Perennial Baki™ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study I
2.1.1. Elemental Analysis
2.1.2. Folate
2.1.3. Canavanine
2.2. Study II
2.2.1. Macronutrients
2.2.2. Mycotoxins
2.2.3. Microorganisms
2.2.4. Pesticides
3. Materials and Methods
3.1. Seed Production
3.2. Sample Preparation for Chemical Analyses
3.3. Chemical Analyses
3.4. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crews, T.E.; Carton, W.; Olsson, L. Is the Future of Agriculture Perennial? Imperatives and Opportunities to Reinvent Agriculture by Shifting from Annual Monocultures to Perennial Polycultures. Glob. Sustain. 2018, 1, e11. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate Change Has Likely Already Affected Global Food Production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Cox, T.S.; Bender, M.; Picone, C.; Van Tassel, D.L.; Holland, J.B.; Brummer, E.C.; Zoeller, B.E.; Paterson, A.H.; Jackson, W. Breeding Perennial Grain Crops. Crit. Rev. Plant Sci. 2002, 21, 59–91. [Google Scholar] [CrossRef]
- Cox, T.S.; Glover, J.D.; Van Tassel, D.L.; Cox, C.M.; DeHaan, L.R. Prospects for Developing Perennial Grain Crops. BioScience 2006, 56, 649–659. [Google Scholar] [CrossRef]
- Jackson, W. Natural Systems Agriculture: A Truly Radical Alternative. Agric. Ecosyst. Environ. 2002, 88, 111–117. [Google Scholar] [CrossRef]
- Van Tassel, D.L.; DeHaan, L.R.; Cox, T.S. Missing Domesticated Plant Forms: Can Artificial Selection Fill the Gap? Evol. Appl. 2010, 3, 434–452. [Google Scholar] [CrossRef]
- Chapman, E.A.; Thomsen, H.C.; Tulloch, S.; Correia, P.M.P.; Luo, G.; Najafi, J.; DeHaan, L.R.; Crews, T.E.; Olsson, L.; Lundquist, P.-O.; et al. Perennials as Future Grain Crops: Opportunities and Challenges. Front. Plant Sci. 2022, 13, 898769. [Google Scholar] [CrossRef]
- Culman, S.W.; Snapp, S.S.; Ollenburger, M.; Basso, B.; DeHaan, L.R. Soil and Water Quality Rapidly Responds to the Perennial Grain Kernza Wheatgrass. Agron. J. 2013, 105, 735–744. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased Food and Ecosystem Security via Perennial Grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.H.; Mulla, D.J.; Sheaffer, C.C.; Wyse, D.L. Reduced Nitrate Leaching in a Perennial Grain Crop Compared to Maize in the Upper Midwest, USA. Agric. Ecosyst. Environ. 2019, 272, 63–73. [Google Scholar] [CrossRef]
- Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, D.T.-I. Annual vs. Perennial Grain Production. Agric. Ecosyst. Environ. 2012, 161, 1–9. [Google Scholar] [CrossRef]
- Bajgain, P.; Crain, J.L.; Cattani, D.J.; Larson, S.R.; Altendorf, K.R.; Anderson, J.A.; Crews, T.E.; Hu, Y.; Poland, J.A.; Turner, M.K.; et al. Breeding Intermediate Wheatgrass for Grain Production. In Plant Breeding Reviews; Goldman, I., Ed.; Wiley: Hoboken, NJ, USA, 2022; pp. 119–217. ISBN 978-1-119-87412-6. [Google Scholar]
