Gas Chromatography–Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gas Chromatography–Mass Spectroscopy “GC–MS”
2.2. Biological Characteristics of the Plant Extracts
2.2.1. Effect of the Plant-Resin Extracts on Larvae
2.2.2. Antioxidant Activity—DPPH Assay
2.2.3. Cytotoxic Activity
3. Materials and Methods
3.1. Plants Materials
3.2. Preparation of Crude Extracts
3.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.4. Mosquitocidal Assay
3.4.1. Aedes aegypti Colony
3.4.2. Larvicidal Bioassay
3.5. Antioxidant DPPH Assay
3.6. Cytotoxic Activity Procedure
3.7. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojewumi, M.; Banjo, M.; Oresegun, M.; Ogunbiyi, T.; Ayoola, A.; Awolu, O.; Ojewumi, E. Analytical investigation of the extract of lemon grass leaves in repelling mosquito. Int. J. Pharm. Sci. Res. 2017, 8, 2048–2055. [Google Scholar]
- Groucutt, H.S.; Petraglia, M.D. The prehistory of the Arabian peninsula: Deserts, dispersals, and demography. Evol. Anthropol. Issues News Rev. 2012, 21, 113–125. [Google Scholar] [CrossRef]
- Ghazanfar, S.A.; Böer, B.; Khulaidi, A.W.A.; El-Keblawy, A.; Alateeqi, S. Plants of Sabkha ecosystems of the Arabian Peninsula. In Sabkha Ecosystems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 55–80. [Google Scholar]
- Das, K.; Tiwari, R.; Shrivastava, D. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res. 2010, 4, 104–111. [Google Scholar]
- Salama, S.A.; Al-Faifi, Z.E.; El-Amier, Y.A. Chemical composition of Reichardia tingitana methanolic extract and its potential antioxidant, antimicrobial, cytotoxic and larvicidal activity. Plants 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Iyiola, A.O.; Babafemi, O.P.; Ogundahunsi, O.E.; Ojeleye, A.E. Food Security: A Pathway Towards Improved Nutrition and Biodiversity Conservation. In Biodiversity in Africa: Potentials, Threats and Conservation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 79–107. [Google Scholar]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2014, 768, 69–73. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; Elgorban, A.M.; Hassan, E.M.; Zaghloul, N.S.; Alamery, S.F.; El Gendy, A.E.-N.G.; Elhindi, K.M.; EI-Amier, Y.A. Essential oil of Ipomoea carnea: Chemical profile, chemometric analysis, free radical scavenging, and antibacterial activities. Sustainability 2022, 14, 9504. [Google Scholar] [CrossRef]
- Tandina, F.; Doumbo, O.; Traoré, S.F.; Parola, P.; Robert, V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasites Vectors 2018, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef]
- WHO. Global Strategy for Dengue Prevention and Control 2012–2020; World Health Organisation: Geneva, Switzerland, 2012; p. 35. Available online: http://apps.who.int/iris/bitstream/10665/75303/1/9789241504034_eng.pdf (accessed on 30 August 2020).
