Process Optimization of Tinospora cordifolia Extract-Loaded Water in Oil Nanoemulsion Developed by Ultrasound-Assisted Homogenization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solid–Lipid (Oil) Screening
2.2. Initial Risk Assessment by a Fishbone Diagram
2.3. Primary Identification of Sensitive Variables
2.4. Examination of Critical Variables Using PBD and Its Influence
2.5. Model Fitting Using BBD
2.5.1. Mean Particle Size (PS) of the W/O Nanoemulsion
2.5.2. Polydispersity Index (PDI) of the W/O Nanoemulsion
2.5.3. Free Fatty Acid (FFA) Content of the W/O Nanoemulsion
2.5.4. Viscosity of the W/O Nanoemulsion
2.5.5. Interpretation of the Response Surface Model and Contour Plot
2.5.6. Optimization of the W/O Nanoemulsion
2.6. Design of Experiment (DOE) and Evaluation Parameters for the Developed Formulation
3. Materials and Methods
3.1. Materials
3.2. Screening of Solid–Lipid (Oil)
3.3. Preparation of the Water in Oil (W/O) Nanoemulsion
3.4. Experimental Design
3.4.1. Initial Risk Assessment
3.4.2. Primary Identification of Sensitive Variables
3.4.3. Plackett–Burman Design (PBD) for Risk Analysis
3.5. Ultrasonic Treatment Using the Box–Behnken Design (BBD)
Optimization by RSM
3.6. Physicochemical Analysis of Nanoemulsions
3.6.1. Determination of the Particle Size (PS) and Polydispersity Index (PDI)
3.6.2. Nanoemulsion Stability Index (ESI)
3.6.3. Determination of the Viscosity of the Nanoemulsion
3.6.4. Determination of the Free Fatty Acids (FFAs; Total Titratable Acidity)
3.6.5. Peroxide Value
3.6.6. Microscopic Image Analysis and Scanning Electron Microscopy (SEM)
3.6.7. Determination of Encapsulation Efficiency (EE)
3.6.8. Total Flavonoid and Phenol Determination
3.6.9. Antioxidant Activity Using DPPH
3.6.10. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, R.; Latheef, S.K.; Ahmed, I.; Iqbal, H.M.N.; Bule, M.H.; Dhama, K.; Samad, H.A.; Karthik, K.; Alagawany, M.; El-Hack, M.E.A.; et al. Herbal Immunomodulators, a Remedial Panacea for the Designing and Developing Effective Drugs and Medicines: Current scenario and future prospects. Curr. Drug Metab. 2018, 19, 264–301. [Google Scholar] [CrossRef] [PubMed]
- Latheef, S.K.; Dhama, K.; Samad, H.A.; Wani, M.Y.; Kumar, M.A.; Palanivelu, M.; Malik, Y.S.; Singh, S.D.; Singh, R. Immunomodulatory and Prophylactic Efficacy of Herbal Extracts Against Experimentally Induced Chicken Infectious Anaemia in Chicks: Assessing the Viral Load and Cell Mediated Immunity. Virus Dis. 2017, 28, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, A.; Patel, G.; Pal, D.; Kumar, A. Frequently Used Allopathic and Traditional Medicine for COVID-19 Treatment and Feasibility of Their Integration. Chin. J. Integr. Med. 2022, 28, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Sachan, S.; Dhama, K.; Latheef, S.K.; Samad, H.A.; Mariappan, A.K.; Munuswamy, P.; Singh, R.; Singh, K.P.; Malik, Y.S.; Singh, R.K. Immunomodulatory Potential of Tinospora Cordifolia and CpG ODN (TLR21 agonist) against the Very Virulent, Infectious Bursal Disease Virus in SPF Chicks. Vaccines 2019, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Amin, H.; Galib, R.; Prajapati, P.K. Therapeutic Vistas of Guduchi (Tinospora cordifolia (Willd.) Miers): A Medico-Historical Memoir. J. Res. Educ. Indian Med. 2014, 20, 121–135. [Google Scholar]
- Sharma, R.; Amin, H.; Galib, R.; Prajapati, P.K. Antidiabetic Claims of Tinospora cordifolia (Willd.) Miers: Critical Appraisal and Role in Therapy. Asian Pac. J. Trop. Dis. 2015, 5, 670–680. [Google Scholar] [CrossRef]
- Bagale, U.; Tsaturov, A.; Potoroko, I.; Potdar, S.; Sonawane, S. In-vitro Evaluation of High Dosage of Curcumin Encapsulation in Palm-Oil-in-Water, Nanoemulsion Stabilized with a Sonochemical Approach. Karbala Int. J. Mod. Sci. 2022, 8, 83–95. [Google Scholar] [CrossRef]