- DeHaan, L.R.; Anderson, J.A.; Bajgain, P.; Basche, A.; Cattani, D.J.; Crain, J.; Crews, T.E.; David, C.; Duchene, O.; Gutknecht, J.; et al. Discussion: Prioritize Perennial Grain Development for Sustainable Food Production and Environmental Benefits. Sci. Total Environ. 2023, 895, 164975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, G.; Zhang, Y.; Lv, X.; Wan, K.; Liang, J.; Feng, Y.; Dao, J.; Wu, S.; Zhang, L.; et al. Sustained Productivity and Agronomic Potential of Perennial Rice. Nat. Sustain. 2023, 6, 28–38. [Google Scholar] [CrossRef]
- DeHaan, L.; Larson, S.; López-Marqués, R.L.; Wenkel, S.; Gao, C.; Palmgren, M. Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. Trends Plant Sci. 2020, 25, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Schlautman, B.; Barriball, S.; Ciotir, C.; Herron, S.; Miller, A.J. Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection. Sustainability 2018, 10, 730. [Google Scholar] [CrossRef]
- Sakhraoui, A.; Ltaeif, H.B.; Sakhraoui, A.; Rouz, S.; Castillo, J.M. Potential Use of Wild Onobrychis Species for Climate Change Mitigation and Adaptation. Crop Sci. 2023, 63, 3153–3174. [Google Scholar] [CrossRef]
- Bhattarai, S.; Coulman, B.; Biligetu, B. Sainfoin (Onobrychis viciifolia Scop.): Renewed Interest as a Forage Legume for Western Canada. Can. J. Plant Sci. 2016, 96, 748–756. [Google Scholar] [CrossRef]
- Carbonero, C.; Mueller-Harvey, I.; Brown, T.; Smith, L. Sainfoin (Onobrychis viciifolia): A Beneficial Forage Legume. Plant Genet. Plant Genet. Resour. 2011, 9, 70–85. [Google Scholar] [CrossRef]
- Kells, A. Sainfoin: An Alternative Forage Crop for Bees. Bee World 2001, 82, 192–194. [Google Scholar] [CrossRef]
- Poudel, H.P.; Bhattarai, S.; Singer, S.D.; Biligetu, B.; Acharya, S. An Insight into Sainfoin (Onobrychis viciifolia Scop.) Breeding: Challenges and Achievements. Agron. J. 2023, 115, 2843–2858. [Google Scholar] [CrossRef]
- Craine, E.B.; Şakiroğlu, M.; Peters, T.E.; Barriball, S.; Schlautman, B. Nutritional Quality of Onobrychis viciifolia (Scop.) Seeds: A Potentially Novel Perennial Pulse Crop for Human Use. Legume Sci. 2023, 5, e189. [Google Scholar] [CrossRef]
- Craine, E.B.; Barriball, S.; Sakiroglu, M.; Peters, T.E.; Schlautman, B. Amino Acid and Fatty Acid Profiles of Perennial Baki TM Bean. Front. Nutr. 2023, 10, 1292628. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, S.J. What Is a “Heavy Metal”? J. Chem. Educ. 1997, 74, 1374. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M. Biological Effects of Heavy Metals: An Overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Edirisinghe, E.M.R.K.B.; Jinadasa, B.K.K.K. Arsenic and Cadmium Concentrations in Legumes and Cereals Grown in the North Central Province, Sri Lanka and Assessment of Their Health Risk. Int. J. Food Contam. 2019, 6, 3. [Google Scholar] [CrossRef]
- Diyabalanage, S.; Navarathna, T.; Abeysundara, H.T.K.; Rajapakse, S.; Chandrajith, R. Trace Elements in Native and Improved Paddy Rice from Different Climatic Regions of Sri Lanka: Implications for Public Health. SpringerPlus 2016, 5, 1864. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO Evaluation of Certain Food Additives and Contaminants: Ninety-First Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://www.who.int/publications-detail-redirect/9789240054585 (accessed on 6 December 2023).