- Bhatt, S.; Gething, P.; Brady, O.; Messina, J.; Farlow, A.; Moyes, C.; Drake, J.; Brownstein, J.; Hoen, A.; Sankoh, O. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Benelli, G.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Conti, B.; Nicoletti, M. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol. Res. 2015, 114, 391–397. [Google Scholar] [CrossRef]
- van den Berg, H.; da Silva Bezerra, H.S.; Al-Eryani, S.; Chanda, E.; Nagpal, B.N.; Knox, T.B.; Velayudhan, R.; Yadav, R.S. Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci. Rep. 2021, 11, 23867. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Žabka, M.; Bednář, J.; Tříska, J.; Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 2016, 83, 275–282. [Google Scholar] [CrossRef]
- Koureas, M.; Amoutzias, G.D.; Vontas, A.; Kyritsi, M.; Pinaka, O.; Papakonstantinou, A.; Dadouli, K.; Hatzinikou, M.; Koutsolioutsou, A.; Mouchtouri, V.A. Wastewater monitoring as a supplementary surveillance tool for capturing SARS-CoV-2 community spread. A case study in two Greek municipalities. Environ. Res. 2021, 200, 111749. [Google Scholar] [CrossRef]
- Daly, D.C.d.B.; Fine, P.V.A.; Martínez-Habibe, M.C. Burseraceae: A model for studying the Amazon flora. Rodriguésia 2012, 63, 21–30. [Google Scholar] [CrossRef]
- Shen, T.; Li, G.-H.; Wang, X.-N.; Lou, H.-X. The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2012, 142, 319–330. [Google Scholar] [CrossRef] [PubMed]
- DeCarlo, A.; Dosoky, N.S.; Satyal, P.; Sorensen, A.; Setzer, W.N. The essential oils of the Burseraceae. In Essential Oil Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 61–145. [Google Scholar]
- Su, S.; Hua, Y.; Wang, Y.; Gu, W.; Zhou, W.; Duan, J.-A.; Jiang, H.; Chen, T.; Tang, Y. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J. Ethnopharmacol. 2012, 139, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Steyn, M. Southern Africa Commiphora; United Litho: Arcadia, South Africa, 2003. [Google Scholar]
- Alsharif, K. Potential anti-inflammatory properties effect of myrrh. Lett. Appl. NanoBioSci. 2020, 9, 1687–1694. [Google Scholar]
- Abdel-Hay, M.H.; Saleh, A.; El Ashry, E.; Rashed, N.; Salama, O. Colorimetric determination of crude powdered myrrh, purified myrrh extract, oily fraction, and its different pharmaceutical dosage forms. Spectrosc. Lett. 2002, 35, 183–197. [Google Scholar] [CrossRef]
- Abdul-Ghani, R.A.; Loutfy, N.; Hassan, A. Myrrh and trematodoses in Egypt: An overview of safety, efficacy and effectiveness profiles. Parasitol. Int. 2009, 58, 210–214. [Google Scholar] [CrossRef]
- Tipton, D.; Lyle, B.; Babich, H.; Dabbous, M.K. In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells. Toxicol. Vitr. 2003, 17, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Massoud, A.; El Ebiary, F.H.; Abou-Gamra, M.; Mohamed, G.F.; Shaker, S.M. Evaluation of schistosomicidal activity of myrrh extract: Parasitological and histological study. J. Egypt. Soc. Parasitol. 2004, 34, 1051–1076. [Google Scholar] [PubMed]
- Hassanzadeh-Taheri, M.; Salimi, M.; Vazifeshenas-Darmiyan, K.; Mohammadifard, M.; Hosseini, M. Investigating the effect of ethanolic extract of Commiphora myrrha (Nees) Engl. gum-resin against hepatorenal injury in diabetic rats. J. Diabetes Metab. Disord. 2021, 20, 1573–1581. [Google Scholar] [CrossRef]
