Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon
Abstract
:1. Introduction
2. Results
2.1. Adsorbent Characteristics
2.2. Adsorption Equilibrium and Kinetics
2.2.1. Effect of Adsorbent Grain Size
2.2.2. Effect of Contact Time
2.2.3. Effect of Adsorbent Mass
2.2.4. Effect of Adsorbate Concentrations
2.2.5. Effect of pH
2.2.6. Effect of the Presence of an Accompanying Substance
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Methods
4.2.1. Potentiometric Titration
4.2.2. TEM
4.2.3. SEM
4.2.4. Adsorption Equilibrium
4.2.5. Adsorption Kinetics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutkiewicz, T. 4-Chlorophenol. Documentation of occupational exposure limits. Princ. Methods Assess. Work. Environ. 2008, 2, 35. [Google Scholar]
- Safety Data Sheet for 2-Chlorophenol, Owned by Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/PL/en/sds/mm/8.02253?userType=anonymous (accessed on 12 March 2024).
- Wasilewska, M.; Marczewski, A.W.; Deryło-Marczewska, A.; Sternik, D. Nitrophenols removal from aqueous solutions by activated carbon—Temperature effect of adsorption kinetics and equilibrium. J. Environ. Chem. Eng. 2021, 9, 105459. [Google Scholar] [CrossRef]
- Deryło-Marczewska, A.; Miroslaw, K.; Marczewski, A.W.; Sternik, D. Studies of adsorption equilibria and kinetics of o-. m-. p-nitro- and chlorophenols on microporous carbons from aqueous solutions. Adsorption 2010, 16, 359. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M. Biomass-Based Adsorbents for Removal of Dyes from Wastewater: A Review. Front. Environ. Sci. 2021, 9, 764958. [Google Scholar] [CrossRef]
- Bożęcka, A.M.; Orlof-Naturalna, M.M.; Kopeć, M. Methods of Dyes Removal from Aqueous Environment. J. Ecol. Eng. 2021, 22, 111. [Google Scholar] [CrossRef]
- Zieliński, B.; Miądlicki, P.; Przepiórski, J. Development of activated carbon for removal of pesticides from water: Case study. Sci. Rep. 2022, 12, 20869. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, A.A.; Beni, A.S.; Azhdarpoor, A.; Moeini, Z. The application of granular and biological activated carbon columns in removal of organochlorine and organophosphorus pesticides in a water treatment plant. J. Water Proc. Eng. 2023, 56, 104383. [Google Scholar] [CrossRef]
- Wasilewska, M.; Grządka, E. Activated Carbons as Effective Adsorbents of Non-Steroidal Anti-Inflammatory Drugs. Appl. Sci. 2024, 14, 743. [Google Scholar] [CrossRef]
- Costa, R.L.T.; do Nascimento, R.A.; de Araújo, R.C.S.; Vieira, M.G.A.; da Silva, M.G.C.; de Carvalho, S.M.L.; de Faria, L.J.G. Removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water with activated carbons synthetized from waste murumuru (Astrocaryum murumuru Mart.): Characterization and adsorption studies. J. Mol. Liq. 2021, 343, 116980. [Google Scholar] [CrossRef]
- Pereira, M.F.R.; Soares, S.F.; Órfão, J.J.M.; Figueiredo, J.L. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon 2003, 41, 811. [Google Scholar] [CrossRef]
- Wang, P.; Lai, J.; Lin, X.; Li, X.; Xu, S. A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon. Recycling 2023, 8, 98. [Google Scholar] [CrossRef]
- Salari, A.; Ostad Movahed, S. The effect of temperature on the adsorption of the sodium lignosulphonate (SL) on the surface of the selected plastics as a potential solution for the plastics waste management. Polym. Polym. Compos. 2023, 31, 09673911231181850. [Google Scholar] [CrossRef]
- Jiang, L.-L.; Yu, H.-T.; Pei, L.F.; Hou, X.G. The Effect of Temperatures on the Synergistic Effect between a Magnetic Field and Functionalized Graphene Oxide-Carbon Nanotube Composite for Pb2+ and Phenol Adsorption. J. Nanomater. 2018, 2018, 9167938. [Google Scholar] [CrossRef]
