Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
General Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawrence, S.A. Amines: Synthesis, Properties and Applications; University Press: Cambridge, UK, 2004. [Google Scholar]
- Aneja, V.P.; Roelle, P.A.; Murray, G.C.; James, S.; Erisman, J.W.; Fowler, D.; Asman, W.A.H.; Patni, N. Atmospheric Nitrogen Compounds II: Emissions, Transport, Transformation, Deposition & Assessment. Atmos. Environ. 2001, 35, 1903–1911. [Google Scholar]
- Al-Bulushi, I.; Poole, S.; Deeth, H.C.; Dykes, G.A. Biogenic Amines in Fish: Roles in Intoxication, Spoilage, and Nitrosamine Formation—A Review. Crit. Rev. Food Sci. Nutr. 2009, 49, 369–377. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Jiménez-Colmenero, F. Biogenic Amines in Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2004, 44, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Schipper, R.G.; Penning, L.C.; Verhofstad, A.A.J. Involvement of polyamines in apoptosis. Facts and controversies: Effectors or protectors? Semin. Cancer Biol. 2000, 10, 55–68. [Google Scholar] [CrossRef]
- Gao, T.; Tillman, E.S.; Lewis, N.S. Detection and Classification of Volatile Organic Amines and Carboxylic Acids Using Arrays of Carbon Black-Dendrimer Composite Vapor Detectors. Chem. Mater. 2005, 17, 2904–2911. [Google Scholar] [CrossRef]
- Landete, J.M.; de las Rivas, B.; Marcobal, A.; Muñoz, R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef]
- Önal, A.; Tekkeli, S.E.K.; Önal, C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem. 2013, 138, 509–515. [Google Scholar] [CrossRef]
- Loukou, Z.; Zotou, A. Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2003, 996, 103–113. [Google Scholar] [PubMed]
- Cinquina, A.L.; Calì, A.; Longo, F.; De Santis, L.; Severoni, A.; Abballe, F. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J. Chromatogr. A 2004, 1032, 73–77. [Google Scholar] [CrossRef]
- Sotzing, G.A.; Phend, J.N.; Grubbs, R.H.; Lewis, N.S. Highly Sensitive Detection and Discrimination of Biogenic Amines Utilizing Arrays of Polyaniline/Carbon Black Composite Vapor Detectors. Chem. Mater. 2000, 12, 593–595. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2008–2012). Anal. Chem. 2013, 85, 487–508. [Google Scholar] [CrossRef]
- West, S.J.; Ozawa, S.; Seiler, K.; Tan, S.S.S.; Simon, W. Selective ionophore-based optical sensors for ammonia measurement in air. Anal. Chem. 1992, 64, 533–540. [Google Scholar] [CrossRef]
- Gerhard, J.; Mohr, I.K.; Ursula, E.; Keller, S.; Wolfbeis, O.S. Fluoro Reactands and Dual Luminophore Referencing: A Technique to Optically Measure Amines. Anal. Chem. 2001, 73, 1053–1056. [Google Scholar]
- Hu, Y.; Ma, X.; Zhang, Y.; Che, Y.; Zhao, J. Detection of Amines with Fluorescent Nanotubes: Applications in the Assessment of Meat Spoilage. ACS Sens. 2016, 1, 22–25. [Google Scholar] [CrossRef]
- Che, Y.; Zang, L. Enhanced fluorescence sensing of amine vapor based on ultrathin nanofibers. Chem. Commun. 2009, 5, 5106–5108. [Google Scholar] [CrossRef]
- Hu, L.; Wang, Y.; Duan, P.; Du, Y.; Tian, J.; Shi, D.; Wang, X.; Yu, S.; Yu, X.; Pu, L. Fluorescent Discrimination of Primary Alkyl Amines by Using a Binaphthyl Ladder Polymer. Eur. J. Org. Chem. 2018, 16, 1896–1901. [Google Scholar] [CrossRef]