- Madia, V.N.; De Angelis, M.; De Vita, D.; Messore, A.; De Leo, A.; Ialongo, D.; Tudino, V.; Saccoliti, F.; De Chiara, G.; Garzoli, S. Investigation of Commiphora myrrha (Nees) Engl. oil and its main components for antiviral activity. Pharmaceuticals 2021, 14, 243. [Google Scholar] [CrossRef]
- Dekebo, A.; Lang, M.; Polborn, K.; Dagne, E.; Steglich, W. Four lignans from Commiphora erlangeriana. J. Nat. Prod. 2002, 65, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Başer, K.; Demirci, B.; Dekebo, A.; Dagne, E. Essential oils of some Boswellia spp., myrrh and opopanax. Flavour Fragr. J. 2003, 18, 153–156. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Scorciapino, A. Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J. Agric. Food Chem. 2005, 53, 7939–7943. [Google Scholar] [CrossRef]
- Rehman, N.U.; Halim, S.A.; Khan, A.; Khan, M.; Al-Hatmi, S.; Al-Harrasi, A. Commikuanoids AC: New cycloartane triterpenoids with exploration of carbonic anhydrase-II inhibition from the resins of Commiphora kua by in vitro and in silico molecular docking. Fitoterapia 2022, 157, 105125. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Saeedi, M. Constituents of the essential oil of Commiphora myrrha (Nees) Engl. var. molmol. J. Essent. Oil Res. 2003, 15, 50–51. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Ali, S.I.; EL-Baz, F.K.; Hegazy, A.K.; Kord, M.A. Chemical composition of essential oil and in vitro antioxidant and antimicrobial activities of crude extracts of Commiphora myrrha resin. Ind. Crops Prod. 2014, 57, 10–16. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Yin, D.; Zhao, X. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) TS Ying. PLoS ONE 2015, 10, e0122981. [Google Scholar]
- Abd-ElGawad, A.M.; El-Amier, Y.A.; Assaeed, A.M.; Al-Rowaily, S.L. Interspecific variations in the habitats of Reichardia tingitana (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J. Biol. Sci. 2020, 27, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Racine, P.; Auffray, B. Quenching of singlet molecular oxygen by Commiphora myrrha extracts and menthofuran. Fitoterapia 2005, 76, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Abd-ElGawad, A.M.; Elshamy, A.I.; El-Amier, Y.A.; El Gendy, A.E.-N.G.; Al-Barati, S.A.; Dar, B.A.; Al-Rowaily, S.L.; Assaeed, A.M. Chemical composition variations, allelopathic, and antioxidant activities of Symphyotrichum squamatum (Spreng.) Nesom essential oils growing in heterogeneous habitats. Arab. J. Chem. 2020, 13, 4237–4245. [Google Scholar] [CrossRef]
- Ghosh, A.; Chowdhury, N.; Chandra, G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012, 135, 581. [Google Scholar] [PubMed]
- Chan, C.A.; Ho, L.Y.; Sit, N.W. Larvicidal activity and phytochemical profiling of sweet basil (Ocimum basilicum L.) leaf extract against asian tiger mosquito (Aedes albopictus). Horticulturae 2022, 8, 443. [Google Scholar] [CrossRef]
- Baranitharan, M.; Dhanasekaran, S. Mosquito larvicidal properties of Commiphora caudata (Wight &Arn.) (Bursaceae) against Aedes aegypti (Linn.), Anopheles stephensi (Liston), Culex quinquefasciatus (Say). Int. J. Curr. Microbiol. App. Sci. 2014, 3, 262–268. [Google Scholar]
