Internal Factors Affecting the Crystallization of the Lipid System: Triacylglycerol Structure, Composition, and Minor Components
Abstract
:1. Introduction
2. Effect of TAG Structure
2.1. Effect of Fatty Acid Structure
Fatty Acid Chain Structure | Lipid System | Effect | References | ||
---|---|---|---|---|---|
Melting Point | Crystallization Process | Crystal Structure | |||
Fully saturated long chain | Milk fat | High | - | Double chain-length structure | [13] |
Unsaturated long chain | Milk fat | Low | Inhibit | Triple chain-length structure | [13,19] |
Short chain | Milk fat | - | Inhibit | Triple chain-length structure | [13] |
Long fatty acid chain | Interesterified blends | - | Promote | - | [14] |
Odd-numbered fatty acid chain | Pure TAG | Lower | - | Looser packing | [5] |
Chain-length mismatch | Pure TAG | - | - | Less stable polymorphs | [16] |
Chain-length mismatch | PPS/PSP, MMS/MSM, LLS/LSL, CCS/CSC binary systems | - | - | Denser structure | [17] |
Cis double bond | Pure TAG | Lower | - | Looser packing | [5] |
Conjugated cis double bonds | Pure TAG | Higher | Promote | - | [22] |
Trans double bond | Pure TAG | Higher | - | - | [22] |
Trans double bond | Palm-based confectionery fats | - | Promote | - | [23] |
Branched fatty acid chain | Pure TAG | Lower | - | - | [22] |
Branched fatty acid chain | Palm oil-based blend | Low | Promote nucleation; inhibit crystal growth | Looser packing | [25] |
2.2. Effect of Symmetrical/Asymmetrical Structures of TAG Molecules
3. Effect of TAG Composition
3.1. Effect of High-Melting-Point TAG
3.2. Effect of Liquid Oil
3.3. Effect of Specific TAG Combination
3.4. Effect of Main TAG Ratio
4. Effect of Minor Components
4.1. Effect of Native Minor Components
4.2. Effect of Seeding Agents
4.3. Effect of Organic Additives
4.4. Effect of Inorganic Additives
5. Discussion and Perspectives
5.1. Combined Effect of Internal and External Factors
5.2. Isotropic Liquid State
5.3. Real Lipid Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acevedo, N.C.; Marangoni, A.G. Nanostructured fat crystal systems. Annu. Rev. Food Sci. Technol. 2015, 6, 71–96. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.T.; Martini, S. Recent Advances in Lipid Crystallization in the Food Industry. Annu. Rev. Food Sci. Technol. 2024, 15, 11.1–11.25. [Google Scholar] [CrossRef]
- Sato, K. Crystallization of Lipids: Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Sato, K.; Bayés-García, L.; Calvet, T.; Cuevas-Diarte, M.À.; Ueno, S. External factors affecting polymorphic crystallization of lipids. Eur. J. Lipid Sci. Technol. 2013, 115, 1224–1238. [Google Scholar] [CrossRef]
- Himawan, C.; Starov, V.; Stapley, A. Thermodynamic and kinetic aspects of fat crystallization. Adv. Colloid Interface Sci. 2006, 122, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; de Oliveira, G.M.; Kieckbusch, T.G. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 2015, 52, 3925–3946. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Kusanagi, A.; Kobayashi, S.; Tokairin, S.; Tsurumi, K. Effect of static magnetic field processing on crystallization behavior of triacylglycerols. J. Oleo Sci. 2005, 54, 193–202. [Google Scholar] [CrossRef]
- Chai, X.; Meng, Z.; Liu, Y. Effects of triolein dilution on the structural and mechanical properties of lauric acid-rich fat. LWT 2021, 150, 112019. [Google Scholar] [CrossRef]
- Chai, X.; Meng, Z.; Liu, Y. Crystallization behavior and nano-micro structure of lauric acid-rich fats with and without indigenous diglycerides. Food Chem. 2021, 365, 130458. [Google Scholar] [CrossRef]
- Chai, X.; Meng, Z.; Cao, P.-R.; Liang, X.-Y.; Piatko, M.; Campbell, S.; Lo, S.K.; Liu, Y.-F. Influence of indigenous minor components on fat crystal network of fully hydrogenated palm kernel oil and fully hydrogenated coconut oil. Food Chem. 2018, 255, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Macridachis-González, J.; Bayés-García, L.; Calvet, T. An insight into the solid-state miscibility of triacylglycerol crystals. Molecules 2020, 25, 4562. [Google Scholar] [CrossRef]
- Shahidi, F. Bailey’s Industrial Oil and Fat Products, Industrial and Nonedible Products from Oils and Fats; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 6. [Google Scholar] [CrossRef]
- Pratama, Y.; Seilert, J.; Sadeghpour, A.; Simone, E.; Rappolt, M. Decoding the role of triacylglycerol composition in the milk fat crystallisation behaviour: A study using buffalo milk fat fractions. LWT 2023, 186, 115274. [Google Scholar] [CrossRef]
- da Silva, M.G.; de Godoi, K.R.R.; Cardoso, L.P.; Ribeiro, A.P.B. Effect of stabilization and fatty acids chain length on the crystallization behavior of interesterified blends during storage. Food Res. Int. 2022, 157, 111208. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, L.; Liu, T.; Cai, Y.; Zeng, D.; Zhou, F.; Zhao, M.; Deng, X.; Zhao, Q. Whipping properties and stability of whipping cream: The impact of fatty acid composition and crystallization properties. Food Chem. 2021, 347, 128997. [Google Scholar] [CrossRef] [PubMed]
