The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Harvest Times and Fruit Maturity Index
2.2. Lipoxygenase Activity in Olive Fruits
2.3. Olive Oil Qualitative Parameters
2.4. Influence of Cultivar, Harvest Time and Enzyme Activity LOX on the Amount of Total Phenolic Compounds in Virgin Olive Oils
2.5. Influence of Cultivar, Harvest Time and LOX Enzyme Activity on the Composition of Volatiles in Virgin Olive Oils
3. Materials and Methods
3.1. Plant Material and Olive Oil Extraction
3.2. Protein Extraction
3.3. Determination of LOX Activity
3.3.1. Synthesis and Isolation of Hydroperoxide
3.3.2. RP-HPLC Analysis
3.4. Olive Oil Extraction
3.4.1. Physicochemical Analysis of Oil
3.4.2. Extraction of Phenolic Compounds
3.4.3. Determination of Total Phenolic Compounds
3.4.4. Extraction and Analysis of Volatile Compounds
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correia, M.; Moreira, I.; El Maghariki, J.; Manuel, T.; Alves, P.; Barros, R.; Gomes, A. The Metabolic and Analytical Changes of Healthy Volunteers upon Intake of Portuguese Extra Virgin Olive Oil: A Comparison Study between Pre- and Post-Intervention. Nutrients 2023, 15, 3351. [Google Scholar] [CrossRef] [PubMed]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive Oil Consumption and Human Health: A Narrative Review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Millman, J.F.; Okamoto, S.; Teruya, T.; Uema, T.; Ikematsu, S.; Shimabukuro, M.; Masuzaki, H. Extra-virgin Olive Oil and the Gut-brain Axis: Influence on Gut Microbiota, Mucosal Immunity, and Cardiometabolic and Cognitive Health. Nutr. Rev. 2021, 79, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef] [PubMed]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive Oil Volatile Compounds, Flavour Development and Quality: A Critical Review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of Volatile Compounds on Virgin Olive Oil Quality Evaluated by Analytical Approaches and Sensor Panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Aparicio, R.; Luna, G. Characterisation of Monovarietal Virgin Olive Oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Sanchez, J.; Salas, J. Biogenesis of Olive Oil Aroma. In Handbook of Olive Oil: Analysis and Properties; Harwood, J., Aparicio, R., Eds.; Springer: New York, NY, USA, 2013; pp. 79–99. [Google Scholar]
- Schiller, D.; Contreras, C.; Vogt, J.; Dunemann, F.; Defilippi, B.G.; Beaudry, R.; Schwab, W. A Dual Positional Specific Lipoxygenase Functions in the Generation of Flavor Compounds During Climacteric Ripening of Apple. Hortic. Res. 2015, 2, 15003. [Google Scholar] [CrossRef] [PubMed]
- Palmieri-Thiers, C.; Canaan, S.; Brunini, V.; Lorenzi, V.; Tomi, F.; Desseyn, J.L.; Garscha, U.; Oliw, E.H.; Berti, L.; Maury, J. A Lipoxygenase With Dual Positional Specificity is Expressed in Olives (Olea europaea L.) During Ripening. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids 2009, 1791, 339–346. [Google Scholar] [CrossRef]
- Padilla, M.N.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Functional Characterization of Two 13-Lipoxygenase Genes from Olive Fruit in Relation to the Biosynthesis of Volatile Compounds of Virgin Olive Oil. J. Agric. Food Chem. 2009, 57, 9097–9107. [Google Scholar] [CrossRef] [PubMed]
- Ridolfi, M.; Terenziani, S.; Patumi, M.; Fontanazza, G. Characterization of the Lipoxygenases in Some Olive Cultivars and Determination of Their Role in Volatile Compounds Formation. J. Agric. Food Chem. 2002, 50, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile Compounds in Virgin Olive Oil: Occurrence and Their Relationship With the Quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Toschi, T.G. Effect of Olive Ripening Degree on the Oxidative Stability and Organoleptic Properties of Cv. Nostrana di Brisighella Extra Virgin Olive Oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef] [PubMed]
- Şişik Oğraş, S.; Kaban, G.; Kaya, M. Volatile Compounds of Olive Oils from Different Geographic Regions in Turkey. Int. J. Food Prop. 2018, 21, 1833–1843. [Google Scholar] [CrossRef]
- Mikrou, T.; Litsa, M.; Papantoni, A.; Kapsokefalou, M.; Gardeli, C.; Mallouchos, A. Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils. Chemosensors 2023, 11, 80. [Google Scholar] [CrossRef]