- Baranitharan, M.; Dhanasekaran, S.; Gokulakrishnan, J.; Mahesh Babu, S.; Thushimenan, S. Nagapattinam medicinal plants against the dengue fever mosquito, Aedes aegypti. Int. J. Mosq. Res. 2016, 3, 29–34. [Google Scholar]
- Muturi, E.J.; Hay, W.T.; Doll, K.M.; Ramirez, J.L.; Selling, G. Insecticidal activity of Commiphora erythraea essential oil and its emulsions against larvae of three mosquito species. J. Med. Entomol. 2020, 57, 1835–1842. [Google Scholar] [CrossRef]
- Samwel, B.; Innocent, E.; Machumi, F.; Kisinza, W.N.; Heydenreich, M. Two mosquito larvicidal arabinofuranosidetridecanol from Commiphora merkeri exudate. Nat. Prod. Res. 2022, 36, 2821–2829. [Google Scholar] [CrossRef]
- Mkangara, M.; Chacha, M.; Kazyoba, P.E. Larvicidal potential of Commiphora swynnertonii (Burtt) stem bark extracts against Anopheles gambiae ss, Culex quinquefasciatus Say and Aedes aegypti L. Int. J. Sci. Res. 2015, 4, 356–361. [Google Scholar]
- Kabaru, J.; Gichia, L. Insecticidal activity of extracts derived from different parts of the mangrove tree Rhizophora mucronata (Rhizophoraceae) Lam. against three arthropods. Afr. J. Sci. Technol. 2001, 2, 44–49. [Google Scholar] [CrossRef]
- Hoda, S.M.; Fahmy, M.; Attia, M.; Rabab, M.; Shalaby, H.; Massoud, A. The insecticidal activity of two medicinal plants (Commiphora molmol) and (Balanites aegyptiaca) against the blowfly Lucilia sericata (Diptera: Calliphoridae). Int. J. Adv. Res. Biol. Sci. 2016, 3, 144–158. [Google Scholar]
- Massoud, A.; Kutkat, M.; El-Khateeb, R.; Labib, I. Acaricidal efficacy of myrrh (Commiphora molmol) on the fowl tick Argas persicus (Acari: Argasidae). J. Egypt. Soc. Parasitol. 2005, 35, 667–686. [Google Scholar] [PubMed]
- Baz, M.M.; Hegazy, M.M.; Khater, H.F.; El-Sayed, Y.A. Comparative Evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 2021, 41, 191–196. [Google Scholar]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.; Alam, M. Further studies on the nematode toxicity of different parts of Margosa and Persian lilac. Neem Newsl. 1985, 2, 43–47. [Google Scholar]
- Renden, E.; Roither, B.; Randan, E. Effect of a neem Azadirachta indica based insecticides on oviposition deterrence, survival, behavior and reproduction of adult western cherry fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 1998, 91, 123–130. [Google Scholar]
- Mahmoud, M.F.; Shoeib, M.A. Sterilant and oviposition deterrent activity of neem formulation on Peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae). J. Biopestic. 2008, 1, 177–181. [Google Scholar]
- Hanuš, L.O.; Řezanka, T.; Dembitsky, V.M.; Moussaieff, A. Myrrh-Commiphora chemistry. Biomed. Pap. 2005, 149, 3–28. [Google Scholar] [CrossRef]
- He, J.; Shang, X.; Dai, L.; Yang, X.; Li, B.; Wei, Y.; Zhang, J.; Pan, H. Chemical constituents, antibacterial, acaricidal and anti-inflammatory activities of the essential oils from four Rhododendron species. Front. Vet. Sci. 2022, 9, 882060. [Google Scholar] [CrossRef]