- Bouzidi, L.; Narine, S.S. Relationships between molecular structure and kinetic and thermodynamic controls in lipid systems. Part II: Phase behavior and transformation paths of SSS, PSS and PPS saturated triacylglycerols—Effect of chain length mismatch. Chem. Phys. Lipids 2012, 165, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, M.V.; Bouzidi, L.; Narine, S.S. The binary phase behavior of 1, 3-dicaproyl-2-stearoyl-sn-glycerol and 1, 2-dicaproyl-3-stearoyl-sn-glycerol. Chem. Phys. Lipids 2009, 157, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Bouzidi, L.; Narine, S.S. Phase behavior of saturated triacylglycerides—Influence of symmetry and chain length mismatch. In Cocoa Butter and Related Compounds; Elsevier: Amsterdam, The Netherlands, 2012; pp. 73–101. [Google Scholar] [CrossRef]
- Smet, K.; Coudijzer, K.; Fredrick, E.; De Campeneere, S.; De Block, J.; Wouters, J.; Raes, K.; Dewettinck, K. Crystallization behavior of milk fat obtained from linseed-fed cows. J. Dairy Sci. 2010, 93, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Bayés-García, L.; Calvet, T.; Cuevas-Diarte, M.; Ueno, S. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2, 3-dioleoyl glycerol, 1-stearoyl-2, 3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol. Food Res. Int. 2016, 85, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Golodnizky, D.; Shmidov, Y.; Bitton, R.; Bernardes, C.E.; Davidovich-Pinhas, M. Isotropic liquid state of triacylglycerols. J. Mol. Liq. 2022, 353, 118703. [Google Scholar] [CrossRef]
- Walstra, P. Physical Chemistry of Foods; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- De Graef, V.; Foubert, I.; Smith, K.W.; Cain, F.W.; Dewettinck, K. Crystallization behavior and texture of trans-containing and trans-free palm oil based confectionery fats. J. Agric. Food Chem. 2007, 55, 10258–10265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, K.J.; Chen, J.C.; Xiong, M.; Li, X.; Hondoh, H.; Ueno, S. Effect of cis–trans isomerization on the crystallization behavior of triacylglycerols. Cryst. Growth Des. 2020, 20, 1655–1664. [Google Scholar] [CrossRef]
- Han, J.; Yang, D.; Zhang, H.; Bi, Y.; Xu, X. Effects of branched-chain fatty acid triacylglycerols on the crystallization of palm oil-based blends. J. Am. Oil Chem. Soc. 2023, 1–14. [Google Scholar] [CrossRef]
- Craven, R.J.; Lencki, R.W. Polymorphism of acylglycerols: A stereochemical perspective. Chem. Rev. 2013, 113, 7402–7420. [Google Scholar] [CrossRef] [PubMed]
- Mizobe, H.; Tanaka, T.; Hatakeyama, N.; Nagai, T.; Ichioka, K.; Hondoh, H.; Ueno, S.; Sato, K. Structures and Binary Mixing Characteristics of Enantiomers of 1-Oleoyl-2, 3-dipalmitoyl-sn-glycerol (S-OPP) and 1, 2-Dipalmitoyl-3-oleoyl-sn-glycerol (R-PPO). J. Am. Oil Chem. Soc. 2013, 90, 1809–1817. [Google Scholar] [CrossRef]
- Bayés-García, L.; Fukao, K.; Konishi, T.; Sato, K.; Taguchi, K. Crystallization and Transformation Behavior of Triacylglycerol Binary Mixtures Forming Molecular Compounds of POP/OPO, POP/rac-PPO, and POP/sn-PPO. Cryst. Growth Des. 2023, 23, 2870–2881. [Google Scholar] [CrossRef]
- Lutton, E. Polymorphism of palmitoyl and stearoyl dioleins. J. Am. Oil Chem. Soc. 1966, 43, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, M.; Bouzidi, L.; Narine, S. The binary phase behavior of 1, 3-dipalmitoyl-2-stearoyl-sn-glycerol and 1, 2-dipalmitoyl-3-stearoyl-sn-glycerol. Chem. Phys. Lipids 2009, 160, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Bouzidi, L.; Garti, N.; Narine, S.S. Multi-length-scale elucidation of kinetic and symmetry effects on the behavior of stearic and oleic TAG. I. SOS and SSO. J. Am. Oil Chem. Soc. 2014, 91, 559–570. [Google Scholar] [CrossRef]
- Baker, M.R.; Bouzidi, L.; Garti, N.; Narine, S.S. Multi-length-scale elucidation of kinetic and symmetry effects on the behavior of stearic and oleic TAG. II: OSO and SOO. J. Am. Oil Chem. Soc. 2014, 91, 1685–1694. [Google Scholar] [CrossRef]
- Taguchi, K.; Toda, A.; Hondoh, H.; Ueno, S.; Sato, K. Kinetic study on alpha-form crystallization of mixed-acid triacylglycerols POP, PPO, and their mixture. Molecules 2021, 26, 220. [Google Scholar] [CrossRef]
- Bouzidi, L.; Boodhoo, M.V.; Kutek, T.; Filip, V.; Narine, S.S. The binary phase behavior of 1, 3-dilauroyl-2-stearoyl-sn-glycerol and 1, 2-dilauroyl-3-stearoyl-sn-glycerol. Chem. Phys. Lipids 2010, 163, 607–629. [Google Scholar] [CrossRef] [PubMed]
- Pratama, Y.; Burholt, S.; Baker, D.L.; Sadeghpour, A.; Simone, E.; Rappolt, M. Polymorphism of a Highly Asymmetrical Triacylglycerol in Milk Fat: 1-Butyryl 2-Stearoyl 3-Palmitoyl-glycerol. Cryst. Growth Des. 2022, 22, 6120–6130. [Google Scholar] [CrossRef]
- Engström, L. Triglyceride systems forming molecular compounds. Lipid/Fett 1992, 94, 173–181. [Google Scholar] [CrossRef]
- Chai, X.; Meng, Z.; Liu, Y. Relationship between lipid composition and rheological properties of colloidal fat crystal networks: A comparative study using chemometrics. LWT 2020, 118, 108814. [Google Scholar] [CrossRef]