- Lima, A.F.; Da Silva Oliveira, W.; De Oliveira Garcia, A.; Vicente, E.; Godoy, H.T. Identifying Markers Volatiles in Brazilian Virgin Oil by Multiple Headspace Solid-phase Microextraction, and Chemometrics Tools. Food Res. 2023, 167, 112697. [Google Scholar] [CrossRef]
- Šarolić, M.; Gugić, M.; Friganović, E.; Tuberoso, C.; Jerković, I. Phytochemicals and Other Characteristics of Croatian Monovarietal Extra Virgin Olive Oils from Oblica, Lastovka and Levantinka Varieties. Molecules 2015, 20, 4395–4409. [Google Scholar] [CrossRef] [PubMed]
- Popović, M.; Jukić Špika, M.; Veršić Bratinčević, M.; Ninčević, T.; Matešković, A.; Mandušić, M.; Rošin, J.; Nazlić, M.; Dunkić, V.; Vitanović, E. Essential Oil Volatile Fingerprint Differentiates Croatian cv. Oblica from Other Olea europaea L. Cultivars. Molecules 2021, 26, 3533. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Ferná, A. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D. Discrimination of Olive Oils and Fruits into Cultivars and Maturity Stages Based on Phenolic and Volatile Compounds. J. Agric. Food Chem. 2005, 53, 8054–8062. [Google Scholar] [CrossRef] [PubMed]
- Di Lecce, G.; Piochi, M.; Pacetti, D.; Frega, N.G.; Bartolucci, E.; Scortichini, S.; Fiorini, D. Eleven Monovarietal Extra Virgin Olive Oils from Olives Grown and Processed under the Same Conditions: Effect of the Cultivar on the Chemical Composition and Sensory Traits. Foods 2020, 9, 904. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Escudero, F.; Morales, M.T.; Asuero, A.G. Characterization of Bioactive Compounds from Monovarietal Virgin Olive Oils: Relationship Between Phenolic Compounds-Antioxidant Capacities. Int. J. Food Prop. 2015, 18, 348–358. [Google Scholar] [CrossRef]
- Škevin, D.; Rade, D.; Štrucelj, D.; Mokrovšak, Ž.; Neđeral, S.; Benčić, Đ. The Influence of Variety and Harvest Time on the Bitterness and Phenolic Compounds of Olive Oil. Eur. J. Lipid Sci. Technol. 2003, 105, 536–541. [Google Scholar] [CrossRef]
- Bonoli, M.; Bendini, A.; Cerretani, L.; Lercker, G.; Gallina Toschi, T. Qualitative and Semiquantitative Analysis of Phenolic Compounds in Extra Virgin Olive Oils as a Function of the Ripening Degree of Olive Fruits by Different Analytical Techniques. J. Agric. Food Chem. 2004, 52, 7026–7032. [Google Scholar] [CrossRef]
- Bengana, M.; Bakhouche, A.; Lozano-Sánchez, J.; Amir, Y.; Youyou, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Influence of Olive Ripeness on Chemical Properties and Phenolic Composition of Chemlal Extra Virgin Olive Oil. Food Res. Int. 2013, 54, 1868–1875. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Harvest Dates. Evolution of the Fruit Oil Content, Oil Composition and Oil Quality. In Proceedings of the Del Segundo Seminario Oleicola Internacional, Cordoba, Spain, 6–17 October 1975; IOC: Cordoba, Spain, 1975; Volume 6–17, pp. 125–128. [Google Scholar]
- Sanz, C.L.; Perez, G.A.; Rios, J.J.; Olias, M.J. Positional Specificity of Ketodienes from Linoleic Acid Aerobically Formed by Lipoxygenase Isozymes from Kidney Bean and Pea. J. Agric. Food Chem. 1993, 41, 696–699. [Google Scholar] [CrossRef]
- De Gregorio, A.; Dugo, G.; Arena, N. Lipoxygenase Activites in Ripening Olive Fruit Tissue. J. Food Biochem. 2000, 24, 417–426. [Google Scholar] [CrossRef]
- Salas, J.J.; Willams, M.; Harwood, J.L.; Sánchez, J. Lipoxygenase Activity in Olive (Olea europaea) Fruit. J. Am. Oil Chem. Soc. 1999, 76, 1163–1168. [Google Scholar] [CrossRef]
- Palmieri-Thiers, P.; de Caraffa, V.B.B.; Lorenzi, V.; Gambotti, C.; Giannettini, J.; Berti, L.; Maury, J. Biochemical and molecular aspects of olive lipoxygenase. In Advances in olive resources; Transworld Research Network: Trivandrum, India, 2009; pp. 1–17. [Google Scholar]
- Luaces, P.; Sanz, C.; Pérez, A.G. Thermal Stability of Lipoxygenase and Hydroperoxide Lyase from Olive Fruit and Repercussion on Olive Oil Aroma Biosynthesis. J. Agric. Food Chem. 2007, 55, 6309–6313. [Google Scholar] [CrossRef] [PubMed]
- European Union Commission. Commission Delegated Regulation 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 Commission Implementing Regulation (EU) No 29/2012. J. Eur. Union 2022, L284/1. Available online: http://data.europa.eu/eli/reg_del/2022/2104/oj (accessed on 2 February 2024).