- Fraternale, D.; Sosa, S.; Ricci, D.; Genovese, S.; Messina, F.; Tomasini, S.; Montanari, F.; Marcotullio, M.C. Anti-inflammatory, antioxidant and antifungal furanosesquiterpenoids isolated from Commiphora erythraea (Ehrenb.) Engl. resin. Fitoterapia 2011, 82, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Okwu, D.E. Citrus fruits: A rich source of phytochemicals and their roles in human health. Int. J. Chem. Sci. 2008, 6, 451–471. [Google Scholar]
- Al-Harrasi, A.; Ali, L.; Ceniviva, E.; Al-Rawahi, A.; Hussain, J.; Hussain, H.; Rehman, N.U.; Abbas, G.; Al-Harrasi, R. Antiglycation and antioxidant activities and HPTLC analysis of Boswellia sacra oleogum resin: The sacred frankincense. Trop. J. Pharm. Res. 2013, 12, 597–602. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L. curzerene-rich, thermally produced in situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, J.; Miar, S.; Zadehzare, M.M.; Akbari, H. Evaluation of effectiveness of herbal medication in cancer care: A review study. Iran. J. Cancer Prev. 2012, 5, 144. [Google Scholar] [PubMed]
- Burgio, E.; Piscitelli, P.; Migliore, L. Ionizing radiation and human health: Reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective. Int. J. Environ. Res. Public Health 2018, 15, 1971. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef]
- Lin, H.; Suhail, M.; Fung, K.; Woolley, C.; Young, D. Extraction of biologically active compounds by hydrodistillation of Boswellia species gum resins for anti-cancer therapy. OA Altern. Med. 2013, 1, 4. [Google Scholar] [CrossRef]
- Mohammed, Y. In-vitro anti-cancer activity of extracts Dracaen cinnabari Balf. F resin from Socotra Island in Yemen Republic. Biochem. Anal. Biochem. 2016, 5, 3. [Google Scholar]
- Wang, C.-C.; Liang, N.-Y.; Xia, H.; Wang, R.-Y.; Zhang, Y.-F.; Huo, H.-X.; Zhao, Y.-F.; Song, Y.-L.; Zheng, J.; Tu, P.-F. Cytotoxic sesquiterpenoid dimers from the resin of Commiphora myrrha Engl. Phytochemistry 2022, 204, 113443. [Google Scholar] [CrossRef] [PubMed]
- Alipanah, H.; Zareian, P. Anti-cancer properties of the methanol extract of Boswellia serrata gum resin: Cell proliferation arrest and inhibition of angiogenesis and metastasis in BALB/c mice breast cancer model. Physiol. Pharmacol. 2018, 22, 183–194. [Google Scholar]
- Wang, D.; Ge, S.; Bai, J.; Song, Y. Boswellic acid exerts potent anticancer effects in HCT-116 human colon cancer cells mediated via induction of apoptosis, cell cycle arrest, cell migration inhibition and inhibition of PI3K/AKT signalling pathway. J. BUON 2018, 23, 340–345. [Google Scholar] [PubMed]
- Khacha-Ananda, S.; Tragoolpua, K.; Chantawannakul, P.; Tragoolpua, Y. Antioxidant and anti-cancer cell proliferation activity of propolis extracts from two extraction methods. Asian Pac. J. Cancer Prev. 2013, 14, 6991–6995. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.A.; Al-Faifi, Z.E.; Masood, M.F.; El-Amier, Y.A. Investigation and biological assessment of Rumex vesicarius L. extract: Characterization of the chemical components and antioxidant, antimicrobial, cytotoxic, and anti-dengue vector activity. Molecules 2022, 27, 3177. [Google Scholar] [CrossRef]
- Collenette, S. Wild Flowers of Saudi Arabia; National Commission for Wildlife Conservation and Development (NCWCD): Riyadh, Saudi Arabia, 1999; p. 779. [Google Scholar]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- de Dobbeleer, I.; Gummersbach, J.; Huebschmann, H.-J.; Mayer, A.; Silcock, P. Analyzing PBDEs in House Dust Samples with the Thermo Scientific TSQ Quantum XLS Ultra GC-MS/MS in EI-SRM Mode; Thermo Fisher Scientific: Dreieich, Germany, 2012; pp. 1–6. [Google Scholar]