- Vojnović, B.; Cetina, M.; Franjković, P.; Sutlović, A. Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics. Molecules 2022, 27, 1349. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Lopes, L.P.; Macena, M.; Esteves, B.; Guiné, R.P. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agric. 2021, 6, 115. [Google Scholar] [CrossRef]
- Boumediene, M.; Benaïssa, H.; George, B.; Molina, S.; Merlin, A. Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. J. Mater. Environ. Sci. 2018, 9, 1700. [Google Scholar] [CrossRef]
- Delaroza, R.; Wijayanti, A.; Kusumadewi, R.A.; Hadisoebroto, R. The effect of mixing speed to adsorption heavy metal Cu2+ and color using kepok banana peel waste. IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012024. [Google Scholar] [CrossRef]
- Aulia, S.D.; Wijayanti, A.; Hadisoebroto, R. The effect of mixing speed and contact time on dye removal using Cassava Peel adsorbents. IOP Conf. Ser. Earth Environ. Sci. 2021, 426, 012013. [Google Scholar] [CrossRef]
- Natrayan, L.; Kaliappan, S.; Chukka, N.D.K.R.; Karthick, M.; Sivakumar, N.S.; Patil, P.P.; Sekar, S.; Thanappan, S. Development and Characterization of Carbon-Based Adsorbents Derived from Agricultural Wastes and Their Effectiveness in Adsorption of Heavy Metals in Waste Water. Bioinorg. Chem. Appl. 2022, 2022, 1659855. [Google Scholar] [CrossRef]
- Khamseh, A.A.G.; Ghorbanian, S.A.; Amini, Y.; Shadman, M.M. Investigation of kinetic, isotherm and adsorption efficacy of thorium by orange peel immobilized on calcium alginate. Sci. Rep. 2023, 13, 8393. [Google Scholar] [CrossRef]
- Murphy, O.P.; Vashishtha, M.; Palanisamy, P.; Kumar, K.V. A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time. ACS Omega 2023, 8, 17407. [Google Scholar] [CrossRef] [PubMed]
- Kouvalakidou, S.L.; Varoutoglou, A.; Alibrahim, K.A.; Alodhayb, A.N.; Mitropoulos, A.C.; Kyzas, G.Z. Batch adsorption study in liquid phase under agitation, rotation, and nanobubbles: Comparisons in a multi-parametric study. Environ. Sci. Pollut. Res. Int. 2023, 30, 114032. [Google Scholar] [CrossRef] [PubMed]
- Cela-Dablanca, R.; Barreiro-Buján, A.; Ferreira-Coelho, G.; López, L.R.; Santás-Miguel, V.; Arias-Estévez, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E. Competitive adsorption and desorption of tetracycline and sulfadiazine in crop soils. Environ. Res. 2022, 214, 113726. [Google Scholar] [CrossRef] [PubMed]
- Bouteiba, A.; Naceur, B.; Abdelkader, E.; Karima, E.; Nourredine, B. Competitive adsorption of binary dye from aqueous solutions using calcined layered double hydroxides. Int. Environ. Anal. Chem. 2022, 102, 3207. [Google Scholar] [CrossRef]
- Duan, R.; Fedler, C.B. Competitive adsorption of Cu2+, Pb2+, Cd2+, and Zn2+ onto water treatment residuals: Implications for mobility in stormwater bioretention systems. Water Sci. Technol. 2022, 86, 878. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Hassani, S.; Derakhshani, M. Phenol. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 871–873. [Google Scholar] [CrossRef]
- Cordova Villegas, L.G.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2016, 2, 157. [Google Scholar] [CrossRef]
- Safety Data Sheet for Phenol, Owned by Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/w322340?userType=anonymous (accessed on 16 April 2024).
- Arasteh, R.; Masoumi, M.; Rashidi, A.M.; Moradi, L.; Samimi, V.; Mostafavi, S.T. Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Appl. Surf. Sci. 2010, 256, 4447. [Google Scholar] [CrossRef]
- Safety Data Sheet for 2-nitrophenol, Owned by Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/PL/en/sds/aldrich/n19702?userType=anonymous (accessed on 16 April 2024).