- Larsson, K. Lipids: Molecular Organization, Physical Functions and Technical Applications; Larsson, K., Ed.; The Oily Press: Dundee, UK, 1994. [Google Scholar]
- Marangoni, A.G.; Wesdorp, L.H. Structure and Properties of Fat Crystal Networks; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Cholakova, D.; Tcholakova, S.; Denkov, N. Polymorphic phase transitions in bulk triglyceride mixtures. Cryst. Growth Des. 2023, 23, 2075–2091. [Google Scholar] [CrossRef]
- Gregersen, S.B.; Andersen, M.D.; Hammershøj, M.; Wiking, L. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats. Food Chem. 2017, 215, 438–446. [Google Scholar] [CrossRef]
- Nosratpour, M.; Wang, Y.; Woo, M.W.; Selomulya, C. Characterisation of thermal and structural behaviour of lipid blends composed of fish oil and milkfat. Food Res. Int. 2020, 137, 109377. [Google Scholar] [CrossRef] [PubMed]
- Ramel, P.R.; Marangoni, A.G. Engineering the microstructure of milk fat by blending binary and ternary mixtures of its fractions. RSC Adv. 2016, 6, 41189–41194. [Google Scholar] [CrossRef]
- Seilert, J.; Rappolt, M.; Dol, G.; Flöter, E. Interplay of Polymorphic Transition and Mixed Crystal Formation in Model Fat Systems. Cryst. Growth Des. 2024, 24, 1146–1158. [Google Scholar] [CrossRef]
- Shimomura, Y.; Tsuchiya, M.; Ueno, S.; Shiota, M. Effect of triacylglycerol compositions and physical properties on the granular crystal formation of fat blends. J. Am. Oil Chem. Soc. 2019, 96, 35–42. [Google Scholar] [CrossRef]
- Ai, H.; Lee, Y.-Y.; Xie, X.; Tan, C.P.; Lai, O.M.; Li, A.; Wang, Y.; Zhang, Z. Structured lipids produced from palm-olein oil by interesterification: A controllable lipase-catalyzed approach in a solvent-free system. Food Chem. 2023, 412, 135558. [Google Scholar] [CrossRef] [PubMed]
- Haque Akanda, M.J.; MR, N.; FS, A.; Shaarani, S.; Mamat, H.; Lee, J.S.; AH, M.; Selamat, J.; Khan, F.; Matanjun, P. Hard fats improve the physicochemical and thermal properties of seed fats for applications in confectionery products. Food Rev. Int. 2020, 36, 601–625. [Google Scholar] [CrossRef]
- de Oliveira, G.M.; Ribeiro, A.P.B.; dos Santos, A.O.; Cardoso, L.P.; Kieckbusch, T.G. Hard fats as additives in palm oil and its relationships to crystallization process and polymorphism. LWT-Food Sci. Technol. 2015, 63, 1163–1170. [Google Scholar] [CrossRef]
- Hubbes, S.-S.; Danzl, W.; Foerst, P. Crystallization kinetics of palm oil of different geographic origins and blends thereof by the application of the Avrami model. LWT 2018, 93, 189–196. [Google Scholar] [CrossRef]
- Kaufmann, N.; Kirkensgaard, J.J.; Andersen, U.; Wiking, L. Shear and rapeseed oil addition affect the crystal polymorphic behavior of milk fat. J. Am. Oil Chem. Soc. 2013, 90, 871–880. [Google Scholar] [CrossRef]
- Pratama, Y.; Simone, E.; Rappolt, M. The Unique Crystallization Behavior of Buffalo Milk Fat. Cryst. Growth Des. 2021, 21, 2113–2127. [Google Scholar] [CrossRef]
- Maleky, F.; Acevedo, N.C.; Marangoni, A.G. Cooling rate and dilution affect the nanostructure and microstructure differently in model fats. Eur. J. Lipid Sci. Technol. 2012, 114, 748–759. [Google Scholar] [CrossRef]
- Meng, Z.; Geng, W.; Wang, X.; Liu, Y. Fat crystal migration and aggregation and polymorphism evolution during the formation of granular crystals in beef tallow and palm oil. J. Agric. Food Chem. 2013, 61, 12676–12682. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Jin, Q.; Akoh, C.C.; Wang, X. StOSt-rich fats in the manufacture of heat-stable chocolates and their potential impacts on fat bloom behaviors. Trends Food Sci. Technol. 2021, 118, 418–430. [Google Scholar] [CrossRef]
- Mao, J.; Gao, Y.; Meng, Z. Crystallization and phase behavior in mixture systems of anhydrous milk fat, palm stearin, and palm oil: Formation of eutectic crystals. Food Chem. 2023, 399, 133877. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, L.; Tyagi, G.; Robles, E.S.; Cabral, J.T. Phase behaviour of model triglyceride ternary blends: Triolein, tripalmitin and tristearin. Phys. Chem. Chem. Phys. 2022, 24, 29413–29422. [Google Scholar] [CrossRef] [PubMed]
- Bayés-García, L.; Sato, K.; Zhang, L.; Yoshikawa, S.; Kaneko, F.; Yamamoto, Y.; Watanabe, S.; Taguchi, K. Formation mechanisms of molecular compound in saturated-unsaturated mixed-acid triacylglycerols mixture systems and its edible applications. J. Am. Oil Chem. Soc. 2023, 101, 79–93. [Google Scholar] [CrossRef]
- Watanabe, S.; Yoshikawa, S.; Sato, K. Formation and properties of dark chocolate prepared using fat mixtures of cocoa butter and symmetric/asymmetric stearic-oleic mixed-acid triacylglycerols: Impact of molecular compound crystals. Food Chem. 2021, 339, 127808. [Google Scholar] [CrossRef] [PubMed]
- Macridachis, J.; Bayes-Garcia, L.; Calvet, T. Mixing phase behavior of tripalmitin and oleic-rich molecular compound-forming triacylglycerols. Ind. Eng. Chem. Res. 2021, 60, 5374–5384. [Google Scholar] [CrossRef]