- El-Sheikh, T.M.; Hassan, M.I.; Moselhy, W.A.; Amer, M.S.; Shehata, A.Z. Evaluation of the biological activity of some Cupressus semprevirens (Cupressaceae) extracts against the mosquito vector Culex pipiens L. (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. A Entomol. 2011, 4, 33–48. [Google Scholar] [CrossRef]
- Briggs, J.D. Reduction of adult house-fly emergence by the effects of Bacillus spp. on the development of immature forms. J. Insect Pathol. 1960, 2, 418–432. [Google Scholar]
- Cheah, S.-X.; Tay, J.-W.; Chan, L.-K.; Jaal, Z. Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2013, 112, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr. J. 2010, 25, 291–312. [Google Scholar] [CrossRef]
- Parejo, I.; Codina, C.; Petrakis, C.; Kefalas, P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH·(2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods 2000, 44, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem. 2012, 48, 192–199. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | RT a (min.) | SI b | Conc.% c | Molecular Weight | Molecular Formula | |
---|---|---|---|---|---|---|---|
Sesquiterpenes hydrocarbons | |||||||
1 | δ-Elemene | 9.36 | 548 | 1.47 ± 0.03 | 204 | C15H24 | |
2 | α-Copaene | 10.12 | 819 | 0.24 ± 0.01 | 204 | C15H24 | |
3 | β-Bourbonene | 10.32 | 674 | 0.71 ± 0.01 | 204 | C15H24 | |
4 | β-Elemene | 10.68 | 749 | 5.80 ± 0.08 | 204 | C15H24 | |
5 | Caryophyllene | 11.07 | 565 | 1.52 ± 0.03 | 204 | C15H24 | |
6 | β-Copaene | 11.24 | 740 | 0.18 ± 0.01 | 204 | C15H24 | |
7 | γ-Elemene | 11.51 | 792 | 1.68 ± 0.02 | 204 | C15H24 | |
8 | α-Humulene | 11.73 | 917 | 0.35 ± 0.01 | 204 | C15H24 | |
9 | Germacrene D | 12.39 | 704 | 2.35 ± 0.02 | 204 | C15H24 | |
10 | Aromandendrene | 12.47 | 620 | 0.74 ± 0.01 | 204 | C15H24 | |
11 | γ-Gurjunene | 12.64 | 731 | 0.11 ± 0.01 | 204 | C15H24 | |
12 | Curzerene | 13.37 | 961 | 33.57 ± 0.32 | 216 | C15H20O | |
13 | Cubebol | 13.45 | 529 | 0.13 ± 0.00 | 222 | C15H26O | |
14 | α-Elemene | 13.50 | 579 | 0.22 ± 0.01 | 204 | C15H24 | |
15 | (+)-Ledene | 13.64 | 614 | 0.14 ± 0.01 | 204 | C15H24 | |
16 | Selina-3,7(11)-diene | 13.73 | 857 | 0.13 ± 0.01 | 204 | C15H24 | |
17 | Germacrene B | 14.07 | 636 | 4.35 ± 0.06 | 204 | C15H24 | |
18 | Furanoeudesma-1,4-diene | 14.44 | 581 | 1.01 ± 0.02 | 214 | C15H18O | |
19 | Furanoeudesma-1,3-diene | 14.98 | 603 | 0.08 ± 0.01 | 214 | C15H18O | |
20 | Lindestrene | 15.30 | 580 | 0.45 ± 0.01 | 214 | C15H18O | |
21 | 2-Isopropyl-4,7-Dimethyl-1-Naphthol | 15.82 | 535 | 4.71 ± 0.07 | 214 | C15H18O | |
22 | 1-Methoxy-3,4,5,7-tetramethylnaphthalene | 16.43 | 847 | 15.50 ± 0.25 | 214 | C15H18O | |
23 | Furanoelemene | 16.65 | 593 | 0.49 ± 0.02 | 216 | C15H20O | |
24 | Eremophilene | 16.80 | 637 | 2.61 ± 0.12 | 216 | C15H24 | |
25 | Lindera-lactone | 17.14 | 563 | 0.35 ± 0.01 | 246 | C16H18O3 | |
26 | 2-Methoxyfuranodiene | 17.66 | 562 | 5.42 ± 0.08 | 246 | C16H22O2 | |
27 | β-Guaiene | 17.99 | 622 | 0.21 ± 0.01 | 204 | C15H24 | |