- Žanetić, M.; Jukić Špika, M.; Ožić, M.M.; Brkić Bubola, K. Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants 2021, 10, 1995. [Google Scholar] [CrossRef] [PubMed]
- Farinelli, D.; Tombesi, S. Performance and Oil Quality of ‘Arbequina’and Four Italian Olive Cultivars Under Super High Density Hedgerow Planting System Cultivated in Central Italy. Sci. Hortic. 2015, 192, 97–107. [Google Scholar] [CrossRef]
- Jukić Špika, M.; Perica, S.; Žanetić, M.; Škevin, D. Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect? Antioxidants 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Kalogianni, E.P.; Georgiou, D.; Hasanov, J.H. Olive Oil Processing: Current Knowledge, Literature Gaps, and Future Perspectives. J. Am. Oil Chem. Soc. 2019, 96, 481–507. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Villani, V.; Paduano, A.; Sacchi, R. Olive Oil Phenolic Compounds Affect the Release of Aroma Compounds. Food Chem. 2015, 181, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor Chemistry of Virgin Olive Oil: An Overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Rodríguez-López, P.; Lozano-Sánchez, J.; Borras-Linares, I.; Emanuelli, T.; Menendez, J.A.; Segura-Carretero, A. Polyphenols in Olive Oil. In Olives and Olive Oil in Health and Disease Prevention, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 111–122. [Google Scholar]
- Celano, R.; Piccinelli, A.L.; Pugliese, A.; Carabetta, S.; Di Sanzo, R.; Rastrelli, L.; Russo, M. Insights into the Analysis of Phenolic Secoiridoids in Extra Virgin Olive Oil. J. Agric. Food Chem. 2018, 66, 6053–6063. [Google Scholar] [CrossRef] [PubMed]
- Jukić Špika, M.; Liber, Z.; Montemurro, C.; Miazzi, M.M.; Ljubenkov, I.; Soldo, B.; Žanetić, M.; Vitanović, E.; Politeo, O.; Škevin, D. Quantitatively Unraveling Hierarchy of Factors Impacting Virgin Olive Oil Phenolic Profile and Oxidative Stability. Antioxidants 2022, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Dag, A.; Ben-Gal, A.; Yermiyahu, U.; Basheer, L.; Nir, Y.; Kerem, Z. The Effect of Irrigation Level and Harvest Mechanization on Virgin Olive Oil Quality in a Traditional Rain-fed ‘Souri’ Olive Orchard Converted to Irrigation. J. Sci. Food Agric. 2008, 88, 1524–1528. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Desamparados Salvador, M.; Moriana, A.; Pérez, D.; Olmedilla, N.; Ribas, F.; Fregapane, G. Influence of Different Irrigation Strategies in a Traditional Cornicabra cv. Olive Orchard on Virgin Olive Oil Composition and Quality. Food Chem. 2007, 100, 568–578. [Google Scholar] [CrossRef]
- Notario, A.; Sánchez, R.; Luaces, P.; Sanz, C.; Pérez, A.G. The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil. Molecules 2022, 27, 1650. [Google Scholar] [CrossRef]
- Aguilera, M.P.; Beltrán, G.; Ortega, D.; Fernández, A.; Jiménez, A.; Uceda, M. Characterisation of Virgin Olive Oil of Italian Olive Cultivars: `Frantoio’ and `Leccino’, Grown in Andalusia. Food Chem. 2005, 89, 387–391. [Google Scholar] [CrossRef]
- Conte, P.; Caponio, G.; Difonzo, G.; Fadd, C.; Del Caro, A.; Urgeghe, P.P.; Montanari, L.; Montinaro, A.; Piga, A. Change in Quality During Ripening of Olive Fruits and Related Oils Extracted from Three Minor Autochthonous Sardinian Cultivars. Emir. J. Food Agric. 2019, 31, 196–205. [Google Scholar] [CrossRef]
- Deiana, P.; Molinu, M.G.; Dore, A.; Culeddu, N.; Dettori, S.; Santona, M. Evolution of Monovarietal Virgin Olive Oils as a Function of Chemical Composition and Oxidation Status. Nat. Prod. Res. 2023, 37, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.M.; Alcalá, S.; De Torres, A.; Moya, M.; Espínola, F. Characterization of Olive Oils from Superintensive Crops with Different Ripening Degree, Irrigation Management, and Cultivar: (Arbequina, Koroneiki, and Arbosana). Eur. J. Lipid Sci. Technol. 2019, 121, 1800360. [Google Scholar] [CrossRef]