- Shariffa, Y.N.; Tan, T.B.; Uthumporn, U.; Abas, F.; Mirhosseini, H.; Nehdi, I.A.; Wang, Y.H.; Tan, C.P. Producing a Lycopene Nanodispersion: Formulation Development and the Effects of High Pressure Homogenization. Food Res. Int. 2017, 101, 165–172. [Google Scholar] [CrossRef]
- Acevedo-Estupiñan, M.V.; Gutierrez-Lopez, G.F.; Cano-Sarmiento, C.; Parra-Escudero, C.O.; Rodriguez-Estrada, M.T.; Garcia-Varela, R.; García, H.S. Stability and Characterization of O/W Free Phytosterols Nanoemulsions Formulated with an Enzymatically Modified Emulsifier. LWT 2019, 107, 151–157. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and Characterization of Phenolic Compounds and their Potential Antioxidant Activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef] [PubMed]
- Chanioti, S.; Katsouli, M.; Tzia, C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021, 26, 1781. [Google Scholar] [CrossRef]
- Daglia, M.; Lorenzo, A.; Nabavi, S.; Talas, Z.; Nabavi, S. Polyphenols: Well Beyond the Antioxidant Capacity: Gallic acid and Related Compounds as Neuroprotective Agents: You are What You Eat! Curr. Pharm. Biotechnol. 2014, 15, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Gawin-Mikołajewicz, A.; Nawrot, U.; Malec, K.H.; Krajewska, K.; Nartowski, K.P.; Karolewicz, B.L. The Effect of High-Pressure Homogenization Conditions on the Physicochemical Properties and Stability of Designed Fluconazole-Loaded Ocular Nanoemulsions. Pharmaceutics 2024, 16, 1–28. [Google Scholar] [CrossRef]
- Håkensson, A.; Rayner, M. Chapter 5: General Principles of Nanoemulsion Formation by High-Energy Mechanical Methods. In Nanoemulsions: Formulation, Applications, and Characterization; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 104–139. [Google Scholar]
- Galvão, K.C.S.; Vicente, A.A.; Sobral, P.J.A. Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. Food Bioprocess. Technol. 2018, 11, 355–367. [Google Scholar] [CrossRef]
- Kumar, A.; Sanjay; Jaiswal, M. Enhanced Intestinal Permeability of Tinospora cordifolia Extract Through Nanoemulsion Formulation: In-Vitro and Ex-Vivo Studies. J. Nanopharm. Drug Deliv. 2015, 2, 209–218. [Google Scholar] [CrossRef]
- Waghule, T.; Dabholkar, N.; Gorantla, S.; Rapalli, V.K.; Saha, R.N.; Singhvi, G. Quality by Design (QbD) in the Formulation and Optimization of Liquid Crystalline Nanoparticles (LCNPs): A Risk Based Industrial Approach. Biomed. Pharmacother. 2021, 141, 111940. [Google Scholar] [CrossRef]
- Park, S.; Choo, G.; Hwang, S.; Kim, M. Quality by Design: Screening of Critical Variables and Formulation Optimization of Eudragit E Nanoparticles Containing Dutasteride. Arch. Pharm. Res. 2013, 36, 593–601. [Google Scholar] [CrossRef]
- Shekhawat, P.; Pokharkar, V. Risk Assessment and QbD Based Optimization of an Eprosartan Mesylate Nanosuspension: In-vitro Characterization, PAMPA and In-vivo Assessment. Int. J. Pharm. 2019, 567, 118415. [Google Scholar] [CrossRef] [PubMed]
- Politis, S.N.; Colombo, P.; Colombo, G.; Rekkas, D.M. Design of Experiments (DoE) in Pharmaceutical Development. Drug Dev. Ind. Pharm. 2017, 43, 889–901. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food Biopross Tech. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Alam, P.; Siddiqui, N.A.; Rehman, M.T.; Hussain, A.; Akhtar, A.; Mir, S.R.; Alajmi, M.F. Box–behnken Design (BBD)-Based Optimization of Microwave-Assisted Extraction of Parthenolide from the Stems of Tarconanthus camphoratus and Cytotoxic Analysis. Molecules 2021, 26, 1876. [Google Scholar] [CrossRef]