- Kristanti, R.A.; Kanbe, M.; Hadibarata, T.; Toyama, T.; Tanaka, Y.; Mori, K. Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environ. Sci. Pollut. Res. Int. 2012, 19, 1852. [Google Scholar] [CrossRef]
- She, Z.; Gao, M.; Jin, C.; Chen, Y.; Yu, J. Toxicity and biodegradation of 2,4-dinitrophenol and 3-nitrophenol in anaerobic systems. Process Biochem. 2005, 40, 3017. [Google Scholar] [CrossRef]
- Safety Data Sheet for 3-nitrophenol, Owned by Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/PL/en/sds/sial/163031?userType=anonymous (accessed on 16 April 2024).
- Kumar, A.; Kumar, S.; Kumar, S.; Gupta, D.V. Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: Equilibrium and kinetics. J. Hazard. Mater. 2007, 147, 155. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Cai, W.; Zhao, R.; Yuan, J. Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water. Appl. Surf. Sci. 2015, 349, 897. [Google Scholar] [CrossRef]
- Takeo, M.; Murakami, M.; Niihara, S.; Yamamoto, K.; Nishimura, M.; Kato, D.; Negoro, S. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: Characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J. Bacteriol. 2008, 190, 7367. [Google Scholar] [CrossRef] [PubMed]
- Safety Data Sheet for 4-nitrophenol, Owned by Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/PL/en/sds/mm/1.06798?userType=anonymous (accessed on 16 April 2024).
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassaa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef] [PubMed]
- Al-Asadi, S.T.; Al-Qaim, F.F.; Al-Saedi, H.F.S.; Deyab, I.F.; Kamyab, H.; Chelliapan, S. Adsorption of methylene blue dye from aqueous solution using low-cost adsorbent: Kinetic, isotherm adsorption, and thermodynamic studies. Environ. Monit. Assess. 2023, 195, 676. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Budarin, V.L.; Clark, J.H.; North, M.; Wu, X. Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. J. Hazard. Mater. 2022, 436, 129174. [Google Scholar] [CrossRef] [PubMed]
- Safety Data Sheet for Methylene Blue, Owned by Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/PL/en/sds/sial/phr3838?userType=anonymous (accessed on 16 April 2024).
- Ghodbane, I.; Nouri, L.; Hamdaoui, O.; Chiha, M. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. J. Hazard. Mater. 2008, 152, 148. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shadman, F. Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles. AIChE J. 2013, 59, 1502. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Elidrissi, A.; Haboubi, K.; Bacquet, M.; Degoutin, S.; Zaghrioui, M.; Garcia, Y. Removal of toxic heavy metals from river water samples using a porous silica surface modified with a new β-ketoenolic host. Beilstein J. Nanotechnol. 2019, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Wahyuhadi, M.E.; Kusumadewi, R.A.; Hadisoebroto, R. Effect of Contact Time on The Adsorption Process of Activated Carbon from Banana Peel in Reducing Heavy Metal Cd and Dyes Using a Stirring Tub (Pilot Scale). IOP Conf. Ser. Earth Environ. Sci. 2023, 1203, 012035. [Google Scholar] [CrossRef]
- Gorzin, F.; Bahri Rasht Abadi, M. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorpt. Sci. Technol. 2018, 36, 149. [Google Scholar] [CrossRef]
- Khan, S.; Ajmal, S.; Hussain, T.; Rahman, M.U. Clay-based materials for enhanced water treatment: Adsorption mechanisms, challenges, and future directions. J. Umm Al-Qura Univ. Appl. Sci. 2023, 2023, 1–16. [Google Scholar] [CrossRef]
- Aharoni, C.; Sideman, S.; Hoffer, E. Adsorption of phosphate ions by collodioncoated alumina. J. Chem. Technol. Biotechnol. 1979, 29, 404. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chu, L.; Tsai, J.C.; Chiu, S.J. Kinetic study of immobilized lysozyme on the extrudate-shaped NaY zeolite. Process Biochem. 2006, 41, 1864. [Google Scholar] [CrossRef]
- Appel, C.; Ma, L.Q.; Rhue, R.D.; Kennelley, E. Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 2003, 113, 77. [Google Scholar] [CrossRef]
- Cardenas-Peña, A.M.; Ibanez, J.G.; Vasquez-Medrano, R. Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int. J. Electrochem. Sci. 2012, 7, 6142. [Google Scholar] [CrossRef]
- Belhachemi, M.; Addoun, F. Adsorption of congo red onto activated carbons having different surface properties: Studies of kinetics and adsorption equilibrium. Desalin. Water Treat. 2012, 37, 122. [Google Scholar] [CrossRef]
- Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 12 March 2024).