- López-Yerena, A.; Ninot, A.; Jiménez-Rui, N.; Lozano-Castelló, J.; Pérez, M.; Escribano-Ferrer, E.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Influence of the Ripening Stage and Extraction Conditions on the Phenolic Fingerprint of ‘Corbella’ Extra-Virgin Olive Oil. Antioxidants 2021, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- De Torres, A.; Espínola, F.; Moya, M.; Alcalá, S.; Vidal, A.M.; Castro, E. Assessment of Phenolic Compounds in Virgin Olive Oil by response Surface Methodology With Particular Focus on Flavonoids and Lignans. LWT 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Romero-Segura, C.; García-Rodríguez, R.; Sánchez-Ortiz, A.; Sanz, C.; Pérez, A.G. The Role of Olive β-glucosidase in Shaping the Phenolic Profile of Virgin Olive Oil. Food Res. Int. 2012, 45, 191–196. [Google Scholar] [CrossRef]
- Loomis, W.D.; Battaile, J. Plant Phenolic Compounds and the Isolation of Plant Enzymes. Phytochemistry 1966, 5, 423–438. [Google Scholar] [CrossRef]
- Muzzalupo, I.; Stefanizzi, F.; Perri, E.; Chiappetta, A. Variation of the Antioxidant Compounds in Italian Olive (Olea europea) Drupes During Ripening Stage. Acta Hortic. 2012, 949, 209–212. [Google Scholar] [CrossRef]
- Miho, H.; Moral, J.; López-González, M.A.; Díez, C.M.; Priego-Capote, F. The Phenolic Profile of Virgin Olive Oil is Influenced by Malaxation Conditions and Determines the Oxidative Stability. Food Chem. 2020, 314, 126183. [Google Scholar] [CrossRef] [PubMed]
- Germek, V.M.; Koprivnjak, O.; Butinar, B.; Pizzale, L.; Bučar-Miklavčič, M.; Conte, L.S. Influence of Phenols Mass Fraction in Olive (Olea europaea L.) Paste on Volatile Compounds in Buža Cultivar Virgin Olive Oil. J. Agric. Food Chem. 2013, 61, 5921–5927. [Google Scholar] [CrossRef] [PubMed]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Lukić, I. Volatile Compounds and Sensory Profiles of Monovarietal Virgin Olive Oil from Buža, Črna and Rosinjola Cultivars in Istria (Croatia). Food Technol. Biotechnol. 2012, 50, 192–198. [Google Scholar]
- Kotti, F.; Cerretani, L.; Gargouri, M.; Chiavaro, E.; Bendini, A. Evaluation of the Volatile Fraction of Commercial Virgin Olive Oils From Tunisia and Italy: Relation With Olfactory Attributes. J. Food Biochem. 2011, 35, 681–698. [Google Scholar] [CrossRef]
- Haddada, F.M.; Manai, H.; Daoud, D.; Fernandez, X.; Lizzani-Cuvelier, L.; Zarrouk, M. Profiles of Volatile Compounds From Some Monovarietal Tunisian Virgin Olive Oils. Comparison with French PDO. Food Chem. 2007, 103, 467–476. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Pérez, A.G.; Sanz, C. Cultivar Differences on Nonesterified Polyunsaturated Fatty Acid as a Limiting Factor for the Biogenesis of Virgin Olive Oil Aroma. J. Agric. Food Chem. 2007, 55, 7869–7873. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.F.; Resende, L.M.B.; de Oliveira da Silva, L.F.; Pozzobon Pedroso, M.; Pinheiro, A.C.M.; Nunes, C.A. Quality of Olive Oils from Southeastern Brazil. Bragantia 2019, 78, 479–489. [Google Scholar] [CrossRef]
- Angerosa, F.; Basti, C.; Vito, R. Virgin Olive Oil Volatile Compounds from Lipoxygenase Pathway and Characterization of Some Italian Cultivars. J. Agric. Food Chem. 1999, 47, 836–839. [Google Scholar] [CrossRef]
- Baccouri, O.; Bendini, A.; Cerretani, L.; Guerfel, M.; Baccouri, B.; Lercker, G.; Zarrouk, M.; Ben Miled, D.D. Comparative Study on Volatile Compounds from Tunisian and Sicilian Monovarietal Virgin Olive Oils. Food Chem. 2008, 111, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Cevik, S.; Ozkan, G.; Kiralan, M.; Bayrak, A. Effect of Harvest Time on Physicochemical Quality Parameters, Oxidation Stability, and Volatile Compounds of Extra Virgin Olive Oil. Acta Aliment. 2014, 43, 526–537. [Google Scholar] [CrossRef]