- Cinelli, G.; Cofelice, M.; Venditti, F. Veiled Extra Virgin Olive Oils: Role of Emulsion, Water and Antioxidants. Colloids Interfaces 2020, 4, 38. [Google Scholar] [CrossRef]
- Polychniatou, V.; Tzia, C. Evaluation of Surface-Active and Antioxidant Effect of Olive Oil Endogenous Compounds on the Stabilization of Water-in-Olive-Oil Nanoemulsions. Food Chem. 2018, 240, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.A.; Guo, Y.; Ochoa, L.S.; Fathordoobady, F.; Singh, A. Optimal Ultrasonication Process Time Remains Constant for a Specific Nanoemulsion Size Reduction System. Sci. Rep. 2021, 11, 9241. [Google Scholar] [CrossRef] [PubMed]
- Komaiko, J.S.; McClements, D.J. Formation of Food-grade Nanoemulsions using Low-Energy Preparation Methods: A Review of Available Methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-based O/W Lidocaine Nanocarriers using Nanoemulsion Template. Pharmaceutics 2020, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Demisli, S.; Mitsou, E.; Pletsa, V.; Xenakis, A.; Papadimitriou, V. Development and Study of Nanoemulsions and Nanoemulsion--based Hydrogels for the Encapsulation of Lipophilic Compounds. Nanomaterials 2020, 10, 2464. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Madan, P.; Lin, S. Effect of Process and Formulation Variables on the Preparation of Parenteral Paclitaxel-Loaded Biodegradable Polymeric Nanoparticles: A Co-surfactant Study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Yolmeh, M.; Habibi, N.M.B.; Farhoosh, R. Optimisation of Ultrasound Assisted Extraction of Natural Pigment from Annatto Seeds by Response Surface Methodology (RSM). Food Chem. 2014, 155, 319–324. [Google Scholar] [CrossRef]
- Orugun, O.A.; Uronnachi, E.M.; Issac, J.; Yahaya, Z.S.; Nnamani, N.D. Formulation and in vitro Trypanocidal Evaluation of Garlic Oil Nanoemulsions. J. Res. Pharm. 2023, 27, 1431–1437. [Google Scholar]
- Mosca, M.; Cuomo, F.; Lopez, F.; Ceglie, A. Role of Emulsifier Layer, Antioxidants and Radical Initiators in the Oxidation of Olive Oil-in-Water Emulsions. Food Res. Int. 2013, 50, 377–383. [Google Scholar] [CrossRef]
- Polychniatou, V.; Tzia, C. Study of the Emulsifying Ability of Olive Oil Endogenous Compounds in Co-surfactant Free Olive Oil W/O Nanoemulsions with Food Grade Non-Ionic Surfactants. Food Bioprocess Tech. 2016, 9, 882–891. [Google Scholar] [CrossRef]
- Sakellari, G.I.; Zafeiri, I.; Batchelor, H.; Spyropoulos, F. Formulation Design, Production and Characterisation of Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for the Encapsulation of a Model Hydrophobic Active. Food Hydrocoll. Health 2021, 1, 100024. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Kumaraswamy, R.V.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Thymol Nanoemulsion Exhibits Potential Antibacterial Activity against Bacterial Pustule Disease and Growth Promotory Effect on Soybean. Sci. Rep. 2018, 8, 6650. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Karande, K.; Sonawane, R.; Deshmukh, P. Applying Quality by Design (QbD) Concept for Fabrication of Chitosan Coated Nanoliposome. J. Liposome Res. 2014, 24, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Basri, M.; Raja Abdul Rahmn, R.N.Z.; Salleh, A.B.; Chaibakhsh, N.; Fard Masoumi, H.R. A Multivariate Modeling for Analysis of Factors Controlling the Particle Size and Viscosity in Palm Kernel Oil Esters-based Nanoemulsions. Ind. Crops Prod. 2014, 52, 506–511. [Google Scholar] [CrossRef]
- Method, I.A. Peroxide Value Procedure IFRA. Int. Fragr. Assoc. 2019, 32. Available online: https://ifrafragrance.org/docs/default-source/guidelines/20190910-revised-ifra-analytical-method-on-peroxide-value (accessed on 8 April 2024).