28 | Cycloisolongifol-5-ol | 18.07 | 638 | 0.32 ± 0.02 | 220 | C15H24O | |
29 | γ-Eudesmol acetate | 18.39 | 536 | 0.99 ± 0.03 | 264 | C17H28O2 | |
30 | Isovalencenol | 18.51 | 684 | 0.58 ± 0.02 | 220 | C15H24O | |
31 | 12-Methoxy-19-norpodocarpa-8,11,13-triene | 18.67 | 655 | 0.50 ± 0.02 | 244 | C17H24O | |
32 | Gazaniolide | 19.45 | 550 | 0.24 ± 0.01 | 230 | C15H18O2 | |
33 | Furosardonin A | 20.09 | 594 | 0.29 ± 0.01 | 232 | C15H20O2 | |
34 | Furosardonin B | 20.63 | 924 | 1.21 ± 0.03 | 232 | C15H20O2 | |
35 | Bohlmann k2631 | 20.86 | 713 | 0.28 ± 0.03 | 232 | C15H20O2 | |
36 | 6-(3-hydroxyprop-1-en-2-yl)-4,8a-dimethyl-3-oxo-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl acetate | 21.01 | 642 | 1.46 ± 0.02 | 292 | C17H24O4 | |
37 | 4-a-Methyl-1-methylene-1,2,3,4,4a,9,10,10a-octahydrophenanthrene | 21.58 | 590 | 1.76 ± 0.03 | 212 | C16H20 | |
38 | 8,9-Dehydro-9-vinyl- cycloisolongifolene | 21.82 | 572 | 0.17 ± 0.01 | 228 | C17H24 | |
39 | Reynosin | 22.48 | 688 | 0.50 ± 0.02 | 248 | C15H20O3 | |
40 | Beta-Doradecin | 22.69 | 556 | 0.40 ± 0.01 | 320 | C18H24O5 | |
Oxygenated hydrocarbons | |||||||
41 | 3-Ethyl-2,6-naphthlenediol | 17.73 | 839 | 1.58 ± 0.02 | 188 | C12H12O2 | |
42 | 3-Ethyl-6-(Methoxycarbonyl)-2-Naphthol | 22.30 | 703 | 1.64 ± 0.03 | 230 | C14H14O3 | |
Fatty acid derivatives | |||||||
43 | 9,12(Z,Z)-Octadecadienoic Acid, methyl ester | 23.18 | 636 | 0.80 ± 0.02 | 294 | C19H34O2 | |
44 | 9-Octadecenoic acid, methyl ester | 23.28 | 793 | 0.99 ± 0.01 | 296 | C19H36O2 | |
45 | Octadecenoic acid, methyl ester | 23.66 | 668 | 0.08 ± 0.01 | 298 | C19H38O2 | |
Diterpenes | |||||||
46 | (3E,7E,11E)-1-Isopropyl-4,8,12-trimethylcyclo- tetradeca-3,7,11-trienol | 23.83 | 641 | 0.89 ± 0.03 | 290 | C20H34O | |
47 | Isopropyl-1,5,9-trimethyl-15-oxabicyclo [10.2.1]pentadeca-5,9-dien-2-ol | 24.01 | 578 | 0.59 ± 0.02 | 306 | C20H34O2 | |
Triterpenes | |||||||
48 | 24-Noroleana-3,12-diene | 33.97 | 597 | 0.13 ± 0.01 | 394 | C29H46 | |
49 | 24-Norursa-3,12-diene | 34.21 | 607 | 0.34 ± 0.01 | 394 | C29H46 | |
50 | 24-Norursa-3,12-dien-11-one | 35.46 | 557 | 0.14 ± 0.01 | 408 | C29H44O | |
Total identified | 100% | ||||||
Sesquiterpenes hydrocarbons | 93.22% | ||||||
Oxygenated hydrocarbons | 3.22% | ||||||
Fatty acid derivatives | 1.87% | ||||||
Diterpenes | 1.48% | ||||||
Triterpenes | 0.61% |
Conc. (ppm) | Mortality % (Mean ± SE) | Adult Emergence% | ||
---|---|---|---|---|
Larval | Pupal | Larval-Pupal | ||
Control | 0.00 ± 0.00 F | 3.33 ± 1.67 C | 3.33 ± 1.67 F | 96.67 ± 1.67 A |
100 | 11.67 ± 1.67 E | 3.33 ± 1.91 C | 15.00 ± 2.89 E | 85.00 ± 5.77 B |
200 | 35.00 ± 5.00 D | 8.33 ± 1.47 AB | 43.33 ± 4.41 D | 56.67 ± 3.33 C |
300 | 56.67 ± 1.67 C | 11.66 ± 1.34 A | 68.33 ± 1.67 C | 31.67 ± 4.41 D |
500 | 73.33 ± 1.67 B | 11.67 ± 1.01 A | 85.00 ± 2.89 B | 15.00 ± 2.89 E |
1000 | 90.00 ± 2.89 A | 5.00 ± 0.40 BC | 95.00 ± 2.89 A | 5.00 ± 2.89 F |
Conc. (mg/L) | Mortality (%) | LC50 (Low.–Up.) | LC90 (Low.–Up.) | LC95 (Low.–Up.) | Slope ± SE | X2 (Chi)2 |
---|---|---|---|---|---|---|
Control | 0.00 ± 00 F | 281.83 (250.40–316.23) | 923.76 (760.43–1197.88) | 1293.35 (1021.25–1782.63) | 2.485 ± 0.212 | 1.109 |
100 | 11.67 ± 1.67 E | |||||