- Lukić, I.; Žanetić, M.; Jukić Špika, M.; Lukić, M.; Koprivnjak, O.; Brkić Bubola, K. Complex Interactive Effects of Ripening Degree, Malaxation Duration and Temperature on Oblica cv. Virgin Olive Oil Phenols, Volatiles and Sensory Quality. Food Chem. 2017, 232, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Škevin, D.; Belobrajić, I. Chemical and Sensorial Changes of Croatian Monovarietal Olive Oils During Ripening. Eur. J. Lipid Sci. Technol. 2012, 114, 1400–1408. [Google Scholar] [CrossRef]
- Hachicha Hbaieb, R.; Kotti, F.; Vichi, S.; Gargouri, M. Evolution of Endogenous Enzyme Activities and Virgin Olive Oil Characteristics During Chétoui and Chemlali Olive Ripening. Eur. J. Lipid Sci. Technol. 2017, 119, 1600150. [Google Scholar] [CrossRef]
- Salas, J. Simultaneous Determination of the Lipoxygenase and Hydroperoxide lyase Specificity in Olive Fruit Pulp. Grasas Aceites 2000, 51, 168–172. [Google Scholar] [CrossRef]
- Muzzalupo, I.; Macchione, B.; Bucci, C.; Stefanizzi, F.; Perri, E.; Chiappetta, A.; Tagarelli, A.; Sindona, G. LOX Gene Transcript Accumulation in Olive (Olea europaea L.) Fruits at Different Stages of Maturation: Relationship between Volatile Compounds, Environmental Factors, and Technological Treatments for Oil Extraction. Sci. World J. 2012, 2012, 532179. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of Cultivar and Ripening on Minor Components in Spanish Olive Fruits and Their Corresponding Virgin Olive Oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of Agroclimatic Parameters on Phenolic and Volatile Compounds of Chilean Virgin Olive Oils and Characterization Based on Geographical Origin, Cultivar and Ripening Stage. J. Sci. Food Agric. 2016, 96, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Calderón-Santiago, M.; Priego-Capote, F. Metabolic Patterns in the Lipoxygenase Pathway Associated to Fruitiness Attributes of Extra Virgin Olive Oil. J. Food Compos. Anal. 2022, 109, 104478. [Google Scholar] [CrossRef]
- Aparicio, R.; Morales, M.T. Characterization of Olive Ripeness by Green Aroma Compounds of Virgin Olive Oil. J. Agric. Food Chem. 1998, 46, 1116–1122. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical Strategies to Increase Nutritional and Sensory Quality of Virgin Olive Oil by Modulating the Endogenous Enzyme Activities. Compr. Rev. Food Sci. Food Saf. 2014, 13, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Runcio, A.; Sorgonà, L.; Mincione, A.; Santacaterina, S.; Poiana, M. Volatile Compounds of Virgin Olive Oil Obtained from Italian Cultivars Grown in Calabria. Food Chem. 2008, 106, 735–740. [Google Scholar] [CrossRef]
- Tena, N.; Lazzez, A.; Aparicio-Ruiz, R.; García-González, D.L. Volatile Compounds Characterizing Tunisian Chemlali and Chétoui Virgin Olive Oils. J. Agric. Food Chem. 2007, 55, 7852–7858. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.J. Characterization of Alcohol Acyltransferase from Olive Fruit. J. Agric. Food Chem. 2004, 52, 3155–3158. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council. Sensory Analysis of Olive Oil, Standard Sensory Analysis of Olive Oil; IOC/T.20/Doc. No 4/Rev.1; International Olive Council: Madrid, Spain, 2007. [Google Scholar]
- Soldo, B.; Šprung, M.; Mušac, G.; Pavela-Vrančić, M.; Ljubenkov, I. Evaluation of Olive Fruit Lipoxygenase Extraction Protocols on 9- and 13-Z,E-HPODE Formation. Molecules 2016, 21, 506. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. A Rapid and Sensitive Metod for the Quantitation of Microgram Quantities of Proteines of Porotein Utilising Principle of Rapid-dye Binging. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- European Union Commission. Characteristics of Olive Oil and Olive-Residue Oil and the Relevant Methods of Analysis. Regulation EEC/2568/91 and Later Modifications. Off. J. Eur. Community 1991, L24, 1–83. [Google Scholar]