- Chou, T.H.; Nugroho, D.S.; Chang, J.Y.; Cheng, Y.S.; Liang, C.H.; Deng, M.J. Encapsulation and Characterization of Nanoemulsions based on an Anti-oxidative Polymeric Amphiphile for Topical Apigenin Delivery. Polymers 2021, 13, 1016. [Google Scholar] [CrossRef]
- Anjum, V.; Arora, P.; Ansari, S.H.; Najmi, A.K.; Ahmad, S. Antithrombocytopenic and Immunomodulatory Potential of Metabolically Characterized Aqueous Extract of Carica papaya Leaves. Pharm. Biol. 2017, 55, 2043–2056. [Google Scholar] [CrossRef]
Run | Independent Variables | Observed Responses | |||||
---|---|---|---|---|---|---|---|
Surfactant (mL) | Lipid (Oil; mL) | Amplitude (%) | Particle Size (nm) | PDI | Free Fatty Acids (%) | Viscosity (Pa.s) | |
1 | 1.8 | 28.2 | 70 | 400 | 0.25 | 1.18 | 2.198 |
2 | 0.6 | 28.2 | 100 | 123 | 0.48 | 0.78 | 3.48 |
3 | 3 | 29.4 | 70 | 200 | 0.35 | 0.78 | 0.115 |
4 | 1.8 | 28.2 | 70 | 296 | 0.027 | 0.78 | 0.198 |
5 | 1.8 | 27 | 100 | 110 | 0.45 | 0.78 | 0.058 |
6 | 1.8 | 28.2 | 70 | 297 | 0.027 | 0.78 | 0.197 |
7 | 1.8 | 28.2 | 70 | 297 | 0.027 | 0.78 | 0.196 |
8 | 1.8 | 28.2 | 70 | 296 | 0.027 | 0.78 | 0.196 |
9 | 0.6 | 29.4 | 70 | 197 | 0.45 | 0.15 | 3.15 |
10 | 1.8 | 29.4 | 40 | 320 | 0.45 | 0.39 | 0.25 |
11 | 0.6 | 28.2 | 40 | 296 | 0.193 | 0.68 | 3.47 |
12 | 1.8 | 29.4 | 100 | 164 | 0.45 | 1.38 | 3.95 |
13 | 3 | 28.2 | 100 | 123 | 0.06 | 1.18 | 3.35 |
14 | 0.6 | 27 | 70 | 195 | 0.387 | 0.78 | 0.101 |
15 | 3 | 28.2 | 40 | 295 | 0.093 | 0.78 | 3.35 |
16 | 1.8 | 27 | 40 | 270 | 0.12 | 1.35 | 3.18 |
17 | 3 | 27 | 70 | 165 | 0.09 | 0.68 | 2.25 |
Average Particle Size a (PS; nm) | ||||||
---|---|---|---|---|---|---|
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remarks |
Model | 91122.21 | 9 | 10,124.69 | 69.11 | <0.0001 | Significant |
A—Surfactant | 98.00 | 1 | 98.00 | 0.6689 | 0.4404 | |
B—Lipid | 2485.13 | 1 | 2485.13 | 16.96 | 0.0045 | |
C—Amplitude | 54615.12 | 1 | 54,615.12 | 372.78 | <0.0001 | |
AB | 272.25 | 1 | 272.25 | 1.86 | 0.2150 | |
AC | 0.2500 | 1 | 0.2500 | 0.0017 | 0.9682 | |
BC | 4.00 | 1 | 4.00 | 0.0273 | 0.8734 | |
A2 | 14582.41 | 1 | 14,582.41 | 99.53 | <0.0001 | |
B2 | 11429.09 | 1 | 11,429.09 | 78.01 | <0.0001 | |
C2 | 4338.57 | 1 | 4338.57 | 29.61 | 0.0010 | |