- Shi, L.; Fu, Y.; He, C.; Zhu, D.; Gao, Y.; Wang, Y.; He, Q.; Cao, H.; Cheng, J. A mild and catalyst-free conversion of solid phase benzylidenemalononitrile/benzylidenemalonate to N-benzylidene-amine and its application for fluorescence detection of primary alkyl amine vapor. Chem. Commun. 2014, 50, 872–874. [Google Scholar] [CrossRef]
- Yao, J.; Fu, Y.; Xu, W.; Fan, T.; He, Q.; Zhu, D.; Cao, H.; Cheng, J. A sensitive and efficient trifluoroacetyl-based aromatic fluorescent probe for organic amine vapour detection. RSC Adv. 2015, 5, 25125–25131. [Google Scholar] [CrossRef]
- Xue, P.; Xu, Q.; Gong, P.; Qian, C.; Ren, A.; Zhang, Y.; Lu, R. Fibrous film of a two-component organogel as a sensor to detect and discriminate organic amines. Chem. Commun. 2013, 49, 5838–5840. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Li, Q.-Y.; Cheng, J.-Y.; Cheng, K.; Yang, X.; Li, Y.; Zhao, X.; Wang, X.-J. Ratiometric Luminescent Detection of Organic Amines due to the Induced Lactam-Lactim Tautomerization of Organic Linker in a Metal-Organic Framework. ACS Appl. Mater. Interfaces 2017, 9, 31352–31356. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Lee, S.; Lee, J.; Ha, J.-H.; Kang, S.H. Ultrasensitive biogenic amine sensor using an enhanced multiple nanoarray chip based on competitive reactions in an evanescent field. Sens. Actuat. B Chem. 2021, 345, 130354. [Google Scholar] [CrossRef]
- Rappoport, Z. Nucleophilic attacks on carbon–carbon double bonds. Part V. The reaction of dimethylaniline with tetracyanoethylene: π- and σ-complexes in electrophilic aromatic and nucleophilic vinylic substitutions. J. Chem. Soc. 1963, 4498–4512. [Google Scholar]
- Buckley, D.; Henbest, H.B.; Slade, P. Syntheses of substituted amino-, aminovinyl-, and aminobutadienyl-p-quinones. J. Chem. Soc. 1957, 4891–4900. [Google Scholar] [CrossRef]
- Monzó, I.S.; Palou, J.; Roca, J.; Valero, R. Kinetics and mechanism of the reactions between chloranil and n-butylamine in cyclohexane solution. J. Chem. Soc. Perkin Trans. 2 1988, 1995–1998. [Google Scholar] [CrossRef]
- Ibis, C.; Ayla, S.S.; Dogan, Y.; Ozen, M. Synthesis and characterization of novel N-, S-, O-substituted p-chloranil derivatives. Synth. Commun. 2014, 44, 1614–1618. [Google Scholar] [CrossRef]
- Hoffmann, K. Neue Farbreaktionen auf Sulfhydrylgruppen. Naturwissenschaften 1965, 52, 428. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.-X.; Yan, Z.-J.; Liu, W.-X.; Chen, X.-M.; Ding, M.-H.; Tang, L.-L.; Zeng, F. Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone. Molecules 2024, 29, 1818. https://doi.org/10.3390/molecules29081818
Sun Y-X, Yan Z-J, Liu W-X, Chen X-M, Ding M-H, Tang L-L, Zeng F. Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone. Molecules. 2024; 29(8):1818. https://doi.org/10.3390/molecules29081818
Chicago/Turabian StyleSun, Yue-Xiang, Zi-Jian Yan, Wan-Xia Liu, Xiao-Ming Chen, Man-Hua Ding, Lin-Li Tang, and Fei Zeng. 2024. "Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone" Molecules 29, no. 8: 1818. https://doi.org/10.3390/molecules29081818
APA StyleSun, Y. -X., Yan, Z. -J., Liu, W. -X., Chen, X. -M., Ding, M. -H., Tang, L. -L., & Zeng, F. (2024). Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone. Molecules, 29(8), 1818. https://doi.org/10.3390/molecules29081818