- International Olive Council. Determination of Biophenols in Olive Oils by HPLC; IOC/T.20/Doc. No 29; International Olive Council: Madrid, Spain, 2009. [Google Scholar]
- Gutfinger, T. Polyphenols in Olive Oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
Harvest Time | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Ob-13 | 0.23 | 0.45 | 1.17 | 2.07 | 3.69 | 4.15 |
Ob-14 | 0.73 | 1.21 | 2.41 | 3.83 | 4.98 | - |
Ob-15 | 0.62 | 1.14 | 3.06 | 4.17 | 4.36 | - |
Le-13 | 0.53 | 0.91 | 1.91 | 2.99 | 3.71 | 4.05 |
Le-14 | 0.43 | 1.56 | 2.74 | 3.91 | 4.28 | - |
Le-15 | 0.68 | 1.97 | 2.11 | 4.49 | 5.17 | 5.88 |
La-13 | 0.70 | 1.18 | 1.80 | 2.21 | 2.53 | 3.23 |
La-14 | 0.90 | 1.37 | 2.37 | 2.79 | 3.32 | - |
La-15 | 0.79 | 1.19 | 2.45 | 3.11 | 3.50 | 3.64 |
Volatile Compounds (mg kg−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ob-13 | Ob-14 | Ob-15 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | |
HEX | 1.60 ± 0.09 bc | 1.53 ± 0.05 cd | 2.07 ± 0.18 b | 2.84 ± 0.15 a | 1.80 ± 0.14 bc | 1.03 ± 0.17 d | 2.10 ± 0.18 b | 2.99 ± 0.23 b | 4.49 ± 0.24 a | 1.00 ± 0.09 b | 1.12 ± 0.08 b | 1.68 ± 0.14 a | 1.09 ± 0.08 b | 0.43 ± 0.05 c |
1Hol | n.d. | 0.10 ± 0.00 c | 0.10 ± 0.00 c | 0.57 ± 0.01 b | 0.85 ± 0.06 b | 3.96 ± 0.18 a | 0.06 ± 0.00 c | 0.27 ± 0.01 b | 0.50 ± 0.04 a | 0.05 ± 0.01 d | 0.08 ± 0.01 d | 0.67 ± 0.02 c | 1.33 ± 0.04 b | 1.94 ± 0.16 a |
HAC | n.d. | n.d. | n.d. | n.d. | 0.30 ± 0.02 b | 0.69 ± 0.09 a | n.d. | n.d. | 0.05 ± 0.00 | 0.03 ± 0.00 d | n.d. | 0.13 ± 0.00 a | 0.10 ± 0.00 b | 0.05 ± 0.00 c |
LA C6 | 1.60 ± 0.09 d | 1.63 ± 0.05 d | 2.18 ± 0.17 cd | 3.41 ± 0.14 b | 2.95 ± 0.18 bc | 5.68 ± 0.43 a | 2.16. ± 0.18 c | 3.26 ± 0.22 b | 5.04 ± 0.24 a | 1.08 ± 0.08 b | 1.20 ± 0.09 b | 2.48 ± 0.15 a | 2.52 ± 0.12 a | 2.42 ± 0.21 a |
E2H | 14.06 ± 0.41 c | 14.49 ± 0.03 c | 23.45 ± 1.51 b | 32.61 ± 2.43 a | 23.51 ± 1.20 b | 2.49 ± 0.11 d | 24.19 ± 0.84 c | 31.38 ± 1.44 b | 40.72 ± 1.19 a | 6.39 ± 0.28 d | 9.99 ± 0.54 c | 27.88 ± 1.19 a | 13.01 ± 0.69 b | 8.69 ± 0.22 cd |
E2Hol | 0.27 ± 0.01 c | 0.45 ± 0.06 c | 0.29 ± 0.01 c | 0.30 ± 0.02 c | 3.86 ± 0.20 b | 5.67 ± 0.15 a | 0.04 ± 0.00 c | 0.81 ± 0.01 b | 1.16 ± 0.03 a | 0.46 ± 0.04 b | 0.89 ± 0.08 a | 0.70 ± 0.07 a | 0.19 ± 0.02 d | 0.31 ± 0.03 bc |
Z3Hol | 0.67 ± 0.02 e | 0.77 ± 0.07 e | 1.56 ± 0.07 d | 3.99 ± 0.16 b | 3.41 ± 0.25 c | 4.82 ± 0.12 a | 0.82 ± 0.01 c | 1.57 ± 0.02 b | 3.16 ± 0.13 a | 1.09 ± 0.08 d | 1.11 ± 0.06 d | 5.50 ± 0.42 b | 2.53 ± 0.14 c | 7.66 ± 0.38 a |
LnA C6 | 15.00 ± 0.44 d | 15.71 ± 0.10 d | 25.29 ± 1.42 c | 36.91 ± 1.73 a | 30.78 ± 1.21 b | 12.98 ± 0.38 d | 25.05 ± 0.35 c | 33.77 ± 1.44 b | 45.04 ± 1.09 a | 7.95 ± 0.40 d | 11.99 ± 0.68 c | 33.95 ± 1.54 a | 15.72 ± 1.09 b | 16.66 ± 0.18 b |
Pen | 0.15 ± 0.01 c | 0.13 ± 0.01 c | 0.17 ± 0.00 c | 0.21 ± 0.00 c | 0.97 ± 0.01 b | 2.71 ± 0.08 a | 0.47 ± 0.02 c | 0.70 ± 0.02 a | 0.58 ± 0.02 b | 0.64 ± 0.07 a | 0.25 ± 0.00 c | 0.28 ± 0.00 c | 0.32 ± 0.02 bc | 0.43 ± 0.01 b |
Pen3ol | 1.10 ± 0.06 a | 1.23 ± 0.03 a | 0.63 ± 0.02 b | 0.63 ± 0.02 b | 0.33 ± 0.03 c | 0.55 ± 0.03 b | 1.06 ± 0.08 a | 0.87 ± 0.01 a | 0.63 ± 0.03 b | 2.20 ± 0.06 a | 0.97 ± 0.07 b | 0.46 ± 0.01 c | 0.47 ± 0.02 c | 0.44 ± 0.02 c |
C5 | 1.25 ± 0.07 b | 1.36 ± 0.04 b | 0.79 ± 0.01 c | 0.84 ± 0.02 c | 1.30 ± 0.04 b | 3.26 ± 0.11 a | 1.53 ± 0.07 a | 1.56 ± 0.3 a | 1.20 ± 0.00 b | 2.84 ± 0.10 a | 1.22 ± 0.07 b | 0.74 ± 0.01 c | 0.79 ± 0.04 c | 0.87 ± 0.03 c |
TVC | 17.85 ± 0.60 d | 18.69 ± 0.19 d | 28.27 ± 1.61 c | 41.16 ± 2.17 a | 35.06 ± 1.39 b | 21.91 ± 0.93 d | 28.73 ± 0.71 c | 38.59 ± 1.63 b | 51.29 ± 0.85 a | 11.87 ± 0.30 c | 14.41 ± 0.84 c | 37.18 ± 1.69 a | 19.02 ± 1.00 b | 19.95 ± 0.42 b |