- Cattani, I.; Romani, M.; Boccelli, R. Effect of Cultivation Practices on Cadmium Concentration in Rice Grain. Agron. Sustain. Dev. 2008, 28, 265–271. [Google Scholar] [CrossRef]
- Zou, M.; Zhou, S.; Zhou, Y.; Jia, Z.; Guo, T.; Wang, J. Cadmium Pollution of Soil-Rice Ecosystems in Rice Cultivation Dominated Regions in China: A Review. Environ. Pollut. 2021, 280, 116965. [Google Scholar] [CrossRef]
- Pearson, A.J.; Ashmore, E. Risk Assessment of Antimony, Barium, Beryllium, Boron, Bromine, Lithium, Nickel, Strontium, Thallium and Uranium Concentrations in the New Zealand Diet. Food Addit. Contam. Part A 2020, 37, 451–464. [Google Scholar] [CrossRef]
- González-Weller, D.; Rubio, C.; Gutiérrez, Á.J.; González, G.L.; Mesa, J.M.C.; Gironés, C.R.; Ojeda, A.B.; Hardisson, A. Dietary Intake of Barium, Bismuth, Chromium, Lithium, and Strontium in a Spanish Population (Canary Islands, Spain). Food Chem. Toxicol. 2013, 62, 856–868. [Google Scholar] [CrossRef]
- Ray, H.; Bett, K.; Tar’an, B.; Vandenberg, A.; Thavarajah, D.; Warkentin, T. Mineral Micronutrient Content of Cultivars of Field Pea, Chickpea, Common Bean, and Lentil Grown in Saskatchewan, Canada. Crop Sci. 2014, 54, 1698–1708. [Google Scholar] [CrossRef]
- Kumar, S.B.; Arnipalli, S.R.; Mehta, P.; Carrau, S.; Ziouzenkova, O. Iron Deficiency Anemia: Efficacy and Limitations of Nutritional and Comprehensive Mitigation Strategies. Nutrients 2022, 14, 2976. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Reeves, P.; Jones, S. Relationship between Yield and Mineral Nutrient Concentration in Historical and Modern Spring Wheat Cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Wagner, C. Symposium on the Subcellular Compartmentation of Folate Metabolism. J. Nutr. 1996, 126, 1228S–1234S. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration Food Standards: Amendment of Standards of Identity for Enriched Grain Products to Require Addition of Folic Acid. Fed. Regist. 1996, 61, 8781–8797.
- Institute of Medicine (U.S.) (Ed.) Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998; ISBN 978-0-309-06411-8. [Google Scholar]
- Ahrens, K.; Yazdy, M.M.; Mitchell, A.A.; Werler, M.M. Folic Acid Intake and Spina Bifida in the Era of Dietary Folic Acid Fortification. Epidemiology 2011, 22, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.B.; Ashokkumar, K.; Diapari, M.; Ambrose, S.J.; Zhang, H.; Tar’an, B.; Bett, K.E.; Vandenberg, A.; Warkentin, T.D.; Purves, R.W. Genetic Diversity of Folate Profiles in Seeds of Common Bean, Lentil, Chickpea and Pea. J. Food Compos. Anal. 2015, 42, 134–140. [Google Scholar] [CrossRef]
- Staszek, P.; Weston, L.A.; Ciacka, K.; Krasuska, U.; Gniazdowska, A. L-Canavanine: How Does a Simple Non-Protein Amino Acid Inhibit Cellular Function in a Diverse Living System? Phytochem. Rev. 2017, 16, 1269–1282. [Google Scholar] [CrossRef]
- Akaogi, J.; Barker, T.; Kuroda, Y.; Nacionales, D.C.; Yamasaki, Y.; Stevens, B.R.; Reeves, W.H.; Satoh, M. Role of Non-Protein Amino Acid L-Canavanine in Autoimmunity. Autoimmun. Rev. 2006, 5, 429–435. [Google Scholar] [CrossRef]
- Krakauer, J.; Long, Y.; Kolbert, A.; Thanedar, S.; Southard, J. Presence of L-Canavanine in Hedysarum Alpinum Seeds and Its Potential Role in the Death of Chris McCandless. Wilderness Environ. Med. 2015, 26, 36–42. [Google Scholar] [CrossRef]
- Wink, M. Evolution of Secondary Metabolites from an Ecological and Molecular Phylogenetic Perspective. Phytochemistry 2003, 64, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, G.A. L-Canavanine: A Higher Plant Insecticidal Allelochemical. Amino Acids 2001, 21, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Malinow, M.R.; Bardana, E.J.; Pirofsky, B.; Craig, S.; McLaughlin, P. Systemic Lupus Erythematosus-like Syndrome in Monkeys Fed Alfalfa Sprouts: Role of a Nonprotein Amino Acid. Science 1982, 216, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Ohta, A.; Shimizu, M.; Terauchi, R.; Kazempour-Osaloo, S. The Complete Chloroplast Genome of Onobrychis gaubae (Fabaceae-Papilionoideae): Comparative Analysis with Related IR-Lacking Clade Species. BMC Plant Biol. 2022, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, G.A.; Nkomo, P. The Natural Abundance of L-Canavanine, An Active Anticancer Agent, in Alfalfa, Medicago sativa (L.). Pharm. Biol. 2000, 38, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Baldinger, L.; Hagmüller, W.; Minihuber, U.; Matzner, M.; Zollitsch, W. Sainfoin Seeds in Organic Diets for Weaned Piglets—Utilizing the Protein-Rich Grains of a Long-Known Forage Legume. Renew. Agric. Food Syst. 2016, 31, 12–21. [Google Scholar] [CrossRef]
- Ditterline, R.L. Yield and Yield Components of Sainfoin (Onobrychis viciaefolia Scop.) Seed and an Evaluation of Its Use as a Protein Supplement. 1973. Available online: https://scholarworks.montana.edu/xmlui/handle/1/4295 (accessed on 17 August 2022).