200 | 35.00 ± 5.00 D | |||||
300 | 56.67 ± 1.67 C | |||||
500 | 73.33 ± 1.67 B | |||||
1000 | 90.00 ± 2.89 A |
Conc. (mg/L) | No. of Eggs Laid | Hatching (%) | Fecundity (%) | Non-Hatching (%) | No. of Non-Hatched Eggs | |
---|---|---|---|---|---|---|
Embryo (%) | Non-Embryo (%) | |||||
Control | 1454.00 A | 97.94 A | 100.00 A | 2.06 B | 0.96 D | 1.10 B |
100 | 1433.00 A | 97.00 A | 98.56 A | 3.00 B | 1.47 BC | 1.54 B |
200 | 1386.00 AB | 93.22 A | 95.32 AB | 6.78 B | 1.37 BC | 5.34 AB |
300 | 1240.00 B | 91.69 A | 85.28 B | 8.31 B | 1.29 CD | 7.02 AB |
500 | 811.00 C | 86.19 AB | 55.78 C | 13.81 AB | 1.73 AB | 12.08 AB |
1000 | 424.00 D | 69.58 B | 29.16 D | 30.42 A | 1.89 A | 28.54 A |
Treatment | Conc. (mg/L) | Radical Scavenging Activity (%) | IC50 (mg/L) |
---|---|---|---|
C. myrrha resin | 5 | 10.42 ± 0.42 F | 26.86 |
10 | 25.79 ± 1.64 E | ||
20 | 44.31 ± 2.37 D | ||
30 | 53.57 ± 2.88 C | ||
40 | 64.34 ± 3.20 B | ||
50 | 75.06 ± 3.72 A | ||
LSD0.05 | 1.82 *** | ||
Ascorbic acid | 1 | 3.11 ± 0.01 F | 11.94 |
2.5 | 11.68 ± 0.03 E | ||
5 | 38.87 ± 0.19 D | ||
10 | 48.22 ± 0.51 C | ||
15 | 61.64 ± 1.42 B | ||
20 | 72.91 ± 1.55 A | ||
LSD0.05 | 1.36 *** |
Samples | Conc. (µg/mL) | In Vitro Cytotoxicity | ||
---|---|---|---|---|
HePG-2 | Hela | WI-38 | ||
Doxorubicin | 100 | 94.21 ± 3.27 A | 92.44 ± 3.30 A | 10.11 ± 0.41 A |
50 | 89.52 ± 3.04 B | 82.63 ± 2.95 B | 8.75 ± 0.31 B | |
25 | 86.36 ± 1.98 B | 76.3 ± 2.64 C | 6.55 ± 0.23 C | |
12.5 | 69.51 ± 1.72 C | 59.21 ± 2.11 D | 3.78 ± 0.07 D | |
6.25 | 52.30 ± 1.26 D | 42.70 ± 1.53 E | 1.87 ± 0.03 E | |
3.125 | 40.13 ± 0.98 E | 26.40 ± 0.94 F | 0.67 ± 0.02 F | |
1.56 | 26.62 ± 0.37 F | 23.91 ± 0.85 F | 0.02 ± 0.0 F | |
IC50 | 6.03 | 9.60 | >100 | |
C. myrrha resin | 100 | 62.83 ± 2.24 A | 70.92 ± 2.53 A | 1.09 ± 0.04 A |
50 | 57.91 ± 2.17 B | 60.43 ± 2.11 B | 0.95 ± 0.03 A | |
25 | 49.18 ± 1.66 C | 53.51 ± 1.84 C | 0.77 ± 0.03 A | |
12.5 | 39.66 ± 1.52 D | 42.64 ± 1.52 D | 0.12 ± 0.01 B | |
6.25 | 32.85 ± 1.09 E | 32.45 ± 1.03 E | 0.00 B | |
3.125 | 25.13 ± 0.87 F | 25.70 ± 0.77 F | 0.00 B | |
1.56 | 19.81 ± 0.54 G | 12.89 ± 0.38 G | 0.00 B | |
IC50 | 39.73 | 29.41 | >100 | |
SI | 2.52 | 3.40 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, N.A.H.; Alamri, A.A.; Mashlawi, A.M.; Almuzaini, N.; Mohamed, G.; Salama, S.A. Gas Chromatography–Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities. Molecules 2024, 29, 1778. https://doi.org/10.3390/molecules29081778
Alanazi NAH, Alamri AA, Mashlawi AM, Almuzaini N, Mohamed G, Salama SA. Gas Chromatography–Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities. Molecules. 2024; 29(8):1778. https://doi.org/10.3390/molecules29081778
Chicago/Turabian StyleAlanazi, Naimah Asid H., Abdullah A. Alamri, Abadi M. Mashlawi, Nujud Almuzaini, Gamal Mohamed, and Salama A. Salama. 2024. "Gas Chromatography–Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities" Molecules 29, no. 8: 1778. https://doi.org/10.3390/molecules29081778
APA StyleAlanazi, N. A. H., Alamri, A. A., Mashlawi, A. M., Almuzaini, N., Mohamed, G., & Salama, S. A. (2024). Gas Chromatography–Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities. Molecules, 29(8), 1778. https://doi.org/10.3390/molecules29081778