- Available online: https://www.chemsrc.com/en/ (accessed on 12 March 2024).
- Kuśmierek, K.; Świątkowski, A. Influence of pH on adsorption kinetics of monochlorophenols from aqueous solutions on granular activated carbon. Ecol. Chem. Eng. S 2015, 22, 95. [Google Scholar]
- Al-Aoh, H.A.; Maah, M.J.; Yahya, R.; Radzi Bin Abas, M. Isotherms, Kinetics and Thermodynamics of 4-Nitrophenol Adsorption on Fiber-Based Activated Carbon from Coconut Husks Prepared under Optimized Conditions. Asian J. Chem. 2013, 25, 9573. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Couto Junior, O.M.; Carvalho, K.Q.; Arroyo, P.A.; Barrosa, M.A.S.D. Effect of Solution pH on the Removal of Paracetamol by Activated Carbon of Dende Coconut Mesocarp. Chem. Biochem. Eng. Q. 2015, 29, 47. [Google Scholar] [CrossRef]
- Li, L.; Liu, F.; Jing, X.; Ling, P.; Li, A. Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling. Water Res. 2011, 45, 1177. [Google Scholar] [CrossRef]
- Yadav, N.; Maddheshiaya, D.N.; Rawat, S.; Singh, J. Adsorption and equilibrium studies of phenol and para-nitrophenol by magnetic activated carbon synthesised from cauliflower waste. Environ. Eng. Res. 2020, 25, 742. [Google Scholar] [CrossRef]
- Gu, X.; Kang, H.; Li, H.; Liu, X.; Dong, F.; Fu, M.; Chen, J. Adsorption Removal of Various Nitrophenols in Aqueous Solution by Aminopropyl-Modified Mesoporous MCM-48. J. Chem. Eng. Data 2018, 63, 3606. [Google Scholar] [CrossRef]
- Chaudhary, M.; Suhas; Kushwaha, S.; Chaudhary, S.; Tyagi, I.; Dehghani, M.H.; Stephen Inbaraj, B.; Goscianska, J.; Sharma, M. Studies on the Removal of Phenol and Nitrophenols from Water by Activated Carbon Developed from Demineralized Kraft Lignin. Agronomy 2022, 12, 2564. [Google Scholar] [CrossRef]
- Magdy, Y.M.; Altaher, H.; ElQada, E. Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: Equilibrium and kinetic modeling. Appl. Water Sci. 2018, 8, 26. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Jaroniec, M. A new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids—Short communication. Monatshefte Für Chem. Chem. Mon. 1983, 114, 711. [Google Scholar] [CrossRef]
- Jaroniec, M.; Marczewski, A.W. Physical adsorption of gases on energetically heterogeneous solids I. Generalized Langmuir equation and its energy distribution. Monatshefte Für Chem. Chem. Mon. 1984, 115, 997. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der Sogenannten Adsorption Geloster Stoffe. K. Sven. Vetenskapsakademiens. Handl. 1898, 24, 1. [Google Scholar] [CrossRef]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47. [Google Scholar] [CrossRef] [PubMed]