- Kling, M.; Wöhlbier, W. Handelsfuttermittel; Verlag Eugen Ulmer: Stuttgart, Germany, 1977. [Google Scholar]
- Tarasenko, N.; Butina, E.; Gerasimenko, E. Peculiarities of Chemical Composition of Sainfoin Seeds Powder. Orient. J. Chem. 2015, 31, 1673–1682. [Google Scholar] [CrossRef]
- Woodman, H.E.; Evans, R.E. The Chemical Composition and Nutritive Value of Ryegrass-Seed Meal, Clover-Seed Meal, Lucerne-Seed Meal and Sainfoin-Seed Meal. J. Agric. Sci. 1947, 37, 311–315. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Shinha, K.K.; Bhatnagar, D. Mycotoxins in Agriculture and Food Safety; CRC Press: Boca Raton, FL, USA, 1998; ISBN 978-1-4822-7004-4. [Google Scholar]
- FDA Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds (accessed on 7 December 2023).
- FDA Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products Used for Animal Feed. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human (accessed on 7 December 2023).
- United States Department of Agriculture. Commercial Item Description, Beans, Precooked, Dehydrated. Available online: https://www.ams.usda.gov/sites/default/files/media/CID%20Beans,%20Precooked,%20Dehydrated.pdf (accessed on 17 August 2022).
- Eslick, R.F.; Carleton, A.E.; Hartman, G.P. Registration of Eski Sainfoin1 (Reg. No. 7). Crop Sci. 1967, 7, 402–403. [Google Scholar] [CrossRef]
- Gray, F.A.; Shigaki, T.; Koch, D.W.; Delaney, R.D.; Hruby, F.; Gray, A.M.; Majerus, M.E.; Cash, D.; Ditterline, R.L.; Wichman, D.M. Registration of ‘Shoshone’ Sainfoin. Crop Sci. 2006, 46, 988. [Google Scholar] [CrossRef]
- Acharya, S.N. AAC Mountainview Sainfoin (Onobrychis viciifoila Subsp. Viciifolia). Can. J. Plant Sci. 2015, 95, 603–607. [Google Scholar] [CrossRef]
- Melton, B. Registration of Renumex Sainfoin (Reg. No. 18). Crop Sci. 1978, 18, 693. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 11th ed.; AACCI: St. Paul, MN, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 22nd ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Bacteriological Analytical Manual, 8th ed.; Revision A; Food and Drug Administration: Silver Spring, MD, USA, 1998; Chapter 18.
- United States Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science. Screening for Pesticides by LC/MS/MS and GC/MS/MS; United States Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science: Washington, DC, USA, 2022. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing; Scientific Research: Vienna, Austria, 2022.
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation; R Package Version 1.1.3 2022. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 4 April 2024).
- CXS 193-1995; FAO and WHO. Codex Alimentarius. Codex General Standard for Contaminants and Toxins in Food and Feed. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; World Health Organization (WHO): Geneva, Switzerland, 2019.
