among them, the discharge
specific capacity at 0.1 C was about 82 mAh/g, and the capacity was about 27 mAh/g
when the current density was increased to 0.5 C, with a capacity retention rate of 33%.
Figure 5d shows the charge–discharge curves of PAS-DPPZ at 0.1 C, 0.2 C, and 0.5 C, where
the different curves exhibit two obvious charge–discharge plateaus, while the voltage
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difference between the two plateaus is about 0.8 V, which is consistent with the results of
the CV test above. The above results indicate that PAS-DPPZ containing an active center
can significantly exhibit cycling stability when used as an electrode material after being
used in a phenazine derivative as a polymer linking unit. Furthermore, it can be observed
from Figure 5e that the first discharge specific capacity of the electrode PAS-DPPZ was
about 76 mAh/g, and the capacity was maintained at about 62 mAh/g after 100 cycles,
which was about 82% of the initial capacity. Additionally, it can be observed in Figure 5f
that the discharge curves of the 10th and 100th cycles almost coincide with the discharge
curve of the first cycle, which further demonstrates the good cycling stability of PAS-DPPZ.
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Figure 5. The batteries of PAS-DPPZ with (a) CV curves (1.5–3.5 V) at 0.1 mV/s, (b) Nyquist plots
(initial, 1, and 100 cycles), and corresponding equivalent circuit diagrams, (c,d) the rate capability
and charge/discharge curves at 0.1 C, 0.2 C, 0.3 C and 0.5 C, (e) cycling performance and coulombic
efficiency at 0.1 C, and (f) charge/discharge curves (1, 10, and 100 cycles) at 0.1 C.

In summary, the test results demonstrate that simply adjusting the occupancy rate
of phenazine could realize a leap in the field of material applications, which reflects the
ingenious and practical design concept.
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3. Materials and Methods
3.1. Materials

All reagents were received without any further purification. Phenazine, sodium
dithionite, and bisphenol AF were obtained from Energy Chemical (Shanghai, China).
Anhydrous ethanol (EtOH), N-methyl-2-pyrrolidone (NMP), and potassium carbonate
(K2CO3) were sourced from China National Medicines Corporation Ltd. (Beijing, China).
K2CO3 had to be ground and vacuum-dried before use. Tetrabutylammonium perchlorate
(TBAP) and ultra-dry-grade acetonitrile (ACN) were purchased from Macklin (Shanghai,
China). The materials required for assembling the button cell were commercially available.
The ITO glass was sonicated sequentially with deionized water, acetone, and ethanol for
15 min before use.

3.2. Methods

The polymer structures were determined by nuclear magnetic resonance hydrogen
(1HNMR) spectroscopy at 300 MHz (Bruker Avance, Bruker BioSpin, Rheinstetten, Ger-
many) and Fourier transform infrared (FT-IR) spectroscopy (Nicolet AVATAR 360). The
solvent for 1HNMR was deuterated trichloromethane (CDCl3), and the blank background
for FT-IR was potassium bromide (KBr). The eluent for gel permeation chromatography
(GPC, Agilent, Palo Alto, CA, USA) to measure the molecular weight of the polymers was
N,N-dimethylformamide (DMF). The standard sample was monodisperse polystyrene.
Thermogravimetric analysis (TGA) was performed with a PerkinElmer Pyris 1 TGA instru-
ment (PerkinElmer, MA, USA) and differential scanning calorimetry (DSC) with a DSC
821e apparatus (Mettler, Zurich, Switzerland). The gas atmosphere for both was nitrogen,
and the heating rate was 10 ◦C min−1. Electrochemical correlation data were obtained
with the classical three-electrode system and evaluated using a CHI660D electrochemical
workstation (Chenhua, Shanghai, China). Optical properties were assessed on a UV-1600
spectrophotometer (Macy, Shanghai, China). The measurement of the button cell was
completed in a NEWARE battery test system.

4. Conclusions

A functionalized synthetic strategy for introducing phenazine-based redox centers
into high-performance polymer systems was proposed. A family of PAS-DPPZs with elec-
trochemical activeness and long-term stability was prepared through a facile C–N coupling
method. The system exhibits distinct electrochemical features and suitable application
domains depending on the proportion of phenazine groups. Among them, PAS-DPPZ-60
stands out for its electrochromic performance in comparison to all other polymers. There
was almost no performance degradation during the long-time cycling test of 12,000 s. Mean-
while, PAS-DPPZ, with the largest percentage of phenazine, performed well as an organic
battery cathode material. With the assistance of phenazine to strengthen the free domain
and stabilize the free radicals within the system, batteries fabricated from PAS-DPPZ not
only possess a theoretical capacity of 126 mAh g−1 but also show a low capacity decay
of less than 20% over 100 charging/discharging cycles. Such a functionalization strategy,
incorporating several benefits of PAS and phenazine, not only expands the range of high-
performance polymers and the scope of their implementations but also offers concepts for
future material modification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29071618/s1. Figure S1: NMR spectra of PAS-DPPZs;
Figure S2: FT-IR spectra of PAS-DPPZs; Figure S3: TGA curve of PAS-DPPZs; Figure S4: DSC curve
of PAS-DPPZs; Figure S5: Comparison diagram of 10,000-cycle voltammetry curves of PAS-DPPZ-20
(a); PAS-DPPZ-40 (b) and PAS-DPPZ-60 (c); Table S1: Table of PAS-DPPZs solubility test results; and
procedure of CR2023 coin battery assembly.

https://www.mdpi.com/article/10.3390/molecules29071618/s1
https://www.mdpi.com/article/10.3390/molecules29071618/s1
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