- Macridachis, J.; Bayés-García, L.; Calvet, T. Solid phase behavior of mixture systems based on tripalmitoyl glycerol and monounsaturated triacylglycerols forming a molecular compound. Phys. Chem. Chem. Phys. 2022, 24, 3749–3760. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, S.; Watanabe, S.; Yamamoto, Y.; Kaneko, F.; Sato, K. Interactive Polymorphic Crystallization Behavior in Eutectic Triacylglycerol Mixtures Containing Molecular Compound Crystals. Cryst. Growth Des. 2022, 22, 1753–1763. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. Molecular origins of polymorphism in cocoa butter. Annu. Rev. Food Sci. Technol. 2021, 12, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Ghazani, S.M.; Marangoni, A.G. The stability and nature of the form IV polymorph of cocoa butter is dictated by 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol. Cryst. Growth Des. 2019, 19, 1488–1493. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. The ternary solid state phase behavior of triclinic POP, POS, and SOS and its relationship to CB and CBE properties. Cryst. Growth Des. 2018, 19, 704–713. [Google Scholar] [CrossRef]
- Wijarnprecha, K.; West, R.; Rousseau, D. Temperature-Dependent Mixing Behavior of Tristearin and 1, 2-Distearoyl-3-oleoyl-rac-glycerol (SSO). Cryst. Growth Des. 2023, 23, 4807–4814. [Google Scholar] [CrossRef]
- Simone, E.; Rappolt, M.; Ewens, H.; Rutherford, T.; Terrade, S.M.; Giuffrida, F.; Marmet, C. A synchrotron X-ray scattering study of the crystallization behavior of mixtures of confectionary triacylglycerides: Effect of chemical composition and shear on polymorphism and kinetics. Food Res. Int. 2023, 177, 113864. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.; Smith, K.W.; Bhaggan, K.; Stapley, A.G. Crystallization and Polymorphism of Cocoa Butter Equivalents from blends of Palm Mid Fraction and Hard Stearins Produced by Enzymatic Acidolysis of High Oleic Sunflower Oil. Eur. J. Lipid Sci. Technol. 2022, 124, 2100228. [Google Scholar] [CrossRef]
- Vereecken, J.; Foubert, I.; Smith, K.W.; Sassano, G.J.; Dewettinck, K. Crystallization of model fat blends containing symmetric and asymmetric monounsaturated triacylglycerols. Eur. J. Lipid Sci. Technol. 2010, 112, 233–245. [Google Scholar] [CrossRef]
- Vereecken, J.; De Graef, V.; Smith, K.W.; Wouters, J.; Dewettinck, K. Effect of TAG composition on the crystallization behaviour of model fat blends with the same saturated fat content. Food Res. Int. 2010, 43, 2057–2067. [Google Scholar] [CrossRef]
- De Graef, V.; Vereecken, J.; Smith, K.W.; Bhaggan, K.; Dewettinck, K. Effect of TAG composition on the solid fat content profile, microstructure, and hardness of model fat blends with identical saturated fatty acid content. Eur. J. Lipid Sci. Technol. 2012, 114, 592–601. [Google Scholar] [CrossRef]
- West, R.; Rousseau, D. The role of nonfat ingredients on confectionery fat crystallization. Crit. Rev. Food Sci. Nutr. 2018, 58, 1917–1936. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Meng, Z.; Jiang, J.; Cao, P.; Liang, X.; Piatko, M.; Campbell, S.; Lo, S.K.; Liu, Y. Non-triglyceride components modulate the fat crystal network of palm kernel oil and coconut oil. Food Res. Int. 2018, 105, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Bayard, M.; Kauffmann, B.; Vauvre, J.-M.; Leal-Calderon, F.; Cansell, M. Isothermal crystallization of anhydrous milk fat in presence of free fatty acids and their esters: From nanostructure to textural properties. Food Chem. 2022, 366, 130533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Z.; Zhang, Q.; Li, H.; Li, X.; Zhang, H. Monobehenin and Tribehenin as Modifiers in the Crystallization of Palm Oil and Palm Stearin. Eur. J. Lipid Sci. Technol. 2022, 124, 2100220. [Google Scholar] [CrossRef]
- Mahisanunt, B.; Hondoh, H.; Ueno, S. Effects of tripalmitin and tristearin on crystallization and melting behavior of coconut oil. J. Am. Oil Chem. Soc. 2019, 96, 391–404. [Google Scholar] [CrossRef]
- Mahisanunt, B.; Hondoh, H.; Ueno, S. Coconut oil crystallization on tripalmitin and tristearin seed crystals with different polymorphs. Cryst. Growth Des. 2020, 20, 4980–4990. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, A.; Li, H.; Li, X.; Zhang, H.; Wei, T.; Zhang, L. PBP and PSP promote β’form crystallization of palm oil, palm stearin, and a cocoa butter replacer. Eur. J. Lipid Sci. Technol. 2023, 125, 2300040. [Google Scholar] [CrossRef]
- Co, E.D.; Ghazani, S.M.; Pink, D.A.; Marangoni, A.G. Heterogeneous nucleation of 1, 3-distearoyl-2-oleoylglycerol on tristearin surfaces. ACS Omega 2019, 4, 6273–6282. [Google Scholar] [CrossRef] [PubMed]
- Tebben, L.; Chen, G.; Tilley, M.; Li, Y. Improvement of whole wheat dough and bread properties by emulsifiers. Grain Oil Sci. Technol. 2022, 5, 59–69. [Google Scholar] [CrossRef]