Volatile Compounds (mg kg−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Le-13 | Le-14 | Le-15 | |||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | |
HEX | 1.16 ± 0.09 bc | 1.39 ± 0.07 ab | 1.43 ± 0.13 ab | 1.65 ± 0.11 a | 1.29 ± 0.11 abc | 0.89 ± 0.10 c | 1.78 ± 0.17 a | 3.63 ± 0.31 a | 3.05 ± 0.25 a | 0.90 ± 0.04 a | 0.80 ± 0.08 a | 0.58 ± 0.04 b | 0.37 ± 0.02 c | 0.18 ± 0.01 d | 0.09 ± 0.01 d |
1Hol | 0.02 ± 0.00 d | 0.49 ± 0.03 b | 0.25 ± 0.02 cd | 0.26 ± 0.01 bc | 0.35 ± 0.02 bc | 1.08± 0.14 a | 0.03 ± 0.00 b | 0.09 ± 0.00 a | 0.08 ± 0.01 a | 0.15 ± 0.02 c | 0.12 ± 0.01 c | 0.26 ± 0.02 b | 0.45 ± 0.02 a | 0.21 ± 0.00 b | 0.46 ± 0.01 a |
HAC | n.d. | n.d. | 0.19 ± 0.01 c | 0.59 ± 0.02 a | 0.51 ± 0.02 b | 0.07 ± 0.00 d | 0.05 ± 0.00 b | n.d. | 0.60 ± 0.01 a | 0.28 ± 0.03 e | 0.59 ± 0.03 de | 1.79 ± 0.08 c | 0.80 ± 0.02 d | 3.94 ± 0.22 a | 3.37 ± 0.15 b |
LA C6 | 1.17 ± 0.09 c | 1.88 ± 0.04 b | 1.87 ± 0.13 b | 2.50 ± 0.11 a | 2.15 ± 0.08 ab | 2.04 ± 0.24 ab | 1.85 ± 0.17 b | 3.72 ± 0.31 a | 3.72 ± 0.24 a | 1.33 ± 0.01 c | 1.51 ± 0.12 c | 2.63 ± 0.12 b | 1.62 ± 0.07 c | 4.33 ± 0.21 a | 3.92 ± 0.17 a |
E2H | 19.16 ± 1.08 c | 22.96 ± 1.38 c | 23.64 ± 1.01 bc | 33.84 ± 1.69 a | 29.91 ± 2.74 ab | 11.87 ± 1.14 d | 30.20 ± 1.09 b | 47.29 ± 2.06 a | 43.58 ± 1.71 a | 26.28 ± 1.35 b | 28.97 ± 2.15 ab | 34.23 ± 1.78 a | 25.16 ± 1.37 b | 25.98 ± 1.60 b | 25.50 ± 1.17 b |
E2Hol | 0.29 ± 0.01 d | 1.70 ± 0.11 bc | 0.65 ± 0.03 d | 1.26 ± 0.07 c | 1.90 ± 0.14 b | 4.41 ± 0.27 a | 0.17 ± 0.02 b | 0.36 ± 0.01 a | 0.27 ± 0.04 ab | 1.33 ± 0.11 a | 0.77 ± 0.02 bc | 0.80 ± 0.08 bc | 0.61 ± 0.07 cd | 0.43 ± 0.02 d | 0.98 ± 0.02 b |
Z3Hol | 0.47 ± 0.07 c | 3.26 ± 0.19 a | 1.61 ± 0.09 b | 1.65 ± 0.08 b | 1.94 ± 0.16 b | 0.80 ± 0.04 c | 0.41 ± 0.10 b | 0.96 ± 0.06 a | 0.83 ± 0.05 a | 2.50 ± 0.18 ab | 1.10 ± 0.12 d | 1.66 ± 0.03 c | 2.06 ± 0.13 bc | 0.85 ± 0.06 d | 2.54 ± 0.06 a |
LnA C6 | 19.92 ± 1.03 be | 27.92 ± 1.08 bc | 25.90 ± 1.13 cd | 36.75 ± 1.68 a | 33.75 ± 3.04 ab | 17.07± 1.45 e | 30.78 ± 1.12 b | 48.61 ± 2.01 a | 44.68 ± 1.73 a | 30.10 ± 0.23 b | 30.84 ± 2.19 ab | 36.69 ± 1.89 a | 27.83 ± 1.43 b | 27.26 ± 1.56 b | 29.02 ± 0.26 b |
Pen | 0.15 ± 0.01 d | 0.87 ± 0.04 a | 0.17 ± 0.01 d | 0.22 ± 0.02 d | 0.38 ± 0.03 c | 0.64 ± 0.03 b | 0.23 ± 0.03 a | 0.20 ± 0.01 ab | 0.14 ± 0.01 b | 0.39 ± 0.02 a | 0.16 ± 0.00 cd | 0.23 ± 0.00 b | 0.15 ± 0.01 cd | 0.12 ± 0.01 d | 0.17 ± 0.01 c |
Pen3ol | 1.13 ± 0.04 a | 1.14 ± 0.03 a | 0.55 ± 0.02 c | 0.72 ± 0.04 b | 0.32 ± 0.02 d | 0.30 ± 0.02 d | 1.20 ± 0.07 a | 0.70 ± 0.05 b | 0.66 ± 0.02 b | 1.69 ± 0.15 a | 0.76 ± 0.05 b | 0.68 ± 0.01 bc | 0.46 ± 0.01 cd | 0.34 ± 0.01 d | 0.27 ± 0.00 d |
C5 | 1.28 ± 0.05 b | 2.01 ± 0.07 a | 0.72 ± 0.02 d | 0.93 ± 0.00 c | 0.70 ± 0.01 d | 0.94 ± 0.05 c | 1.43 ± 0.09 a | 0.91 ± 0.06 b | 0.80 ± 0.04 b | 2.07 ± 0.17 a | 0.92 ± 0.05 b | 0.91 ± 0.01 b | 0.60 ± 0.02 c | 0.46 ± 0.02 c | 0.44 ± 0.01 c |
TVC | 22.38 ± 1.17 de | 31.81 ± 1.11 bc | 28.49 ± 1.28 cd | 40.17 ± 1.57 a | 36.60 ± 3.10 ab | 20.05 ± 1.74 e | 34.06 ± 0.95 b | 53.25 ± 2.32 a | 49.20 ± 1.93 a | 33.51 ± 1.53 b | 33.26 ± 2.16 b | 40.23 ± 1.86 a | 30.08 ± 1.49 b | 32.04 ± 1.75 b | 33.38 ± 0.42 b |
Volatile Compounds (mg kg−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La-13 | La-14 | La-15 | |||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | |
HEX | 0.81 ± 0.04 cd | 1.09 ± 0.06 bc | 1.17 ± 0.07 b | 1.59 ± 0.12 a | 1.26 ± 0.09 b | 0.66 ± 0.04 d | 1.21 ± 0.08 b | 1.87 ± 0.10 a | 2.02 ± 0.13 a | 0.39 ± 0.02 d | 0.46 ± 0.02 cd | 0.48 ± 0.03 c | 0.58 ± 0.03 b | 0.74 ± 0.03 a | 0.44 ± 0.02 cd |