Residual | 1025.55 | 7 | 146.51 | |||
Lack of Fit | 750.75 | 3 | 250.25 | 3.64 | 0.1219 | not significant |
Pure Error | 274.80 | 4 | 68.70 | |||
Cor Total | 92147.76 | 16 | ||||
Polydispersity Index b (PDI) | ||||||
Model | 0.5498 | 9 | 0.0611 | 62.13 | <0.0001 | significant |
A—Surfactant | 0.1051 | 1 | 0.1051 | 106.91 | <0.0001 | |
B—Lipid | 0.0533 | 1 | 0.0533 | 54.21 | 0.0002 | |
C—Amplitude | 0.0426 | 1 | 0.0426 | 43.36 | 0.0003 | |
AB | 0.0097 | 1 | 0.0097 | 9.87 | 0.0163 | |
AC | 0.0256 | 1 | 0.0256 | 26.04 | 0.014 | |
BC | 0.0272 | 1 | 0.0272 | 27.69 | 0.0012 | |
A2 | 0.0143 | 1 | 0.0143 | 14.57 | 0.0066 | |
B2 | 0.2025 | 1 | 0.2025 | 206.00 | <0.0001 | |
C2 | 0.0478 | 1 | 0.0478 | 48.64 | 0.0002 | |
Residual | 0.0069 | 7 | 0.0010 | |||
Lack of Fit | 0.0026 | 3 | 0.0009 | 0.8192 | 0.5471 | not significant |
Pure Error | 0.0043 | 4 | 0.0011 | |||
Cor Total | 0.5566 | 16 | ||||
Free Fatty Acids c (FFA; %) | ||||||
Model | 1.40 | 9 | 0.1556 | 128.94 | <0.0001 | significant |
A—Surfactant | 0.1326 | 1 | 0.1326 | 109.92 | <0.0001 | |
B—Lipid | 0.0990 | 1 | 0.0990 | 82.07 | <0.0001 | |
C—Amplitude | 0.1058 | 1 | 0.1058 | 87.70 | <0.0001 | |
AB | 0.1332 | 1 | 0.1332 | 110.43 | <0.0001 | |
AC | 0.0225 | 1 | 0.0225 | 18.65 | 0.0035 | |
BC | 0.6084 | 1 | 0.6084 | 504.30 | <0.0001 | |
A2 | 0.1054 | 1 | 0.1054 | 87.40 | <0.0001 | |
B2 | 0.0062 | 1 | 0.0062 | 5.11 | 0.0584 | |
C2 | 0.2024 | 1 | 0.2024 | 167.77 | <0.0001 | |
Residual | 0.0084 | 7 | 0.0012 | |||
Lack of Fit | 0.0045 | 3 | 0.0015 | 1.54 | 0.3347 | not significant |
Pure Error | 0.0039 | 4 | 0.0010 | |||
Cor Total | 1.41 | 16 | ||||
Dymanic Viscosity d (Pa.s) | ||||||
Model | 42.30 | 9 | 4.70 | 357.34 | <0.0001 | significant |
A—Surfactant | 0.1613 | 1 | 0.1613 | 12.27 | 0.0100 | |
B—Lipid | 0.4399 | 1 | 0.4399 | 33.45 | 0.0007 | |
C—Amplitude | 0.0432 | 1 | 0.0432 | 3.29 | 0.1128 | |
AB | 6.72 | 1 | 6.72 | 510.83 | <0.0001 | |
AC | 0.0000 | 1 | 0.0000 | 0.0019 | 0.9664 | |
BC | 11.63 | 1 | 11.63 | 884.64 | <0.0001 | |
A2 | 7.98 | 1 | 7.98 | 606.85 | <0.0001 | |
B2 | 0.1307 | 1 | 0.1307 | 9.94 | 0.0161 | |
C2 | 14.14 | 1 | 14.14 | 1074.81 | <0.0001 | |
Residual | 0.0921 | 7 | 0.0132 | |||
Lack of Fit | 0.0912 | 3 | 0.0304 | 137.03 | 0.112 | Non-significant |