- Domingues, M.A.F.; da Silva, T.L.T.; Chiu, M.C.; Ribeiro, A.P.B.; Gonçalves, L.A.G. Tailoring crystallization and physical properties of palm mid-fraction with sorbitan tristearate and sucrose stearate. Food Chem. 2022, 369, 130943. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, L.; Wan, L.; Mao, L.; Li, B.; Zhang, X. Addition of glyceryl monostearate affects the crystallization behavior and polymorphism of palm stearin. Bioprocess Biosyst. Eng. 2021, 44, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, L.; He, N.; Li, B.; Zhang, X. Effect of Emulsifiers on the Quality of Palm Oil Based Shortening during Variable Temperature Storage. J. Oleo Sci. 2022, 71, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Tangsanthatkun, J.; Sonprasert, T.; Sonwai, S. The effect of polyglycerol esters of fatty acids on the crystallization of palm olein. J. Oleo Sci. 2021, 70, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Qureshi, D.; Paul, S.; Mohanty, B.; Anis, A.; Verma, S.; Wilczyński, S.; Pal, K. Effect of sorbitan monopalmitate on the polymorphic transitions and physicochemical properties of mango butter. Food Chem. 2021, 347, 128987. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, D.; Behera, H.; Anis, A.; Kim, D.; Pal, K. Effect of polyglycerol polyricinoleate on the polymorphic transitions and physicochemical properties of mango butter. Food Chem. 2020, 323, 126834. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Negrette, A.C.; Rodríguez-Batiller, M.J.; García-Londoño, V.A.; Borroni, V.; Candal, R.J.; Herrera, M.L. Effect of sucrose esters on polymorphic behavior and crystallization kinetics of cupuassu fat and its fractions. J. Am. Oil Chem. Soc. 2022, 99, 27–41. [Google Scholar] [CrossRef]
- Tangsanthatkun, J.; Sonwai, S. Crystallisation of palm olein under the influence of sucrose esters. Int. J. Food Sci. Technol. 2019, 54, 3032–3041. [Google Scholar] [CrossRef]
- Domingues, M.A.F.; da Silva, T.L.T.; Ribeiro, A.P.B.; Chiu, M.C.; Gonçalves, L.A.G. Sucrose behenate as a crystallization enhancer for soft fats. Food Chem. 2016, 192, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Cai, Y.; Liu, T.; Huang, L.; Wang, J.; Zhao, M.; Zhu, S.; Zhao, Q. Effect of hydrophobic sucrose esters with different fat acid composition andTalc esterification degree on whipped cream properties. Food Hydrocoll. 2024, 146, 109183. [Google Scholar] [CrossRef]
- Domingues, M.A.F.; Da Silva, T.L.T.; Ribeiro, A.P.B.; Chiu, M.C.; Gonçalves, L.A.G. Structural characteristics of crystals formed in palm oil using sorbitan tristearate and sucrose stearate. Int. J. Food Prop. 2018, 21, 618–632. [Google Scholar] [CrossRef]
- Fontenele Domingues, M.A.; Paulo, B.D.; Teodoro da Silva, T.L.; Ribeiro, A.P.B. Physical properties of cocoa butter: Effect of sucrose esters on oil migration. Int. J. Food Sci. Technol. 2023, 58, 6059–6067. [Google Scholar] [CrossRef]
- Li, Y.; Liao, T.; Liu, T.; Yan, R.; Sun, Z.; Zhao, M.; Deng, X.; Zhao, Q. The quality of whipped cream: Effect of polyglycerol ester on the crystallization of fat blend and the properties of interface. Food Hydrocoll. 2023, 145, 109145. [Google Scholar] [CrossRef]
- Li, Y.; Liao, T.; Liu, T.; Wang, J.; Sun, Z.; Zhao, M.; Deng, X.; Zhao, Q. Effect of stearic and oleic acid-based lipophilic emulsifiers on the crystallization of the fat blend and the stability of whipped cream. Food Chem. 2023, 428, 136762. [Google Scholar] [CrossRef]
- Ishibashi, C.; Hondoh, H.; Ueno, S. Influence of Fatty Acid Moieties of Sorbitan Esters on Polymorphic Occurrence of the Palm Mid-Fraction. J. Am. Oil Chem. Soc. 2018, 95, 709–720. [Google Scholar] [CrossRef]
- Smith, P.; Shiori, T.; Hondoh, H.; Wallecan, J.; Ueno, S. Polymorphic and microstructural behaviors of palm oil/lecithin blends crystallized under shear. Jaocs J. Am. Oil Chem. Soc. 2022, 99, 665–674. [Google Scholar] [CrossRef]
- Ye, X.; Jin, J.; Liang, C.; Wang, J.; Jiang, L.; Zhao, L. Effects of individual phospholipids on chocolate model systems: Particulate interaction, crystallization behavior, and fat bloom during storage. J. Food Eng. 2023, 357, 111618. [Google Scholar] [CrossRef]
- Meng, X.; Liu, C.; Cao, C.; Zheng, Z.; Su, Q.; Liu, Y. L-ascorbyl palmitate modify the crystallization behavior of palm oil: Mechanism and application. LWT 2020, 122, 108999. [Google Scholar] [CrossRef]
- Hubbes, S.-S.; Braun, A.; Foerst, P. Sugar particles and their role in crystallization kinetics and structural properties in fats used for nougat creme production. J. Food Eng. 2020, 287, 110130. [Google Scholar] [CrossRef]
- West, R.; Rousseau, D. Regression modelling of the impact of confectioner’s sugar and temperature on palm oil crystallization and rheology. Food Chem. 2019, 274, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Simoes, S.; Lelaj, E.; Rousseau, D. The presence of crystalline sugar limits the influence of emulsifiers on cocoa butter crystallization. Food Chem. 2021, 346, 128848. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.Y.; Thoo, Y.Y.; Tan, C.P.; Siow, L.F. Effect of alternative sweetener and carbohydrate polymer mixtures on the physical properties, melting and crystallization behaviour of dark compound chocolate. Food Chem. 2024, 431, 137118. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, Z.; Meng, Z.; Chai, X.; Cao, C.; Liu, Y. Beeswax and carnauba wax modulate the crystallization behavior of palm kernel stearin. LWT 2019, 115, 108446. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Z.; Zaaboul, F.; Cao, C.; Huang, X.; Liu, Y. Effects of wax concentration and carbon chain length on the structural modification of fat crystals. Food Funct. 2019, 10, 5413–5425. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.L.; Graf, R.; Gindra, S.; Vilgis, T.A. Effect of different derivatives of paraffin waxes on crystallization of eutectic mixture of cocoa butter-coconut oil. Curr. Res. Food Sci. 2021, 4, 784–799. [Google Scholar] [CrossRef] [PubMed]