- Marczewski, A.W. Kinetics and equilibrium of adsorption of organic solutes on mesoporous carbons. Appl. Surf. Sci. 2007, 253, 5818. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1988, 70, 115. [Google Scholar] [CrossRef]
- Marczewski, A.W. Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl. Surf. Sci. 2010, 256, 5145. [Google Scholar] [CrossRef]
- Marczewski, A.W. Analysis of kinetic Langmuir model. Part I: Integrated kinetic Langmuir equation (IKL): A new complete analytical solution of the Langmuir rate equation. Langmuir 2010, 26, 15229. [Google Scholar] [CrossRef] [PubMed]
- Marczewski, A.W.; Deryło-Marczwska, A.; Słota, A. Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons. Adsorption 2013, 19, 391. [Google Scholar] [CrossRef]
- Haerifar, M.; Azizian, S. Fractal-like adsorption kinetics at the solid/solution interface. J. Phys. Chem. C 2012, 116, 13111. [Google Scholar] [CrossRef]
System | Isotherm Type | am a | m b | n b | logK c | R2 d | SD(a) e |
---|---|---|---|---|---|---|---|
2-NF/GAC < 0.3 mm | GF | 11.46 | 0.93 | 1 | −0.07 | 0.996 | 0.022 |
2-NF/GAC 0.3–0.5 mm | GF | 10.87 | 0.82 | 1 | −0.40 | 0.993 | 0.028 |
2-NF/GAC > 0.5 mm | GF | 10.71 | 0.39 | 1 | −0.54 | 0.988 | 0.019 |
3-NF/GAC < 0.3 mm | GF | 6.02 | 0.41 | 1 | −0.84 | 0.987 | 0.025 |
3-NF/GAC 0.3–0.5 mm | GF | 5.32 | 0.51 | 1 | −0.78 | 0.987 | 0.026 |
3-NF/GAC > 0.5 mm | GL | 5.13 | 0.30 | 0.91 | −0.59 | 0.964 | 0.051 |
4-NF/GAC < 0.3 mm | GF | 7.11 | 0.69 | 1 | −0.27 | 0.987 | 0.028 |
4-NF/GAC 0.3–0.5 mm | GF | 6.79 | 0.47 | 1 | −0.76 | 0.954 | 0.053 |
4-NF/GAC > 0.5 mm | GL | 6.02 | 0.27 | 0.84 | −0.12 | 0.973 | 0.050 |
System | Isotherm Type | am a | m b | n b | logK c | R2 d | SD(a) e |
---|---|---|---|---|---|---|---|
2-NF/GAC 1 day | GF | 4.33 | 0.95 | 1 | −0.27 | 0.972 | 0.046 |
2-NF/GAC 4 days | GL | 6.51 | 0.63 | 0.61 | −0.79 | 0.943 | 0.069 |
2-NF/GAC 7 days | GF | 10.71 | 0.39 | 1 | −0.54 | 0.988 | 0.019 |
3-NF/GAC 1 day | GF | 2.01 | 0.69 | 1 | −0.57 | 0.961 | 0.039 |
3-NF/GAC 4 days | GL | 2.91 | 0.45 | 0.19 | −0.44 | 0.912 | 0.054 |
3-NF/GAC 7 days | GL | 5.13 | 0.30 | 1 | −0.59 | 0.964 | 0.051 |
4-NF/GAC 1 day | T | 3.83 | 1 | 0.43 | −0.66 | 0.947 | 0.071 |
4-NF/GAC 4 days | GL | 5.19 | 0.53 | 0.63 | −1.36 | 0.991 | 0.023 |
4-NF/GAC 7 days | GL | 6.02 | 0.27 | 0.84 | −0.12 | 0.973 | 0.050 |