Pure Error | 0.0009 | 4 | 0.0002 | |||
Cor Total | 42.39 | 16 |
Response (Unit) | Predicted Value (Mean ± SD) | Experimental Value (Mean ± SD) |
---|---|---|
Particle size (nm) | 181.20 ± 0.97 | 171.50 ± 0.73 |
Polydispersity index | 0.07 ± 0.14 | 0.25 ± 0.54 |
Free fatty acids (%) | 0.86 ± 0.73 | 1.18 ± 0.97 |
Viscosity (Pa.s) | 0.59 ± 0.24 | 2.20 ± 1.32 |
Response | Blank | Test 1 Drug (100 mM Added) | Test 2 Drug (200 mM Added) |
---|---|---|---|
Particle size (nm) | 171.90 ± 1.43 | 243.00 ± 1.64 | 293.66 ± 1.25 |
Polydispersity index | 0.25 ± 0.08 | 0.37 ± 0.14 | 0.10 ± 0.06 |
Free fatty acids (%) | 0.86 ± 0.21 | 0.26 ± 0.08 | 0.27 ± 0.13 |
Viscosity (Pa.s) | 0.59 ± 0.12 | 0.22 ± 0.04 | 0.19 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjum, V.; Bagale, U.; Kadi, A.; Malinin, A.; Potoroko, I.; Alharbi, A.H.; Khafaga, D.S.; AlMetwally, M.; Qenawy, A.-S.T.; Anjum, A.; et al. Process Optimization of Tinospora cordifolia Extract-Loaded Water in Oil Nanoemulsion Developed by Ultrasound-Assisted Homogenization. Molecules 2024, 29, 1797. https://doi.org/10.3390/molecules29081797
Anjum V, Bagale U, Kadi A, Malinin A, Potoroko I, Alharbi AH, Khafaga DS, AlMetwally M, Qenawy A-ST, Anjum A, et al. Process Optimization of Tinospora cordifolia Extract-Loaded Water in Oil Nanoemulsion Developed by Ultrasound-Assisted Homogenization. Molecules. 2024; 29(8):1797. https://doi.org/10.3390/molecules29081797
Chicago/Turabian StyleAnjum, Varisha, Uday Bagale, Ammar Kadi, Artem Malinin, Irina Potoroko, Amal H. Alharbi, Doaa Sami Khafaga, Marawa AlMetwally, Al-Seyday T. Qenawy, Areefa Anjum, and et al. 2024. "Process Optimization of Tinospora cordifolia Extract-Loaded Water in Oil Nanoemulsion Developed by Ultrasound-Assisted Homogenization" Molecules 29, no. 8: 1797. https://doi.org/10.3390/molecules29081797
APA StyleAnjum, V., Bagale, U., Kadi, A., Malinin, A., Potoroko, I., Alharbi, A. H., Khafaga, D. S., AlMetwally, M., Qenawy, A. -S. T., Anjum, A., & Ali, F. (2024). Process Optimization of Tinospora cordifolia Extract-Loaded Water in Oil Nanoemulsion Developed by Ultrasound-Assisted Homogenization. Molecules, 29(8), 1797. https://doi.org/10.3390/molecules29081797