- Podchong, P.; Aumpai, K.; Sonwai, S.; Rousseau, D. Rice bran wax effects on cocoa butter crystallisation and tempering. Food Chem. 2022, 397, 133635. [Google Scholar] [CrossRef]
- Chikhoune, A.; Shashkov, M.; Piligaev, A.V.; Lee, J.; Boudjellal, A.; Martini, S. Isothermal Crystallization of Palm Oil-Based Fats with and without the Addition of Essential Oils. J. Am. Oil Chem. Soc. 2020, 97, 861–878. [Google Scholar] [CrossRef]
- Mello, N.A.; Cardoso, L.P.; Ribeiro, A.P.B.; Bicas, J.L. The effects of limonene on the crystallization of palm oil. LWT 2020, 133, 110079. [Google Scholar] [CrossRef]
- Mello, N.A.; Cardoso, L.P.; Ribeiro, A.P.B.; Bicas, J.L. Effect of limonene on modulation of palm stearin crystallization. Food Biophys. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Mello, N.A.; Ribeiro, A.P.B.; Bicas, J.L. Delaying crystallization in single fractionated palm olein with limonene addition. Food Res. Int. 2021, 145, 110387. [Google Scholar] [CrossRef] [PubMed]
- Cooney, J.; Hilton, I.; Marsh, M.; Jones, A.; Martini, S. Crystallization behavior of milk fat, palm oil, palm kernel oil, and cocoa butter with and without the addition of cannabidiol. J. Am. Oil Chem. Soc. 2023, 100, 225–236. [Google Scholar] [CrossRef]
- West, R.; Rousseau, D. Crystallization and rheology of palm oil in the presence of sugar. Food Res. Int. 2016, 85, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Jin, J.; Ye, X.; Li, Y.; Zhang, C.; Jiang, L.; Zhao, L. Effects of sucrose particle size on the microstructure and bloom behavior of chocolate model systems. Food Struct. 2023, 36, 100323. [Google Scholar] [CrossRef]
- Jin, J.; Hartel, R.W. Accelerated fat bloom in chocolate model systems: Replacement of cocoa powder with sugar particles and the effects of lecithin. J. Am. Oil Chem. Soc. 2020, 97, 377–388. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Kida, H.; Sato, K. Promotional effects of new types of additives on fat crystallization. J. Oleo Sci. 2014, 63, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Garcia, L.; Yoshikawa, S.; Aguilar-Jimenez, M.; Ishibashi, C.; Ueno, S.; Calvet, T. Heterogeneous Nucleation Effects of Talc Particles on Polymorphic Crystallization of Cocoa Butter. Cryst. Growth Des. 2021, 22, 213–227. [Google Scholar] [CrossRef]
- Kaneko, F.; Yamamoto, Y.; Yoshikawa, S. Structural study on fat crystallization process heterogeneously induced by graphite surfaces. Molecules 2020, 25, 4786. [Google Scholar] [CrossRef] [PubMed]
- West, R.; Rousseau, D. Tripalmitin-Driven Crystallization of Palm Oil: The Role of Shear and Dispersed Particles. J. Am. Oil Chem. Soc. 2020, 97, 989–999. [Google Scholar] [CrossRef]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Effect of solubilised carbon dioxide at low partial pressure on crystallisation behaviour, microstructure and texture of anhydrous milk fat. Food Res. Int. 2017, 95, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.M.; Truong, T.; Bansal, N.; Bhandari, B. Effect of CO2 bubbles on crystallization behavior of anhydrous milk fat. J. Am. Oil Chem. Soc. 2020, 97, 363–375. [Google Scholar] [CrossRef]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Effect of dissolved carbon dioxide on the sonocrystallisation and physical properties of anhydrous milk fat. Int. Dairy J. 2019, 93, 45–56. [Google Scholar] [CrossRef]
- Bayés-García, L.; Patel, A.R.; Dewettinck, K.; Rousseau, D.; Sato, K.; Ueno, S. Lipid crystallization kinetics—Roles of external factors influencing functionality of end products. Curr. Opin. Food Sci. 2015, 4, 32–38. [Google Scholar] [CrossRef]
- Gregersen, S.B.; Miller, R.L.; Hammershøj, M.; Andersen, M.D.; Wiking, L. Texture and microstructure of cocoa butter replacers: Influence of composition and cooling rate. Food Struct. 2015, 4, 2–15. [Google Scholar] [CrossRef]
- Cholakova, D.; Denkov, N. Polymorphic phase transitions in triglycerides and their mixtures studied by SAXS/WAXS techniques: In bulk and in emulsions. Adv. Colloid Interface Sci. 2023, 323, 103071. [Google Scholar] [CrossRef] [PubMed]
- Golodnizky, D.; Davidovich-Pinhas, M. New insights into the thermodynamics and kinetics of triacylglycerols crystallization. Innov. Food Sci. Emerg. Technol. 2022, 81, 103115. [Google Scholar] [CrossRef]
- Golodnizky, D.; Bernardes, C.E.; Davidovich-Pinhas, M. Isotropic liquid state of cocoa butter. Food Chem. 2024, 439, 138066. [Google Scholar] [CrossRef] [PubMed]
Homologous TAG Pairs | Tm (°C) | ΔH (kJ/mol) | References | ||||
---|---|---|---|---|---|---|---|