System | f1 a, log k1 b | f2 a, log k2 b | f3 a, log k3 b | ueq c | t1/2 d [min] | SD(c)/co e [%] | 1 − R2 f |
---|---|---|---|---|---|---|---|
F/RIAA Co = 1.4 mM, m = 0.05 g | 0.598; −2.58 | 0.402; −4.48 | - | 0.902 | 655.4 | 0.163 | 5.1 × 10−5 |
F/RIAA Co = 1.4 mM, m = 0.1 g | 0.562; −2.45 | 0.344; −3.06 | 0.094; −3.94 | 0.896 | 358.9 | 0.190 | 3.7 × 10−5 |
F/RIAA Co = 1.4 mM, m = 0.15 g | 0.753; −2.48 | 0.247; −3.3 | - | 1 | 291.1 | 0.832 | 8.2 × 10−4 |
F/RIAA Co = 1.4 mM, m = 0.2 g | 0.008; 1.30 | 0.733; −2.38 | 0.260; 2.94 | 0.952 | 222.4 | 0.094 | 8.5 × 10−6 |
2-NF/RIAA Co = 0.323 mM, m = 0.05 g | 0.285; −2.08 | 0.715; −2.94 | - | 0.998 | 340.6 | 0.512 | 2.6 × 10−4 |
2-NF/RIAA Co = 0.323 mM, m = 0.1 g | 0.403; −2.15 | 0.597; −2.50 | - | 0.997 | 156.8 | 0.344 | 1.1 × 10−4 |
2-NF/RIAA Co = 0.323 mM, m = 0.15 g | 0.581; −2.28 | 0.419; −2.52 | - | 0.999 | 144.0 | 0.251 | 5.6 × 10−5 |
2-NF/RIAA Co = 0.323 mM, m = 0.2 g | 0.197; −1.95 | 0.803; −2.30 | - | 0.995 | 117.2 | 0.455 | 2.0 × 10−4 |
3-NF/RIAA Co = 0.339 mM, m = 0.05 g | 0.863; −2.78 | 0.137; −3.08 | - | 0.991 | 457.0 | 0.246 | 4.5 × 10−5 |
3-NF/RIAA Co = 0.339 mM, m = 0.1 g | 1.000; −2.54 | - | - | 0.998 | 240.0 | 0.231 | 4.5 × 10−5 |
3-NF/RIAA Co = 0.339 mM, m = 0.15 g | 1.000; −2.42 | - | - | 1.000 | 183.1 | 0.480 | 1.9 × 10−4 |
3-NF/RIAA Co = 0.339 mM, m = 0.2 g | 0.197; −1.95 | 0.803; −2.30 | - | 0.995 | 117.7 | 0.451 | 2.0 × 10−4 |
4-NF/RIAA Co = 0.205 mM, m = 0.05 g | 0.005; 1.78 | 0.494; −2.78 | 0.501; −3.04 | 1 | 553.5 | 0.086 | 7.7 ×·10−6 |
4-NF/RIAA Co = 0.205 mM, m = 0.1 g | 1.000; −2.65 | - | - | 1 | 309.3 | 0.175 | 3.0 ×·10−5 |
4-NF/RIAA Co = 0.205 mM, m = 0.15 g | 0.867; −2.36 | 0.133; −2.67 | - | 1 | 171.0 | 0.327 | 9.9·× 10−5 |
4-NF/RIAA Co = 0.205 mM, m = 0.2 g | 0.003; 1.51 | 0.997; −2.35 | - | 0.997 | 154.2 | 0.106 | 1.0·× 10−5 |
System | f1 a, log k1 b | f2 a, log k2 b | f3 a, log k3 b | ueq c | t1/2 d [min] | SD(c)/co e [%] | 1 − R2 f |
---|---|---|---|---|---|---|---|
F/RIAA Co = 1.4 mM, m = 0.1 g | 0.562; −2.45 | 0.344; −3.06 | 0.094; −3.94 | 0.896 | 358.9 | 0.190 | 3.7 × 10−5 |
F/RIAA Co = 0.933 mM, m = 0.1 g | 0.08; 0.54 | 0.674; −2.42 | 0.246; −2.96 | 0.924 | 207.3 | 0.306 | 9.6 × 10−5 |
F/RIAA Co = 0.7 mM, m = 0.1 g | 0.667; −2.55 | 0.256; −3.09 | 0.077; −4.71 | 1 | 371.5 | 0.144 | 1.91 × 10−5 |
F/RIAA Co = 467 mM, m = 0.1 g | 0.870; −2.60 | 0.13; −3.24 | - | 0.951 | 319.5 | 0.239 | 4.8 × 10−5 |
2-NF/RIAA Co = 0.323 mM, m = 0.1 g | 0.403; −2.15 | 0.597; −2.50 | - | 0.997 | 156.8 | 0.344 | 1.1 × 10−4 |