Analyte | LOD | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Arsenic (ppm) | 0.10 | <0.10 | NA | <0.10 | <0.10 |
Barium (ppm) | 0.50 | 3.49 | 3.44 | 1.13 | 9.6 |
Beryllium (ppm) | 0.050 | <0.050 | 0 | <0.050 | <0.050 |
Cadmium (ppm) | 0.020 | 0.07 | 0.05 | 0.03 | 0.15 |
Chromium (ppm) | 1.00 | <1.00 | NA | <1.00 | <1.00 |
Lead (ppm) | 0.10 | <0.10 | NA | <0.10 | <0.10 |
Mercury (ppm) | 0.010 | <0.010 | NA | <0.010 | <0.010 |
Nickel (ppm) | 1.00 | 3.79 | 2.87 | 1.49 | 8.71 |
Selenium (ppm) | 0.50 | 0.07 | 0.21 | 0 | 0.64 |
Silver (ppm) | 0.50 | <0.50 | NA | <0.50 | <0.50 |
Folate (DFE) (µg) | 44 | 10,038.75 | 5175.86 | 2059.72 | 14,634.96 |
Analyte | Statistic | Alfalfa | Control | Positive Control | Baki™ Bean |
---|---|---|---|---|---|
n | 1 | 1 | 1 | 15 | |
Canavanine (g 100 g−1) | Mean | 0.8 | <0.01 | 1.42 | <0.01 |
Standard Deviation | NA | NA | NA | NA |
Parameter | Units | LOD | n | Mean | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|---|---|
Ash | % | 0.020 | 3 | 3.42 | 3.29 | 3.58 | 0.10 |
Carbohydrates | % | NA | 6 | 48.44 | 45.91 | 55.69 | 3.65 |
Fat | % | 0.10 | 6 | 5.15 | 3.54 | 8.36 | 1.70 |
Moisture | % | 0.20 | 6 | 7.52 | 7.10 | 7.85 | 0.31 |
Protein | % | 0.20 | 6 | 35.47 | 29.61 | 39.55 | 3.49 |
Parameter | Units | LOD | n | Mean | Min | Max | Standard Deviation |
---|---|---|---|---|---|---|---|
Aflatoxin | ppb | 5.00 | 6 | <5.00 | <5.00 | <5.00 | NA |
Fumonisin | ppm | 0.50 | 3 | <0.50 | <0.50 | 0.5 | NA |
Ochratoxin A | ppb | 2.00 | 6 | <2.00 | <2.00 | 2.9 | NA |
T2 Toxin | ppb | 50.00 | 3 | <50.00 | <50.00 | <50.00 | NA |
Vomitoxin | ppm | 0.025 | 3 | 0.210 | 0.162 | 0.298 | 0.076 |
Zearalenone | ppb | 50.00 | 3 | <50.00 | <50.00 | <50.00 | NA |
Parameter | Units | LOD | n | Mean | Min | Max | Standard Deviation |
---|---|---|---|---|---|---|---|
Coliforms | cfu/g | 10 | 3 | <10 | <10 | <10 | NA |
Escherichia coli | cfu/g | 10 | 3 | <10 | <10 | <10 | NA |
Mold | cfu/g | 10 | 3 | <10 | <10 | 30 | NA |
Salmonella | cfu/25 g | NA | 3 | Negative | Negative | Negative | NA |
Standard Plate Count | cfu/g | 10 | 3 | 1370 | 180 | 3300 | 1687 |
Yeast | cfu/g | 10 | 3 | 25 | 20 | 30 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craine, E.B.; Şakiroğlu, M.; Barriball, S.; Peters, T.E.; Schlautman, B. Perennial Baki™ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides. Molecules 2024, 29, 1777. https://doi.org/10.3390/molecules29081777
Craine EB, Şakiroğlu M, Barriball S, Peters TE, Schlautman B. Perennial Baki™ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides. Molecules. 2024; 29(8):1777. https://doi.org/10.3390/molecules29081777
Chicago/Turabian StyleCraine, Evan B., Muhammet Şakiroğlu, Spencer Barriball, Tessa E. Peters, and Brandon Schlautman. 2024. "Perennial Baki™ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides" Molecules 29, no. 8: 1777. https://doi.org/10.3390/molecules29081777
APA StyleCraine, E. B., Şakiroğlu, M., Barriball, S., Peters, T. E., & Schlautman, B. (2024). Perennial Baki™ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides. Molecules, 29(8), 1777. https://doi.org/10.3390/molecules29081777