Symmetrical | Asymmetrical | 1:1 Mixture | Symmetrical | Asymmetrical | 1:1 Mixture | ||
POP/PPO | 36.6 | 34.6 | 32.4 | 144 | 104 | 110 | [36] |
SOS/SSO | 43.8 | 42.4 | 40.6 | 159 | 124 | 124 | [36] |
OPO/POO | 21.0 | 19.5 | [29] | ||||
OSO/SOO | 25.4 | 24.5 | [29] | ||||
PSP/PPS | 70.8 | 59.2 | 62.4 | 130 | 113 | 124 | [30] |
CSC/CCS | 43.5 | 30.4 | 23.0 | 156 | 128 | 123 | [17] |
LSL/LLS | 48.8 | 38.2 | 42.6 | 105 | 98 | 105 | [34] |
Additive | Additive Amount | Bulk Lipid | Effect | References |
---|---|---|---|---|
Glyceryl monostearate | 1–4 wt% | Palm stearin | Glyceryl monostearate increased the crystallization temperature and induced isothermal crystallization. Glyceryl monostearate promoted polymorphic transformation from the α form to the β′ form. An amount of 4% of glyceryl monostearate reduced the crystal size. | [81] |
Sorbitan monopalmitate, glyceryl monostearate, and glycerol monopalmitate | 4% | Palm oil | Sorbitan monopalmitate, glyceryl monostearate, and glycerol monopalmitate significantly improved the formation of β crystals. Glyceryl monostearate promoted crystal growth by the absorption of molten TAG molecules during recrystallization. | [82] |
Polyglycerol ester of fatty acids (PGE) | 0.5–5 wt% | Palm olein | PGEs decreased solid fat content, decreased the number of crystals, and increased the crystal size. PGE1105 and PGE1117 promoted early crystallization but hindered later stages, possibly through template effects, while PGE1155 retarded the entire crystallization process. | [83] |
Sorbitan monopalmitate (SM) | 1–5 wt% | Mango butter | SM promoted the aggregation of globular mango butter crystals. SM disrupted the crystal structure of mango butter. | [84] |
Polyglycerol polyricinoleate (PGPR) | 1–10 wt% | Mango butter | PGPR modified the microstructure of mango butter. PGPR caused imperfections in the mango butter crystal. PGPR changed the rate of nucleation and crystallization. PGPR decreased the mechanical strength. | [85] |
Sucrose esters | 1 wt% | Cupuassu fat | Sucrose esters promoted nucleation and increased the crystallization rate. Sucrose esters favored the formation of β′ form crystal during thermal cycling. Sucrose esters promoted the formation of β crystal in storage condition. | [86] |
Sucrose esters (S170, P170 and L195) | 0.5–5 wt% | Palm olein | S170 and P170 promoted early crystallization through template effects but inhibited crystallization in later stages. L195 inhibited crystallization due to structural differences. | [87] |
Sucrose behenate | 1% | Soft fats | Sucrose behenate improved the thermal stability and altered the hardness. Sucrose behenate significantly modified the crystal network structure. Sucrose behenate retarded the polymorphic transition from α form to β form. | [88] |
Hydrophobic sucrose esters | 0.4 wt% | Hydrogenated palm kernel oils | Sucrose esters with low melting points caused the formation of bigger and rougher fat crystals. Sucrose esters with low melting points induced nucleation and caused smaller and more-uniform crystal. | [89] |
Sorbitan tristearate and sucrose stearate | 1–5 wt% | Palm mid-fraction | Sorbitan tristearate increased the liquid fraction of PMF and led to liquid-mediated transformation. Sucrose stearate delayed the α crystal formation. | [80] |
Sorbitan tristearate and sucrose stearate | 1–5 wt% | Palm oil | Sorbitan tristearate and sucrose stearate changed the microstructure and increased the hardness. Sucrose stearate mainly influenced high-melting-point TAG crystallization, while sorbitan tristearate affected both high- and low-melting-point TAG crystallization. Sorbitan tristearate improved the polymorphic stability, while sucrose stearate softened the texture. | [90] |
Sucrose stearate and sucrose behenate | 0.1–0.5 wt% | Cocoa butter | Sucrose stearate and sucrose behenate promoted faster crystallization. Sucrose stearate and sucrose behenate modified the solid dissolution process and oil migration through cocoa butter and altered physical properties. | [91] |
Polyglycerol ester | 0.05–0.25 wt% | Anhydrous milk-fat and hydrogenated palm-kernel-oil blend | Polyglycerol ester promoted the nucleation. Polyglycerol ester caused the formation of small and uniform crystals. | [92] |
Span-60, sucrose ester S-170, Span-80), and sucrose ester O-170 | 0.1 wt% | Anhydrous milk-fat and hydrogenated palm-kernel-oil blend | Span-60 and S-170 resulted in tiny and uniform crystals. Span-80 and O-170 caused loose and large crystals. | [93] |
Sorbitan tristearate and sorbitan tribehenate | 5 wt% | Palm mid-fraction | Sorbitan tristearate promoted the formation of α crystals. Sorbitan tribehenate induced heterogeneous nucleation and accelerated crystallization in the β′ form. | [94] |
Lecithin | 1% | Palm oil | Sunflower lecithin stabilized the β′-form crystal. | [95] |
Phospholipids | 0.3–0.8 wt% | Cocoa butter | Phospholipids significantly increased crystallization rate and extent in model chocolates. Phospholipids can improve the microstructural stability, reducing fat migration and preventing bloom formation. | [96] |