2-NF/RIAA Co = 0.205 mM, m = 0.1 g | 1.000; −2.55 | - | - | 1 | 245.3 | 0.791 | 5.0 × 10−4 |
2-NF/RIAA Co = 0.161 mM, m = 0.1 g | 1.000; −2.48 | - | - | 0.999 | 208.5 | 0.211 | 3.9 × 10−5 |
2-NF/RIAA Co = 0.108 mM, m = 0.1 g | 1.000; −2.48 | - | - | 1 | 281.6 | 0.556 | 3.1 × 10−4 |
3-NF/RIAA Co = 0.339 mM, m = 0.1 g | 0.331; −2.10 | 0.669; −2.58 | - | 1 | 177.9 | 0.252 | 6.8 × 10−5 |
3-NF/RIAA Co = 0.205 mM, m = 0.1 g | 1.000; −2.55 | - | - | 1 | 247.3 | 0.792 | 5.1 × 10−4 |
3-NF/RIAA Co = 0.169 mM, m = 0.1 g | 1.000; −2.48 | - | - | 0.999 | 208.5 | 0.211 | 3.9 × 10−5 |
3-NF/RIAA Co = 0.113 mM, m = 0.1 g | 1.000; −2.61 | - | - | 1 | 281.6 | 0.556 | 3.1 × 10−4 |
4-NF/RIAA Co = 0.205 mM, m = 0.1 g | 0.016; 1.36 | 0.839; −2.62 | 0.145; −2.88 | 1 | 307.1 | 0.123 | 1.3 × 10−5 |
4-NF/RIAA Co = 0.137 mM, m = 0.1 g | 1.000; −2.52 | - | - | 1 | 229.9 | 0.382 | 1.4 × 10−4 |
4-NF/RIAA Co = 0.102 mM, m = 0.1 g | 1.000; −2.65 | - | - | 1 | 309.3 | 0.175 | 3.0 × 10−5 |
4-NF/RIAA Co = 0.068 mM, m = 0.1 g | 0.007; −0.30 | 0.447; −2.37 | 0.547; −2.61 | 1 | 215.6 | 0.109 | 1.1 × 10−5 |
System | Isotherm Type | am a | m b | n b | logK c | R2 d | SD(a) e |
---|---|---|---|---|---|---|---|
4-NF/GAC pH = 2 | GL | 6.02 | 0.27 | 0.84 | −0.12 | 0.973 | 0.050 |
4-NF/GAC pH = 7 | GF | 4.97 | 0.29 | 1 | −3.04 | 0.957 | 0.041 |
4-NF/GAC pH = 10 | GL | 4.58 | 0.37 | 0.49 | −1.06 | 0.994 | 0.015 |
System | f1 a, log k1 b | f2 a, log k2 b | f3 a, log k3 b | ueq c | t1/2 d [min] | SD(c)/co e [%] | 1 − R2 f |
---|---|---|---|---|---|---|---|
4-NF/GAC pH = 2 | 0.010; −1.64 | 0.990; −2.34 | - | 0.997 | 204.6 | 0.095 | 8.2 × 10−6 |
4-NF/GAC pH = 7 | 0.026; −0.25 | 0.435; −2.16 | 0.539; −2.47 | 0.991 | 141.0 | 0.615 | 3.6 × 10−4 |
4-NF/GAC pH = 10 | 0.024; −1.78 | 0.875; −2.36 | 0.101; −2.75 | 0.997 | 167.0 | 0.434 | 1.6 × 10−4 |
System | Isotherm Type | am a | m b | n b | logK c | R2 d | SD(a) e |
---|---|---|---|---|---|---|---|
2-NF/GAC | GF | 10.71 | 0.39 | 1 | −0.54 | 0.988 | 0.019 |
2-NF(2-NF+MB)/GAC | GF | 3.47 | 0.34 | 1 | −0.32 | 0.958 | 0.047 |
3-NF/GAC | GL | 5.13 | 0.30 | 0.96 | −0.59 | 0.964 | 0.051 |
3-NF(3-NF+MB)/GAC | GF | 2.25 | 0.15 | 1 | −7.44 | 0.953 | 0.057 |
4-NF/GAC | GL | 6.02 | 0.27 | 0.84 | −0.12 | 0.973 | 0.050 |
4-NF(4-NF+MB)/GAC | GF | 4.52 | 0.44 | 1 | −0.62 | 0.980 | 0.030 |
MB/GAC | GL | 0.50 | 0.61 | 0.63 | 2.62 | 0.981 | 0.026 |
MB(MB+2-NF)/GAC | GF | 0.48 | 0.95 | 1 | 1.19 | 0.947 | 0.044 |
MB(MB+3-NF)/GAC | T | 0.45 | 1 | 0.47 | 0.76 | 0.932 | 0.049 |