1Hol | 0.04 ± 0.00 c | 0.03 ± 0.00 c | 0.04 ± 0.00 c | 0.14 ± 0.01 c | 5.94 ± 0.29 a | 0.80 ± 0.04 b | 0.02 ± 0.00 a | 0.04 ± 0.01 b | 0.11 ± 0.00 a | 0.07 ± 0.01 b | 0.06 ± 0.01 b | 0.07 ± 0.00 b | 0.09 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.00 b |
HAC | n.d. | n.d. | n.d. | n.d. | 0.03 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 b | 0.03 ± 0.00 b | 0.08 ± 0.00 a | 0.19 ± 0.01 b | 0.17 ± 0.01 bc | 0.16 ± 0.00 bc | 0.14 ± 0.01 c | 0.26 ± 0.01 a | 0.14 ± 0.01 c |
LA C6 | 0.85 ± 0.03 d | 1.12 ± 0.06 cd | 1.21 ± 0.08 cd | 1.73 ± 0.12 b | 7.23 ± 0.20 a | 1.49 ± 0.00 bc | 1.26 ± 0.11 b | 1.95 ± 0.10 a | 2.21 ± 0.13 a | 0.65 ± 0.03 c | 0.68 ± 0.00 c | 0.71 ± 0.02 c | 0.81 ± 0.01 b | 1.07 ± 0.04 a | 0.66 ± 0.03 c |
E2H | 5.81 ± 0.28 d | 13.21 ± 0.72 bc | 16.21 ± 0.55 b | 27.48 ± 1.25 a | 13.17 ± 0.88 bc | 10.59 ± 1.07 c | 14.95 ± 1.35 b | 21.81 ± 0.90 a | 21.12 ± 0.71 a | 6.31 ± 0.07 d | 12.19 ± 0.97 c | 13.82 ± 0.54 c | 13.65 ± 0.92 c | 21.37 ± 1.14 b | 31.93 ± 1.33 a |
E2Hol | 0.24 ± 0.01 b | 0.36 ± 0.01 b | 0.37 ± 0.02 b | 0.58 ± 0.06 b | 3.98 ± 0.16 a | 4.02 ± 0.30 a | 0.09 ± 0.01 b | 0.08 ± 0.00 b | 0.95 ± 0.03 a | 0.32 ± 0.01 d | 0.43 ± 0.02 c | 0.50 ± 0.03 bc | 0.60 ± 0.02 a | 0.54 ± 0.03 ab | 0.46 ± 0.01 bc |
Z3Hol | 0.48 ± 0.03 bc | 0.32 ± 0.01 d | 0.34 ± 0.02 d | 0.40 ± 0.03 cd | 0.83 ± 0.07 a | 0.60 ± 0.02 b | 0.25 ± 0.00 a | 0.18 ± 0.01 b | 0.24 ± 0.02 a | 0.97 ± 0.03 a | 0.78 ± 0.03 b | 0.87 ± 0.02 ab | 0.86 ± 0.07 ab | 0.63 ± 0.04 c | 0.34 ± 0.03 d |
LnA C6 | 6.53 ± 0.32 d | 13.90 ± 0.72 c | 16.91 ± 0.52 bc | 28.46 ± 1.35 a | 17.98 ± 1.11 b | 15.20 ± 1.38 bc | 15.29 ± 1.36 b | 22.07 ± 0.91 a | 22.31 ± 0.76 a | 7.60 ± 0.09 d | 13,39 ± 0.96 c | 15.19 ± 0.58 c | 15.11 ± 0.97 c | 22.54 ± 1.15 b | 32.73 ± 1.34 a |
Pen | 0.25 ± 0.01 bc | 0.18 ± 0.01 c | 0.13 ± 0.01 c | 0.09 ± 0.01 | 3.16 ± 0.16 a | 0.52 ± 0.04 b | 0.48 ± 0.03 b | 0.58 ± 0.01 a | 0.65 ± 0.02 a | 0.63 ± 0.03 a | 0.49 ± 0.02 b | 0.21 ± 0.02 c | 0.19 ± 0.02 cd | 0.12 ± 0.01 de | 0.10 ± 0.01 e |
Pen3ol | 0.86 ± 0.04 a | 0.82 ± 0.03 a | 0.76 ± 0.04 ab | 0.67 ± 0.02 b | 0.35 ± 0.04 c | 0.26 ± 0.01 c | 1.14 ± 0.11 | 0.94 ± 0.03 | 0.94 ± 0.08 | 1.03 ± 0.07 a | 0.98 ± 0.05 a | 0.96 ± 0.07 a | 0.99 ± 0.03 a | 0.93 ± 0.02 a | 0.57 ± 0.02 b |
C5 | 1.11 ± 0.03 b | 1.00 ± 0.04 bc | 0.89 ± 0.03 bc | 0.75 ± 0.03 c | 3.51 ± 0.20 a | 0.78 ± 0.05 bc | 1.62 ± 0.14 | 1.52 ± 0.04 | 1.59 ± 0.06 | 1.66 ± 0.04 a | 1.47 ± 0.07 a | 1.16 ± 0.08 b | 1.18 ± 0.05 b | 1.05 ± 0.01 b | 0.67 ± 0.01 c |
TVC | 8.50 ± 0.37 c | 16.01 ± 0.83 b | 19.01 ± 0.47 b | 30.94 ± 1.44 a | 28.72 ± 1.10 a | 17.47 ± 1.42 b | 18.16 ± 1.42 b | 25.54 ± 0.97 a | 26.11 ± 0.69 a | 9.91 ± 0.02 d | 15.55 ± 0.89 c | 17.06 ± 0.68 c | 17.10 ± 1.01 c | 24.66 ± 1.18 b | 34.06 ± 1.37 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldo, B.; Jukić Špika, M.; Pasković, I.; Vuko, E.; Polić Pasković, M.; Ljubenkov, I. The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars. Molecules 2024, 29, 1696. https://doi.org/10.3390/molecules29081696
Soldo B, Jukić Špika M, Pasković I, Vuko E, Polić Pasković M, Ljubenkov I. The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars. Molecules. 2024; 29(8):1696. https://doi.org/10.3390/molecules29081696
Chicago/Turabian StyleSoldo, Barbara, Maja Jukić Špika, Igor Pasković, Elma Vuko, Marija Polić Pasković, and Ivica Ljubenkov. 2024. "The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars" Molecules 29, no. 8: 1696. https://doi.org/10.3390/molecules29081696
APA StyleSoldo, B., Jukić Špika, M., Pasković, I., Vuko, E., Polić Pasković, M., & Ljubenkov, I. (2024). The Composition of Volatiles and the Role of Non-Traditional LOX on Target Metabolites in Virgin Olive Oil from Autochthonous Dalmatian Cultivars. Molecules, 29(8), 1696. https://doi.org/10.3390/molecules29081696