L-ascorbyl palmitate | 1–5 wt% | Palm oil | L-ascorbyl palmitate accelerated the isothermal crystallization. L-ascorbyl palmitate promoted the transition from β crystal to β′ crystal. L-ascorbyl palmitate reduced the thickness of the nanocrystal. L-ascorbyl palmitate led to small and uniform crystals. | [97] |
Sugar | 5–50 wt% | Palm oil | Sucrose increased the crystallization rate. Sucrose served as a “bound filler”. Small particles significantly enhanced the elasticity characteristics. Small particles enhanced viscoelastic properties to the same extent as those of high-melting-point fats. | [98] |
Sugar | 50 wt% | Palm-oil and mid-fraction blend | Sugar increased the sensitivity of fat to processing conditions. Sugar increased the hardness and elasticity of the crystal network. Sugar inhibited the formation of β crystals. | [99] |
Sugar and emulsifiers | 2 wt% emulsifier 50 wt% sugar | Cocoa butter | Emulsifiers with low molecular weight accelerated crystallization. Sugar accelerated crystallization and suppressed the transformation from IV to V. Sugar negated the impact of emulsifiers on crystallization. | [100] |
Alternative sweetener and carbohydrate polymer mixtures | 46 wt% | Cocoa butter | Alternative sweetener promoted the crystal packing and led to a firmer texture. The tiny particle size prompted the unstable γ polymorph of TAG to crystallize into a more stable form. | [101] |
Beeswax and carnauba wax | 2–8 wt% | Palm kernel stearin | Carnauba wax accelerated crystallization. Beeswax and carnauba wax introduced new hydrocarbon chain distances. Beeswax and carnauba wax reduced the nanocrystal size and lamellar distance. Beeswax and carnauba wax altered the crystal morphology. | [102] |
Candelilla wax and rice bran wax | 2–8 wt% | Palm kernel stearin | Candelilla wax promoted the crystallization process. Candelilla wax and rice bran wax introduced new hydrocarbon chain distances. Rice bran wax increased the thickness of lamellar and nanocrystal size. Candelilla wax led to small uniform crystal, whereas rice bran wax led to large rod-like layered crystal. Candelilla wax and rice bran wax resulted in higher firmness. | [103] |
Derivatives of paraffin waxes (N-alkanes) | 1–5 wt% | Cocoa-butter and coconut-oil blend | N-alkanes induced heterogeneous nucleation and promoted the crystallization of the blend. N-alkanes interacted more dominantly with coconut oil than with cocoa butter | [104] |
Rice bran wax | 1–5 wt% | Cocoa butter | Rice bran wax accelerated the tempering process and V-crystal formation. Rice bran wax delayed the transition from V to VI. Rice bran wax delayed the formation of fat bloom during storage. | [105] |
Essential oils (5% w/w) obtained from the flowers (EsOF) and stems (EsOS) of Pituranthos scoparius | 5 wt% | Palm oil-based fats | Essential oils decreased the rate of crystallization and SFC. EsOF led to a less organized crystal network, whereas EsOS led to more organized crystal network. EsOF resulted in bigger crystals in palm oil while EsOS led to smaller crystals. | [106] |
Limonene | 1–10 wt% | Palm oil | Limonene decreased the SFC and consistency. Limonene can alleviate the post-hardening phenomenon. | [107] |
Limonene | 1–10 wt% | Palm stearin | Limonene promoted crystallization. A high concentration of limonene reduced the crystal size and accelerated the polymorphic transformation to the β crystal. | [108] |
Limonene | 1–10 wt% | Palm olein | Limonene alleviated clouding. Limonene reduced crystallization temperature and cloud point. Limonene inhibited the nucleation of the high-melting-point TAG. Limonene inhibited crystal growth and agglomeration. | [109] |
Cannabidiol | 1–2.5 wt% | Anhydrous milk fat, palm oil, palm kernel oil, and cocoa butter | Cannabidiol delayed the crystallization of all fats. Cannabidiol slightly increased the crystal size for all lipid samples. Cannabidiol increased hardness and elasticity. Cannabidiol had different effects on different lipids. | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Lee, Y.-Y.; Lu, Y.; Wang, Y.; Zhang, Z. Internal Factors Affecting the Crystallization of the Lipid System: Triacylglycerol Structure, Composition, and Minor Components. Molecules 2024, 29, 1847. https://doi.org/10.3390/molecules29081847
Yang D, Lee Y-Y, Lu Y, Wang Y, Zhang Z. Internal Factors Affecting the Crystallization of the Lipid System: Triacylglycerol Structure, Composition, and Minor Components. Molecules. 2024; 29(8):1847. https://doi.org/10.3390/molecules29081847
Chicago/Turabian StyleYang, Dubing, Yee-Ying Lee, Yuxia Lu, Yong Wang, and Zhen Zhang. 2024. "Internal Factors Affecting the Crystallization of the Lipid System: Triacylglycerol Structure, Composition, and Minor Components" Molecules 29, no. 8: 1847. https://doi.org/10.3390/molecules29081847
APA StyleYang, D., Lee, Y. -Y., Lu, Y., Wang, Y., & Zhang, Z. (2024). Internal Factors Affecting the Crystallization of the Lipid System: Triacylglycerol Structure, Composition, and Minor Components. Molecules, 29(8), 1847. https://doi.org/10.3390/molecules29081847