MB(MB+4-NF)/GAC | GF | 0.41 | 0.96 | 1 | 0.71 | 0.971 | 0.024 |
System | f1 a, log k1 b | f2 a, log k2 b | f3 a, log k3 b | ueq c | t1/2 d [min] | SD(c)/co e [%] | 1 − R2 f |
---|---|---|---|---|---|---|---|
2-NF/GAC | 0.767; −2.06 | 0.233; −2.50 | - | 0.992 | 133.5 | 0.066 | 3.9 × 10−6 |
2-NF(2-NF+MB)/GAC | 0.753; −2.30 | 0.164; −2.83 | 0.083; −1.74 | 0.995 | 145.3 | 0.769 | 6.4 × 10−4 |
3-NF/GAC | 0.067; −2.04 | 0.913; −2.47 | 0.020; −3.43 | 1 | 157.1 | 0.116 | 1.1 × 10−5 |
3-NF(3-NF+MB)/GAC | 0.636; −2.21 | 0.364; −2.67 | - | 1 | 196.3 | 0.883 | 7.1 × 10−4 |
4-NF/GAC | 0.010; −1.64 | 0.990; −2.34 | - | 0.997 | 193.2 | 0.095 | 8.2 × 10−6 |
4-NF(4-NF+MB)/GAC | 0.832; −2.38 | 0.168; −2.82 | - | 1 | 204.6 | 0.528 | 2.6 × 10−4 |
MB/GAC | 0.600; −2.42 | 0.400; −3.01 | - | 1 | 290 | 0.513 | 1.0 × 10−6 |
MB(MB+2-NF)/GAC | 1.000; −2.56 | - | - | 0.995 | 250.4 | 0.604 | 3.6 × 10−4 |
MB(MB+3-NF)/GAC | 0.072; −2.01 | 0.020; −2.61 | 0.908; −2.57 | 1 | 234.5 | 0.506 | 2.0 × 10−4 |
MB(MB+4-NF)/GAC | 0.024; −0.03 | 0.426; −2.50 | 0.550; −2.81 | 0.994 | 307.9 | 0.227 | 3.8 × 10−5 |
Adsorbate | Structural Formula | M a [g/mol] | cs b [g/L] | pKa c | m.p. d [°C] | b.p. e [°C] | Chemical Safety |
---|---|---|---|---|---|---|---|
Phenol | 94.11 | 82.8 | 9.99 | 41 | 182 | Corrosive Acute toxic Health hazard | |
2-Nitrophenol | 139.11 | 2.0 | 7.17 | 44–46 | 216 | Irritant Environmental hazard | |
3-Nitrophenol | 139.11 | 13.5 | 8.28 | 96.8 | 194 | Corrosive Irritant Health hazard | |
4-Nitrophenol | 139.11 | 11.6 | 7.15 | 113.8 | 279 | Irritant Health hazard | |
Methylene blue | 319.85 | 43.6 | >12 | 100–110 | - | Corrosive Irritant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasilewska, M.; Derylo-Marczewska, A.; Marczewski, A.W. Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon. Molecules 2024, 29, 2038. https://doi.org/10.3390/molecules29092038
Wasilewska M, Derylo-Marczewska A, Marczewski AW. Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon. Molecules. 2024; 29(9):2038. https://doi.org/10.3390/molecules29092038
Chicago/Turabian StyleWasilewska, Małgorzata, Anna Derylo-Marczewska, and Adam W. Marczewski. 2024. "Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon" Molecules 29, no. 9: 2038. https://doi.org/10.3390/molecules29092038
APA StyleWasilewska, M., Derylo-Marczewska, A., & Marczewski, A. W. (2024). Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon. Molecules, 29(9), 2038. https://doi.org/10.3390/molecules29092038